analyze.c 52.1 KB
Newer Older
B
Bruce Momjian 已提交
1 2 3
/*-------------------------------------------------------------------------
 *
 * analyze.c
4
 *	  the Postgres statistics generator
B
Bruce Momjian 已提交
5
 *
B
Bruce Momjian 已提交
6
 * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
B
Bruce Momjian 已提交
7 8 9 10
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
11
 *	  $PostgreSQL: pgsql/src/backend/commands/analyze.c,v 1.69 2004/02/13 06:39:49 tgl Exp $
B
Bruce Momjian 已提交
12 13 14
 *
 *-------------------------------------------------------------------------
 */
15 16
#include "postgres.h"

17
#include <math.h>
B
Bruce Momjian 已提交
18 19

#include "access/heapam.h"
20
#include "access/tuptoaster.h"
21
#include "catalog/catalog.h"
B
Bruce Momjian 已提交
22 23
#include "catalog/catname.h"
#include "catalog/indexing.h"
24
#include "catalog/namespace.h"
B
Bruce Momjian 已提交
25 26 27 28
#include "catalog/pg_operator.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "parser/parse_oper.h"
29
#include "parser/parse_relation.h"
B
Bruce Momjian 已提交
30 31
#include "utils/acl.h"
#include "utils/builtins.h"
32
#include "utils/datum.h"
B
Bruce Momjian 已提交
33
#include "utils/fmgroids.h"
34
#include "utils/lsyscache.h"
B
Bruce Momjian 已提交
35
#include "utils/syscache.h"
36
#include "utils/tuplesort.h"
B
Bruce Momjian 已提交
37 38


39
/* Default statistics target (GUC parameter) */
B
Bruce Momjian 已提交
40
int			default_statistics_target = 10;
41

B
Bruce Momjian 已提交
42
static int	elevel = -1;
43

44 45
static MemoryContext anl_context = NULL;

46 47 48

static VacAttrStats *examine_attribute(Relation onerel, int attnum);
static int acquire_sample_rows(Relation onerel, HeapTuple *rows,
49
					int targrows, double *totalrows);
50 51
static double random_fract(void);
static double init_selection_state(int n);
52
static double select_next_random_record(double t, int n, double *stateptr);
53
static int	compare_rows(const void *a, const void *b);
54
static void update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats);
55
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
B
Bruce Momjian 已提交
56

57 58
static bool std_typanalyze(VacAttrStats *stats);

B
Bruce Momjian 已提交
59 60

/*
61
 *	analyze_rel() -- analyze one relation
B
Bruce Momjian 已提交
62 63
 */
void
64
analyze_rel(Oid relid, VacuumStmt *vacstmt)
B
Bruce Momjian 已提交
65 66
{
	Relation	onerel;
67 68 69 70 71 72
	int			attr_cnt,
				tcnt,
				i;
	VacAttrStats **vacattrstats;
	int			targrows,
				numrows;
73
	double		totalrows;
74 75 76
	HeapTuple  *rows;

	if (vacstmt->verbose)
77
		elevel = INFO;
78
	else
79
		elevel = DEBUG2;
B
Bruce Momjian 已提交
80

81
	/*
B
Bruce Momjian 已提交
82 83 84
	 * Use the current context for storing analysis info.  vacuum.c
	 * ensures that this context will be cleared when I return, thus
	 * releasing the memory allocated here.
85 86 87
	 */
	anl_context = CurrentMemoryContext;

B
Bruce Momjian 已提交
88 89
	/*
	 * Check for user-requested abort.	Note we want this to be inside a
B
Bruce Momjian 已提交
90
	 * transaction, so xact.c doesn't issue useless WARNING.
B
Bruce Momjian 已提交
91
	 */
92
	CHECK_FOR_INTERRUPTS();
B
Bruce Momjian 已提交
93 94 95

	/*
	 * Race condition -- if the pg_class tuple has gone away since the
96
	 * last time we saw it, we don't need to process it.
B
Bruce Momjian 已提交
97
	 */
98 99 100
	if (!SearchSysCacheExists(RELOID,
							  ObjectIdGetDatum(relid),
							  0, 0, 0))
101
		return;
B
Bruce Momjian 已提交
102

B
Bruce Momjian 已提交
103
	/*
104 105
	 * Open the class, getting only a read lock on it, and check
	 * permissions. Permissions check should match vacuum's check!
B
Bruce Momjian 已提交
106
	 */
107 108 109
	onerel = relation_open(relid, AccessShareLock);

	if (!(pg_class_ownercheck(RelationGetRelid(onerel), GetUserId()) ||
110
		  (pg_database_ownercheck(MyDatabaseId, GetUserId()) && !onerel->rd_rel->relisshared)))
B
Bruce Momjian 已提交
111
	{
112 113
		/* No need for a WARNING if we already complained during VACUUM */
		if (!vacstmt->vacuum)
114
			ereport(WARNING,
115
					(errmsg("skipping \"%s\" --- only table or database owner can analyze it",
116
							RelationGetRelationName(onerel))));
117
		relation_close(onerel, AccessShareLock);
B
Bruce Momjian 已提交
118 119 120
		return;
	}

121
	/*
N
Neil Conway 已提交
122 123 124
	 * Check that it's a plain table; we used to do this in
	 * get_rel_oids() but seems safer to check after we've locked the
	 * relation.
125
	 */
126
	if (onerel->rd_rel->relkind != RELKIND_RELATION)
B
Bruce Momjian 已提交
127
	{
B
Bruce Momjian 已提交
128
		/* No need for a WARNING if we already complained during VACUUM */
129
		if (!vacstmt->vacuum)
130
			ereport(WARNING,
131
					(errmsg("skipping \"%s\" --- cannot analyze indexes, views, or special system tables",
132
							RelationGetRelationName(onerel))));
133 134 135 136
		relation_close(onerel, AccessShareLock);
		return;
	}

137 138
	/*
	 * Silently ignore tables that are temp tables of other backends ---
B
Bruce Momjian 已提交
139 140 141
	 * trying to analyze these is rather pointless, since their contents
	 * are probably not up-to-date on disk.  (We don't throw a warning
	 * here; it would just lead to chatter during a database-wide
142 143 144 145 146 147 148 149
	 * ANALYZE.)
	 */
	if (isOtherTempNamespace(RelationGetNamespace(onerel)))
	{
		relation_close(onerel, AccessShareLock);
		return;
	}

150 151 152
	/*
	 * We can ANALYZE any table except pg_statistic. See update_attstats
	 */
153
	if (IsSystemNamespace(RelationGetNamespace(onerel)) &&
B
Bruce Momjian 已提交
154
	 strcmp(RelationGetRelationName(onerel), StatisticRelationName) == 0)
155 156
	{
		relation_close(onerel, AccessShareLock);
B
Bruce Momjian 已提交
157 158 159
		return;
	}

160 161 162 163
	ereport(elevel,
			(errmsg("analyzing \"%s.%s\"",
					get_namespace_name(RelationGetNamespace(onerel)),
					RelationGetRelationName(onerel))));
B
Bruce Momjian 已提交
164

165 166 167 168 169 170
	/*
	 * Determine which columns to analyze
	 *
	 * Note that system attributes are never analyzed.
	 */
	if (vacstmt->va_cols != NIL)
B
Bruce Momjian 已提交
171 172 173
	{
		List	   *le;

174 175 176 177
		vacattrstats = (VacAttrStats **) palloc(length(vacstmt->va_cols) *
												sizeof(VacAttrStats *));
		tcnt = 0;
		foreach(le, vacstmt->va_cols)
B
Bruce Momjian 已提交
178
		{
179
			char	   *col = strVal(lfirst(le));
B
Bruce Momjian 已提交
180

181 182
			i = attnameAttNum(onerel, col, false);
			vacattrstats[tcnt] = examine_attribute(onerel, i);
183 184 185 186 187 188 189
			if (vacattrstats[tcnt] != NULL)
				tcnt++;
		}
		attr_cnt = tcnt;
	}
	else
	{
190
		attr_cnt = onerel->rd_att->natts;
191 192
		/* +1 here is just to avoid palloc(0) with zero-column table */
		vacattrstats = (VacAttrStats **) palloc((attr_cnt + 1) *
193 194
												sizeof(VacAttrStats *));
		tcnt = 0;
195
		for (i = 1; i <= attr_cnt; i++)
196
		{
197
			vacattrstats[tcnt] = examine_attribute(onerel, i);
198 199
			if (vacattrstats[tcnt] != NULL)
				tcnt++;
B
Bruce Momjian 已提交
200 201 202 203
		}
		attr_cnt = tcnt;
	}

204 205 206 207 208
	/*
	 * Quit if no analyzable columns
	 */
	if (attr_cnt <= 0)
	{
209
		relation_close(onerel, AccessShareLock);
210 211
		return;
	}
B
Bruce Momjian 已提交
212

213 214
	/*
	 * Determine how many rows we need to sample, using the worst case
215 216
	 * from all analyzable columns.  We use a lower bound of 100 rows to
	 * avoid possible overflow in Vitter's algorithm.
217 218
	 */
	targrows = 100;
B
Bruce Momjian 已提交
219 220
	for (i = 0; i < attr_cnt; i++)
	{
221 222 223 224 225 226 227 228 229
		if (targrows < vacattrstats[i]->minrows)
			targrows = vacattrstats[i]->minrows;
	}

	/*
	 * Acquire the sample rows
	 */
	rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
	numrows = acquire_sample_rows(onerel, rows, targrows, &totalrows);
B
Bruce Momjian 已提交
230

231 232 233
	/*
	 * If we are running a standalone ANALYZE, update pages/tuples stats
	 * in pg_class.  We have the accurate page count from heap_beginscan,
234 235
	 * but only an approximate number of tuples; therefore, if we are part
	 * of VACUUM ANALYZE do *not* overwrite the accurate count already
236 237 238 239 240
	 * inserted by VACUUM.
	 */
	if (!vacstmt->vacuum)
		vac_update_relstats(RelationGetRelid(onerel),
							onerel->rd_nblocks,
241
							totalrows,
242 243 244
							RelationGetForm(onerel)->relhasindex);

	/*
245
	 * Compute the statistics.	Temporary results during the calculations
246 247
	 * for each column are stored in a child context.  The calc routines
	 * are responsible to make sure that whatever they store into the
248
	 * VacAttrStats structure is allocated in anl_context.
249 250 251 252 253 254
	 */
	if (numrows > 0)
	{
		MemoryContext col_context,
					old_context;

255
		col_context = AllocSetContextCreate(anl_context,
256 257 258 259 260 261
											"Analyze Column",
											ALLOCSET_DEFAULT_MINSIZE,
											ALLOCSET_DEFAULT_INITSIZE,
											ALLOCSET_DEFAULT_MAXSIZE);
		old_context = MemoryContextSwitchTo(col_context);
		for (i = 0; i < attr_cnt; i++)
B
Bruce Momjian 已提交
262
		{
263 264 265 266 267 268 269 270
			VacAttrStats *stats = vacattrstats[i];

			stats->rows = rows;
			stats->tupDesc = onerel->rd_att;
			(*stats->compute_stats) (stats,
									 std_fetch_func,
									 numrows,
									 totalrows);
271
			MemoryContextResetAndDeleteChildren(col_context);
B
Bruce Momjian 已提交
272
		}
273 274 275 276 277
		MemoryContextSwitchTo(old_context);
		MemoryContextDelete(col_context);

		/*
		 * Emit the completed stats rows into pg_statistic, replacing any
278 279 280
		 * previous statistics for the target columns.	(If there are
		 * stats in pg_statistic for columns we didn't process, we leave
		 * them alone.)
281 282 283 284 285 286 287 288 289
		 */
		update_attstats(relid, attr_cnt, vacattrstats);
	}

	/*
	 * Close source relation now, but keep lock so that no one deletes it
	 * before we commit.  (If someone did, they'd fail to clean up the
	 * entries we made in pg_statistic.)
	 */
290
	relation_close(onerel, NoLock);
291 292 293 294 295 296 297 298 299 300 301
}

/*
 * examine_attribute -- pre-analysis of a single column
 *
 * Determine whether the column is analyzable; if so, create and initialize
 * a VacAttrStats struct for it.  If not, return NULL.
 */
static VacAttrStats *
examine_attribute(Relation onerel, int attnum)
{
302
	Form_pg_attribute attr = onerel->rd_att->attrs[attnum - 1];
303 304
	HeapTuple	typtuple;
	VacAttrStats *stats;
305
	bool		ok;
306

307
	/* Never analyze dropped columns */
308 309 310
	if (attr->attisdropped)
		return NULL;

311
	/* Don't analyze column if user has specified not to */
312
	if (attr->attstattarget == 0)
313 314 315
		return NULL;

	/*
316
	 * Create the VacAttrStats struct.
317
	 */
318
	stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
319 320 321 322 323 324
	stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_TUPLE_SIZE);
	memcpy(stats->attr, attr, ATTRIBUTE_TUPLE_SIZE);
	typtuple = SearchSysCache(TYPEOID,
							  ObjectIdGetDatum(attr->atttypid),
							  0, 0, 0);
	if (!HeapTupleIsValid(typtuple))
325
		elog(ERROR, "cache lookup failed for type %u", attr->atttypid);
326 327 328
	stats->attrtype = (Form_pg_type) palloc(sizeof(FormData_pg_type));
	memcpy(stats->attrtype, GETSTRUCT(typtuple), sizeof(FormData_pg_type));
	ReleaseSysCache(typtuple);
329 330
	stats->anl_context = anl_context;
	stats->tupattnum = attnum;
331 332

	/*
333 334
	 * Call the type-specific typanalyze function.  If none is specified,
	 * use std_typanalyze().
335
	 */
336 337 338
	if (OidIsValid(stats->attrtype->typanalyze))
		ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
										   PointerGetDatum(stats)));
339
	else
340 341 342
		ok = std_typanalyze(stats);

	if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
343
	{
344 345 346 347
		pfree(stats->attrtype);
		pfree(stats->attr);
		pfree(stats);
		return NULL;
348 349 350 351
	}

	return stats;
}
B
Bruce Momjian 已提交
352

353 354 355 356
/*
 * acquire_sample_rows -- acquire a random sample of rows from the table
 *
 * Up to targrows rows are collected (if there are fewer than that many
357
 * rows in the table, all rows are collected).	When the table is larger
358 359 360 361 362 363 364 365 366 367 368
 * than targrows, a truly random sample is collected: every row has an
 * equal chance of ending up in the final sample.
 *
 * We also estimate the total number of rows in the table, and return that
 * into *totalrows.
 *
 * The returned list of tuples is in order by physical position in the table.
 * (We will rely on this later to derive correlation estimates.)
 */
static int
acquire_sample_rows(Relation onerel, HeapTuple *rows, int targrows,
369
					double *totalrows)
370 371 372 373
{
	int			numrows = 0;
	HeapScanDesc scan;
	HeapTuple	tuple;
374 375
	ItemPointer lasttuple;
	BlockNumber lastblock,
376 377 378 379
				estblock;
	OffsetNumber lastoffset;
	int			numest;
	double		tuplesperpage;
380
	double		t;
381 382 383
	double		rstate;

	Assert(targrows > 1);
384

385 386 387
	/*
	 * Do a simple linear scan until we reach the target number of rows.
	 */
388 389
	scan = heap_beginscan(onerel, SnapshotNow, 0, NULL);
	while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
390 391 392 393
	{
		rows[numrows++] = heap_copytuple(tuple);
		if (numrows >= targrows)
			break;
394
		vacuum_delay_point();
395 396
	}
	heap_endscan(scan);
397

398
	/*
399
	 * If we ran out of tuples then we're done, no matter how few we
400 401 402 403
	 * collected.  No sort is needed, since they're already in order.
	 */
	if (!HeapTupleIsValid(tuple))
	{
404
		*totalrows = (double) numrows;
405 406 407 408 409 410

		ereport(elevel,
				(errmsg("\"%s\": %u pages, %d rows sampled, %.0f estimated total rows",
						RelationGetRelationName(onerel),
						onerel->rd_nblocks, numrows, *totalrows)));

411 412
		return numrows;
	}
413

414 415 416
	/*
	 * Otherwise, start replacing tuples in the sample until we reach the
	 * end of the relation.  This algorithm is from Jeff Vitter's paper
417 418 419 420 421 422
	 * (see full citation below).  It works by repeatedly computing the
	 * number of the next tuple we want to fetch, which will replace a
	 * randomly chosen element of the reservoir (current set of tuples).
	 * At all times the reservoir is a true random sample of the tuples
	 * we've passed over so far, so when we fall off the end of the
	 * relation we're done.
423
	 *
424 425 426 427 428 429 430 431 432 433 434
	 * A slight difficulty is that since we don't want to fetch tuples or
	 * even pages that we skip over, it's not possible to fetch *exactly*
	 * the N'th tuple at each step --- we don't know how many valid tuples
	 * are on the skipped pages.  We handle this by assuming that the
	 * average number of valid tuples/page on the pages already scanned
	 * over holds good for the rest of the relation as well; this lets us
	 * estimate which page the next tuple should be on and its position in
	 * the page.  Then we fetch the first valid tuple at or after that
	 * position, being careful not to use the same tuple twice.  This
	 * approach should still give a good random sample, although it's not
	 * perfect.
435
	 */
436
	lasttuple = &(rows[numrows - 1]->t_self);
437 438
	lastblock = ItemPointerGetBlockNumber(lasttuple);
	lastoffset = ItemPointerGetOffsetNumber(lasttuple);
439

440
	/*
441 442
	 * If possible, estimate tuples/page using only completely-scanned
	 * pages.
443 444 445
	 */
	for (numest = numrows; numest > 0; numest--)
	{
446
		if (ItemPointerGetBlockNumber(&(rows[numest - 1]->t_self)) != lastblock)
447 448 449 450 451 452 453 454 455 456 457
			break;
	}
	if (numest == 0)
	{
		numest = numrows;		/* don't have a full page? */
		estblock = lastblock + 1;
	}
	else
		estblock = lastblock;
	tuplesperpage = (double) numest / (double) estblock;

458
	t = (double) numrows;		/* t is the # of records processed so far */
459 460 461
	rstate = init_selection_state(targrows);
	for (;;)
	{
462 463 464 465 466 467
		double		targpos;
		BlockNumber targblock;
		Buffer		targbuffer;
		Page		targpage;
		OffsetNumber targoffset,
					maxoffset;
468

469
		vacuum_delay_point();
470

471 472
		t = select_next_random_record(t, targrows, &rstate);
		/* Try to read the t'th record in the table */
473
		targpos = t / tuplesperpage;
474
		targblock = (BlockNumber) targpos;
475
		targoffset = ((int) ((targpos - targblock) * tuplesperpage)) +
476 477 478
			FirstOffsetNumber;
		/* Make sure we are past the last selected record */
		if (targblock <= lastblock)
B
Bruce Momjian 已提交
479
		{
480 481 482
			targblock = lastblock;
			if (targoffset <= lastoffset)
				targoffset = lastoffset + 1;
B
Bruce Momjian 已提交
483
		}
484
		/* Loop to find first valid record at or after given position */
485 486
pageloop:;

487
		/*
488
		 * Have we fallen off the end of the relation?	(We rely on
489 490 491 492
		 * heap_beginscan to have updated rd_nblocks.)
		 */
		if (targblock >= onerel->rd_nblocks)
			break;
493

494
		/*
495 496 497 498 499 500
		 * We must maintain a pin on the target page's buffer to ensure
		 * that the maxoffset value stays good (else concurrent VACUUM
		 * might delete tuples out from under us).	Hence, pin the page
		 * until we are done looking at it.  We don't maintain a lock on
		 * the page, so tuples could get added to it, but we ignore such
		 * tuples.
501 502 503
		 */
		targbuffer = ReadBuffer(onerel, targblock);
		if (!BufferIsValid(targbuffer))
504
			elog(ERROR, "ReadBuffer failed");
505 506 507 508 509
		LockBuffer(targbuffer, BUFFER_LOCK_SHARE);
		targpage = BufferGetPage(targbuffer);
		maxoffset = PageGetMaxOffsetNumber(targpage);
		LockBuffer(targbuffer, BUFFER_LOCK_UNLOCK);

510
		for (;;)
B
Bruce Momjian 已提交
511
		{
512
			HeapTupleData targtuple;
513
			Buffer		tupbuffer;
514 515 516 517

			if (targoffset > maxoffset)
			{
				/* Fell off end of this page, try next */
518
				ReleaseBuffer(targbuffer);
519 520 521 522 523
				targblock++;
				targoffset = FirstOffsetNumber;
				goto pageloop;
			}
			ItemPointerSet(&targtuple.t_self, targblock, targoffset);
524 525
			if (heap_fetch(onerel, SnapshotNow, &targtuple, &tupbuffer,
						   false, NULL))
526 527 528 529 530
			{
				/*
				 * Found a suitable tuple, so save it, replacing one old
				 * tuple at random
				 */
531
				int			k = (int) (targrows * random_fract());
532 533 534 535

				Assert(k >= 0 && k < targrows);
				heap_freetuple(rows[k]);
				rows[k] = heap_copytuple(&targtuple);
536 537 538
				/* this releases the second pin acquired by heap_fetch: */
				ReleaseBuffer(tupbuffer);
				/* this releases the initial pin: */
539 540 541 542 543 544 545
				ReleaseBuffer(targbuffer);
				lastblock = targblock;
				lastoffset = targoffset;
				break;
			}
			/* this tuple is dead, so advance to next one on same page */
			targoffset++;
B
Bruce Momjian 已提交
546 547 548
		}
	}

549 550 551 552
	/*
	 * Now we need to sort the collected tuples by position (itempointer).
	 */
	qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);
B
Bruce Momjian 已提交
553

554 555 556
	/*
	 * Estimate total number of valid rows in relation.
	 */
557
	*totalrows = floor((double) onerel->rd_nblocks * tuplesperpage + 0.5);
B
Bruce Momjian 已提交
558

559 560 561
	/*
	 * Emit some interesting relation info 
	 */
562
	ereport(elevel,
563
			(errmsg("\"%s\": %u pages, %d rows sampled, %.0f estimated total rows",
564
					RelationGetRelationName(onerel),
565
					onerel->rd_nblocks, numrows, *totalrows)));
566

567 568
	return numrows;
}
B
Bruce Momjian 已提交
569

570 571 572 573
/* Select a random value R uniformly distributed in 0 < R < 1 */
static double
random_fract(void)
{
574
	long		z;
B
Bruce Momjian 已提交
575

576 577 578 579
	/* random() can produce endpoint values, try again if so */
	do
	{
		z = random();
580
	} while (z <= 0 || z >= MAX_RANDOM_VALUE);
581
	return (double) z / (double) MAX_RANDOM_VALUE;
B
Bruce Momjian 已提交
582 583 584
}

/*
585 586 587 588 589 590 591
 * These two routines embody Algorithm Z from "Random sampling with a
 * reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
 * (Mar. 1985), Pages 37-57.  While Vitter describes his algorithm in terms
 * of the count S of records to skip before processing another record,
 * it is convenient to work primarily with t, the index (counting from 1)
 * of the last record processed and next record to process.  The only extra
 * state needed between calls is W, a random state variable.
B
Bruce Momjian 已提交
592
 *
593 594 595 596 597 598
 * Note: the original algorithm defines t, S, numer, and denom as integers.
 * Here we express them as doubles to avoid overflow if the number of rows
 * in the table exceeds INT_MAX.  The algorithm should work as long as the
 * row count does not become so large that it is not represented accurately
 * in a double (on IEEE-math machines this would be around 2^52 rows).
 *
599
 * init_selection_state computes the initial W value.
B
Bruce Momjian 已提交
600
 *
601 602 603 604 605 606 607 608
 * Given that we've already processed t records (t >= n),
 * select_next_random_record determines the number of the next record to
 * process.
 */
static double
init_selection_state(int n)
{
	/* Initial value of W (for use when Algorithm Z is first applied) */
609
	return exp(-log(random_fract()) / n);
610 611
}

612 613
static double
select_next_random_record(double t, int n, double *stateptr)
614 615
{
	/* The magic constant here is T from Vitter's paper */
616
	if (t <= (22.0 * n))
617 618
	{
		/* Process records using Algorithm X until t is large enough */
619 620
		double		V,
					quot;
621 622

		V = random_fract();		/* Generate V */
623 624
		t += 1;
		quot = (t - (double) n) / t;
625 626 627
		/* Find min S satisfying (4.1) */
		while (quot > V)
		{
628 629
			t += 1;
			quot *= (t - (double) n) / t;
630 631 632 633 634
		}
	}
	else
	{
		/* Now apply Algorithm Z */
635 636 637
		double		W = *stateptr;
		double		term = t - (double) n + 1;
		double		S;
638 639 640

		for (;;)
		{
641 642 643 644 645 646 647 648 649
			double		numer,
						numer_lim,
						denom;
			double		U,
						X,
						lhs,
						rhs,
						y,
						tmp;
650 651 652 653

			/* Generate U and X */
			U = random_fract();
			X = t * (W - 1.0);
654
			S = floor(X);		/* S is tentatively set to floor(X) */
655
			/* Test if U <= h(S)/cg(X) in the manner of (6.3) */
656
			tmp = (t + 1) / term;
657 658
			lhs = exp(log(((U * tmp * tmp) * (term + S)) / (t + X)) / n);
			rhs = (((t + X) / (term + S)) * term) / t;
659 660
			if (lhs <= rhs)
			{
661
				W = rhs / lhs;
662 663 664
				break;
			}
			/* Test if U <= f(S)/cg(X) */
665
			y = (((U * (t + 1)) / term) * (t + S + 1)) / (t + X);
666
			if ((double) n < S)
667 668 669 670 671 672
			{
				denom = t;
				numer_lim = term + S;
			}
			else
			{
673
				denom = t - (double) n + S;
674 675
				numer_lim = t + 1;
			}
676
			for (numer = t + S; numer >= numer_lim; numer -= 1)
677
			{
678 679
				y *= numer / denom;
				denom -= 1;
680
			}
681 682
			W = exp(-log(random_fract()) / n);	/* Generate W in advance */
			if (exp(log(y) / n) <= (t + X) / t)
683 684 685 686 687 688 689 690 691
				break;
		}
		t += S + 1;
		*stateptr = W;
	}
	return t;
}

/*
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
 * qsort comparator for sorting rows[] array
 */
static int
compare_rows(const void *a, const void *b)
{
	HeapTuple	ha = *(HeapTuple *) a;
	HeapTuple	hb = *(HeapTuple *) b;
	BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
	OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
	BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
	OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);

	if (ba < bb)
		return -1;
	if (ba > bb)
		return 1;
	if (oa < ob)
		return -1;
	if (oa > ob)
		return 1;
	return 0;
}


/*
 *	update_attstats() -- update attribute statistics for one relation
 *
 *		Statistics are stored in several places: the pg_class row for the
 *		relation has stats about the whole relation, and there is a
 *		pg_statistic row for each (non-system) attribute that has ever
 *		been analyzed.	The pg_class values are updated by VACUUM, not here.
 *
 *		pg_statistic rows are just added or updated normally.  This means
 *		that pg_statistic will probably contain some deleted rows at the
 *		completion of a vacuum cycle, unless it happens to get vacuumed last.
 *
 *		To keep things simple, we punt for pg_statistic, and don't try
 *		to compute or store rows for pg_statistic itself in pg_statistic.
 *		This could possibly be made to work, but it's not worth the trouble.
 *		Note analyze_rel() has seen to it that we won't come here when
 *		vacuuming pg_statistic itself.
 *
 *		Note: if two backends concurrently try to analyze the same relation,
 *		the second one is likely to fail here with a "tuple concurrently
 *		updated" error.  This is slightly annoying, but no real harm is done.
 *		We could prevent the problem by using a stronger lock on the
 *		relation for ANALYZE (ie, ShareUpdateExclusiveLock instead
 *		of AccessShareLock); but that cure seems worse than the disease,
 *		especially now that ANALYZE doesn't start a new transaction
 *		for each relation.	The lock could be held for a long time...
 */
static void
update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats)
{
	Relation	sd;
	int			attno;

	sd = heap_openr(StatisticRelationName, RowExclusiveLock);

	for (attno = 0; attno < natts; attno++)
	{
		VacAttrStats *stats = vacattrstats[attno];
		HeapTuple	stup,
					oldtup;
		int			i,
					k,
					n;
		Datum		values[Natts_pg_statistic];
		char		nulls[Natts_pg_statistic];
		char		replaces[Natts_pg_statistic];

		/* Ignore attr if we weren't able to collect stats */
		if (!stats->stats_valid)
			continue;

		/*
		 * Construct a new pg_statistic tuple
		 */
		for (i = 0; i < Natts_pg_statistic; ++i)
		{
			nulls[i] = ' ';
			replaces[i] = 'r';
		}

		i = 0;
		values[i++] = ObjectIdGetDatum(relid);	/* starelid */
		values[i++] = Int16GetDatum(stats->attr->attnum);	/* staattnum */
		values[i++] = Float4GetDatum(stats->stanullfrac);	/* stanullfrac */
		values[i++] = Int32GetDatum(stats->stawidth);	/* stawidth */
		values[i++] = Float4GetDatum(stats->stadistinct);	/* stadistinct */
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			values[i++] = Int16GetDatum(stats->stakind[k]);		/* stakindN */
		}
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			values[i++] = ObjectIdGetDatum(stats->staop[k]);	/* staopN */
		}
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			int			nnum = stats->numnumbers[k];

			if (nnum > 0)
			{
				Datum	   *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
				ArrayType  *arry;

				for (n = 0; n < nnum; n++)
					numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
				/* XXX knows more than it should about type float4: */
				arry = construct_array(numdatums, nnum,
									   FLOAT4OID,
									   sizeof(float4), false, 'i');
				values[i++] = PointerGetDatum(arry);	/* stanumbersN */
			}
			else
			{
				nulls[i] = 'n';
				values[i++] = (Datum) 0;
			}
		}
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			if (stats->numvalues[k] > 0)
			{
				ArrayType  *arry;

				arry = construct_array(stats->stavalues[k],
									   stats->numvalues[k],
									   stats->attr->atttypid,
									   stats->attrtype->typlen,
									   stats->attrtype->typbyval,
									   stats->attrtype->typalign);
				values[i++] = PointerGetDatum(arry);	/* stavaluesN */
			}
			else
			{
				nulls[i] = 'n';
				values[i++] = (Datum) 0;
			}
		}

		/* Is there already a pg_statistic tuple for this attribute? */
		oldtup = SearchSysCache(STATRELATT,
								ObjectIdGetDatum(relid),
								Int16GetDatum(stats->attr->attnum),
								0, 0);

		if (HeapTupleIsValid(oldtup))
		{
			/* Yes, replace it */
			stup = heap_modifytuple(oldtup,
									sd,
									values,
									nulls,
									replaces);
			ReleaseSysCache(oldtup);
			simple_heap_update(sd, &stup->t_self, stup);
		}
		else
		{
			/* No, insert new tuple */
			stup = heap_formtuple(sd->rd_att, values, nulls);
			simple_heap_insert(sd, stup);
		}

		/* update indexes too */
		CatalogUpdateIndexes(sd, stup);

		heap_freetuple(stup);
	}

	heap_close(sd, RowExclusiveLock);
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
/*
 * Standard fetch function for use by compute_stats subroutines.
 *
 * This exists to provide some insulation between compute_stats routines
 * and the actual storage of the sample data.
 */
static Datum
std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
{
	int			attnum = stats->tupattnum;
	HeapTuple	tuple = stats->rows[rownum];
	TupleDesc	tupDesc = stats->tupDesc;

	return heap_getattr(tuple, attnum, tupDesc, isNull);
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

/*==========================================================================
 *
 * Code below this point represents the "standard" type-specific statistics
 * analysis algorithms.  This code can be replaced on a per-data-type basis
 * by setting a nonzero value in pg_type.typanalyze.
 *
 *==========================================================================
 */


/*
 * To avoid consuming too much memory during analysis and/or too much space
 * in the resulting pg_statistic rows, we ignore varlena datums that are wider
 * than WIDTH_THRESHOLD (after detoasting!).  This is legitimate for MCV
 * and distinct-value calculations since a wide value is unlikely to be
 * duplicated at all, much less be a most-common value.  For the same reason,
 * ignoring wide values will not affect our estimates of histogram bin
 * boundaries very much.
 */
#define WIDTH_THRESHOLD  1024

#define swapInt(a,b)	do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
#define swapDatum(a,b)	do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)

/*
 * Extra information used by the default analysis routines
 */
typedef struct
{
	Oid			eqopr;			/* '=' operator for datatype, if any */
	Oid			eqfunc;			/* and associated function */
	Oid			ltopr;			/* '<' operator for datatype, if any */
} StdAnalyzeData;

typedef struct
{
	Datum		value;			/* a data value */
	int			tupno;			/* position index for tuple it came from */
} ScalarItem;

typedef struct
{
	int			count;			/* # of duplicates */
	int			first;			/* values[] index of first occurrence */
} ScalarMCVItem;


/* context information for compare_scalars() */
static FmgrInfo *datumCmpFn;
static SortFunctionKind datumCmpFnKind;
static int *datumCmpTupnoLink;


937 938 939 940 941 942 943 944
static void compute_minimal_stats(VacAttrStatsP stats,
								  AnalyzeAttrFetchFunc fetchfunc,
								  int samplerows,
								  double totalrows);
static void compute_scalar_stats(VacAttrStatsP stats,
								 AnalyzeAttrFetchFunc fetchfunc,
								 int samplerows,
								 double totalrows);
945 946 947 948 949 950
static int	compare_scalars(const void *a, const void *b);
static int	compare_mcvs(const void *a, const void *b);


/*
 * std_typanalyze -- the default type-specific typanalyze function
951
 */
952 953
static bool
std_typanalyze(VacAttrStats *stats)
954
{
955 956 957 958 959 960
	Form_pg_attribute attr = stats->attr;
	Operator	func_operator;
	Oid			eqopr = InvalidOid;
	Oid			eqfunc = InvalidOid;
	Oid			ltopr = InvalidOid;
	StdAnalyzeData *mystats;
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	/* If the attstattarget column is negative, use the default value */
	/* NB: it is okay to scribble on stats->attr since it's a copy */
	if (attr->attstattarget < 0)
		attr->attstattarget = default_statistics_target;

	/* If column has no "=" operator, we can't do much of anything */
	func_operator = equality_oper(attr->atttypid, true);
	if (func_operator != NULL)
	{
		eqopr = oprid(func_operator);
		eqfunc = oprfuncid(func_operator);
		ReleaseSysCache(func_operator);
	}
	if (!OidIsValid(eqfunc))
		return false;

	/* Is there a "<" operator with suitable semantics? */
	func_operator = ordering_oper(attr->atttypid, true);
	if (func_operator != NULL)
	{
		ltopr = oprid(func_operator);
		ReleaseSysCache(func_operator);
	}

	/* Save the operator info for compute_stats routines */
	mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
	mystats->eqopr = eqopr;
	mystats->eqfunc = eqfunc;
	mystats->ltopr = ltopr;
	stats->extra_data = mystats;

	/*
	 * Determine which standard statistics algorithm to use
	 */
	if (OidIsValid(ltopr))
	{
		/* Seems to be a scalar datatype */
		stats->compute_stats = compute_scalar_stats;
		/*--------------------
		 * The following choice of minrows is based on the paper
		 * "Random sampling for histogram construction: how much is enough?"
		 * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
		 * Proceedings of ACM SIGMOD International Conference on Management
		 * of Data, 1998, Pages 436-447.  Their Corollary 1 to Theorem 5
		 * says that for table size n, histogram size k, maximum relative
		 * error in bin size f, and error probability gamma, the minimum
		 * random sample size is
		 *		r = 4 * k * ln(2*n/gamma) / f^2
		 * Taking f = 0.5, gamma = 0.01, n = 1 million rows, we obtain
		 *		r = 305.82 * k
		 * Note that because of the log function, the dependence on n is
		 * quite weak; even at n = 1 billion, a 300*k sample gives <= 0.59
		 * bin size error with probability 0.99.  So there's no real need to
		 * scale for n, which is a good thing because we don't necessarily
		 * know it at this point.
		 *--------------------
		 */
		stats->minrows = 300 * attr->attstattarget;
	}
	else
	{
		/* Can't do much but the minimal stuff */
		stats->compute_stats = compute_minimal_stats;
		/* Might as well use the same minrows as above */
		stats->minrows = 300 * attr->attstattarget;
	}
1028

1029 1030
	return true;
}
1031 1032 1033

/*
 *	compute_minimal_stats() -- compute minimal column statistics
B
Bruce Momjian 已提交
1034
 *
1035
 *	We use this when we can find only an "=" operator for the datatype.
B
Bruce Momjian 已提交
1036
 *
1037 1038
 *	We determine the fraction of non-null rows, the average width, the
 *	most common values, and the (estimated) number of distinct values.
B
Bruce Momjian 已提交
1039
 *
1040 1041 1042 1043 1044 1045
 *	The most common values are determined by brute force: we keep a list
 *	of previously seen values, ordered by number of times seen, as we scan
 *	the samples.  A newly seen value is inserted just after the last
 *	multiply-seen value, causing the bottommost (oldest) singly-seen value
 *	to drop off the list.  The accuracy of this method, and also its cost,
 *	depend mainly on the length of the list we are willing to keep.
B
Bruce Momjian 已提交
1046 1047
 */
static void
1048 1049 1050 1051
compute_minimal_stats(VacAttrStatsP stats,
					  AnalyzeAttrFetchFunc fetchfunc,
					  int samplerows,
					  double totalrows)
B
Bruce Momjian 已提交
1052 1053
{
	int			i;
1054 1055 1056 1057 1058 1059
	int			null_cnt = 0;
	int			nonnull_cnt = 0;
	int			toowide_cnt = 0;
	double		total_width = 0;
	bool		is_varlena = (!stats->attr->attbyval &&
							  stats->attr->attlen == -1);
1060 1061
	bool		is_varwidth = (!stats->attr->attbyval &&
							   stats->attr->attlen < 0);
1062 1063 1064
	FmgrInfo	f_cmpeq;
	typedef struct
	{
1065 1066
		Datum		value;
		int			count;
1067 1068 1069 1070 1071
	} TrackItem;
	TrackItem  *track;
	int			track_cnt,
				track_max;
	int			num_mcv = stats->attr->attstattarget;
1072
	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
1073

1074 1075 1076 1077
	/*
	 * We track up to 2*n values for an n-element MCV list; but at least
	 * 10
	 */
1078 1079 1080 1081 1082 1083
	track_max = 2 * num_mcv;
	if (track_max < 10)
		track_max = 10;
	track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
	track_cnt = 0;

1084
	fmgr_info(mystats->eqfunc, &f_cmpeq);
1085

1086
	for (i = 0; i < samplerows; i++)
B
Bruce Momjian 已提交
1087
	{
1088 1089
		Datum		value;
		bool		isnull;
1090 1091 1092
		bool		match;
		int			firstcount1,
					j;
1093

1094
		vacuum_delay_point();
1095

1096
		value = fetchfunc(stats, i, &isnull);
B
Bruce Momjian 已提交
1097

1098
		/* Check for null/nonnull */
B
Bruce Momjian 已提交
1099
		if (isnull)
1100
		{
1101
			null_cnt++;
1102 1103
			continue;
		}
1104
		nonnull_cnt++;
1105 1106

		/*
1107
		 * If it's a variable-width field, add up widths for average width
1108 1109 1110
		 * calculation.  Note that if the value is toasted, we use the
		 * toasted width.  We don't bother with this calculation if it's a
		 * fixed-width type.
1111
		 */
1112
		if (is_varlena)
B
Bruce Momjian 已提交
1113
		{
1114
			total_width += VARSIZE(DatumGetPointer(value));
1115

1116 1117
			/*
			 * If the value is toasted, we want to detoast it just once to
1118 1119 1120 1121
			 * avoid repeated detoastings and resultant excess memory
			 * usage during the comparisons.  Also, check to see if the
			 * value is excessively wide, and if so don't detoast at all
			 * --- just ignore the value.
1122 1123
			 */
			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
B
Bruce Momjian 已提交
1124
			{
1125 1126
				toowide_cnt++;
				continue;
B
Bruce Momjian 已提交
1127
			}
1128
			value = PointerGetDatum(PG_DETOAST_DATUM(value));
1129
		}
1130 1131 1132 1133 1134
		else if (is_varwidth)
		{
			/* must be cstring */
			total_width += strlen(DatumGetCString(value)) + 1;
		}
B
Bruce Momjian 已提交
1135

1136 1137 1138 1139 1140 1141
		/*
		 * See if the value matches anything we're already tracking.
		 */
		match = false;
		firstcount1 = track_cnt;
		for (j = 0; j < track_cnt; j++)
1142
		{
1143
			if (DatumGetBool(FunctionCall2(&f_cmpeq, value, track[j].value)))
B
Bruce Momjian 已提交
1144
			{
1145 1146
				match = true;
				break;
B
Bruce Momjian 已提交
1147
			}
1148 1149 1150
			if (j < firstcount1 && track[j].count == 1)
				firstcount1 = j;
		}
1151

1152 1153 1154 1155 1156
		if (match)
		{
			/* Found a match */
			track[j].count++;
			/* This value may now need to "bubble up" in the track list */
1157
			while (j > 0 && track[j].count > track[j - 1].count)
B
Bruce Momjian 已提交
1158
			{
1159 1160
				swapDatum(track[j].value, track[j - 1].value);
				swapInt(track[j].count, track[j - 1].count);
1161
				j--;
B
Bruce Momjian 已提交
1162
			}
1163
		}
1164
		else
1165
		{
1166 1167 1168
			/* No match.  Insert at head of count-1 list */
			if (track_cnt < track_max)
				track_cnt++;
1169
			for (j = track_cnt - 1; j > firstcount1; j--)
1170
			{
1171 1172
				track[j].value = track[j - 1].value;
				track[j].count = track[j - 1].count;
1173 1174 1175 1176 1177 1178
			}
			if (firstcount1 < track_cnt)
			{
				track[firstcount1].value = value;
				track[firstcount1].count = 1;
			}
1179
		}
1180 1181 1182 1183 1184
	}

	/* We can only compute valid stats if we found some non-null values. */
	if (nonnull_cnt > 0)
	{
1185 1186
		int			nmultiple,
					summultiple;
1187 1188 1189

		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
1190
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
1191
		if (is_varwidth)
1192
			stats->stawidth = total_width / (double) nonnull_cnt;
1193
		else
1194
			stats->stawidth = stats->attrtype->typlen;
1195

1196 1197 1198
		/* Count the number of values we found multiple times */
		summultiple = 0;
		for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
1199
		{
1200 1201 1202
			if (track[nmultiple].count == 1)
				break;
			summultiple += track[nmultiple].count;
1203
		}
1204 1205

		if (nmultiple == 0)
1206
		{
1207 1208
			/* If we found no repeated values, assume it's a unique column */
			stats->stadistinct = -1.0;
1209
		}
1210 1211
		else if (track_cnt < track_max && toowide_cnt == 0 &&
				 nmultiple == track_cnt)
1212
		{
1213
			/*
1214 1215 1216
			 * Our track list includes every value in the sample, and
			 * every value appeared more than once.  Assume the column has
			 * just these values.
1217 1218
			 */
			stats->stadistinct = track_cnt;
B
Bruce Momjian 已提交
1219
		}
1220 1221 1222 1223
		else
		{
			/*----------
			 * Estimate the number of distinct values using the estimator
1224 1225 1226 1227 1228 1229 1230 1231 1232
			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
			 *		n*d / (n - f1 + f1*n/N)
			 * where f1 is the number of distinct values that occurred
			 * exactly once in our sample of n rows (from a total of N),
			 * and d is the total number of distinct values in the sample.
			 * This is their Duj1 estimator; the other estimators they
			 * recommend are considerably more complex, and are numerically
			 * very unstable when n is much smaller than N.
			 *
1233 1234
			 * We assume (not very reliably!) that all the multiply-occurring
			 * values are reflected in the final track[] list, and the other
1235
			 * nonnull values all appeared but once.  (XXX this usually
1236
			 * results in a drastic overestimate of ndistinct.	Can we do
1237
			 * any better?)
1238 1239
			 *----------
			 */
1240
			int			f1 = nonnull_cnt - summultiple;
1241
			int			d = f1 + nmultiple;
B
Bruce Momjian 已提交
1242 1243 1244 1245
			double		numer,
						denom,
						stadistinct;

1246
			numer = (double) samplerows *(double) d;
1247

1248 1249
			denom = (double) (samplerows - f1) +
				(double) f1 *(double) samplerows / totalrows;
B
Bruce Momjian 已提交
1250

1251 1252 1253 1254 1255 1256 1257
			stadistinct = numer / denom;
			/* Clamp to sane range in case of roundoff error */
			if (stadistinct < (double) d)
				stadistinct = (double) d;
			if (stadistinct > totalrows)
				stadistinct = totalrows;
			stats->stadistinct = floor(stadistinct + 0.5);
1258
		}
B
Bruce Momjian 已提交
1259

1260 1261 1262 1263 1264 1265 1266
		/*
		 * If we estimated the number of distinct values at more than 10%
		 * of the total row count (a very arbitrary limit), then assume
		 * that stadistinct should scale with the row count rather than be
		 * a fixed value.
		 */
		if (stats->stadistinct > 0.1 * totalrows)
1267
			stats->stadistinct = -(stats->stadistinct / totalrows);
B
Bruce Momjian 已提交
1268

1269 1270 1271 1272
		/*
		 * Decide how many values are worth storing as most-common values.
		 * If we are able to generate a complete MCV list (all the values
		 * in the sample will fit, and we think these are all the ones in
1273 1274 1275 1276
		 * the table), then do so.	Otherwise, store only those values
		 * that are significantly more common than the (estimated)
		 * average. We set the threshold rather arbitrarily at 25% more
		 * than average, with at least 2 instances in the sample.
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		 */
		if (track_cnt < track_max && toowide_cnt == 0 &&
			stats->stadistinct > 0 &&
			track_cnt <= num_mcv)
		{
			/* Track list includes all values seen, and all will fit */
			num_mcv = track_cnt;
		}
		else
		{
1287 1288 1289
			double		ndistinct = stats->stadistinct;
			double		avgcount,
						mincount;
1290 1291

			if (ndistinct < 0)
1292
				ndistinct = -ndistinct * totalrows;
1293
			/* estimate # of occurrences in sample of a typical value */
1294
			avgcount = (double) samplerows / ndistinct;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
			/* set minimum threshold count to store a value */
			mincount = avgcount * 1.25;
			if (mincount < 2)
				mincount = 2;
			if (num_mcv > track_cnt)
				num_mcv = track_cnt;
			for (i = 0; i < num_mcv; i++)
			{
				if (track[i].count < mincount)
				{
					num_mcv = i;
					break;
				}
			}
		}

		/* Generate MCV slot entry */
1312
		if (num_mcv > 0)
B
Bruce Momjian 已提交
1313
		{
1314
			MemoryContext old_context;
1315 1316
			Datum	   *mcv_values;
			float4	   *mcv_freqs;
1317

1318
			/* Must copy the target values into anl_context */
1319
			old_context = MemoryContextSwitchTo(stats->anl_context);
1320 1321 1322 1323 1324 1325 1326
			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
			for (i = 0; i < num_mcv; i++)
			{
				mcv_values[i] = datumCopy(track[i].value,
										  stats->attr->attbyval,
										  stats->attr->attlen);
1327
				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
1328 1329 1330 1331
			}
			MemoryContextSwitchTo(old_context);

			stats->stakind[0] = STATISTIC_KIND_MCV;
1332
			stats->staop[0] = mystats->eqopr;
1333 1334 1335 1336
			stats->stanumbers[0] = mcv_freqs;
			stats->numnumbers[0] = num_mcv;
			stats->stavalues[0] = mcv_values;
			stats->numvalues[0] = num_mcv;
B
Bruce Momjian 已提交
1337 1338
		}
	}
1339 1340

	/* We don't need to bother cleaning up any of our temporary palloc's */
B
Bruce Momjian 已提交
1341 1342 1343 1344
}


/*
1345
 *	compute_scalar_stats() -- compute column statistics
B
Bruce Momjian 已提交
1346
 *
1347
 *	We use this when we can find "=" and "<" operators for the datatype.
1348
 *
1349 1350 1351
 *	We determine the fraction of non-null rows, the average width, the
 *	most common values, the (estimated) number of distinct values, the
 *	distribution histogram, and the correlation of physical to logical order.
B
Bruce Momjian 已提交
1352
 *
1353 1354
 *	The desired stats can be determined fairly easily after sorting the
 *	data values into order.
B
Bruce Momjian 已提交
1355 1356
 */
static void
1357 1358 1359 1360
compute_scalar_stats(VacAttrStatsP stats,
					 AnalyzeAttrFetchFunc fetchfunc,
					 int samplerows,
					 double totalrows)
B
Bruce Momjian 已提交
1361
{
1362 1363 1364 1365 1366 1367 1368
	int			i;
	int			null_cnt = 0;
	int			nonnull_cnt = 0;
	int			toowide_cnt = 0;
	double		total_width = 0;
	bool		is_varlena = (!stats->attr->attbyval &&
							  stats->attr->attlen == -1);
1369 1370
	bool		is_varwidth = (!stats->attr->attbyval &&
							   stats->attr->attlen < 0);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	double		corr_xysum;
	RegProcedure cmpFn;
	SortFunctionKind cmpFnKind;
	FmgrInfo	f_cmpfn;
	ScalarItem *values;
	int			values_cnt = 0;
	int		   *tupnoLink;
	ScalarMCVItem *track;
	int			track_cnt = 0;
	int			num_mcv = stats->attr->attstattarget;
1381
	int			num_bins = stats->attr->attstattarget;
1382
	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
1383

1384 1385
	values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
	tupnoLink = (int *) palloc(samplerows * sizeof(int));
1386 1387
	track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));

1388
	SelectSortFunction(mystats->ltopr, &cmpFn, &cmpFnKind);
1389 1390 1391
	fmgr_info(cmpFn, &f_cmpfn);

	/* Initial scan to find sortable values */
1392
	for (i = 0; i < samplerows; i++)
B
Bruce Momjian 已提交
1393
	{
1394 1395
		Datum		value;
		bool		isnull;
B
Bruce Momjian 已提交
1396

1397
		vacuum_delay_point();
1398

1399
		value = fetchfunc(stats, i, &isnull);
B
Bruce Momjian 已提交
1400

1401 1402
		/* Check for null/nonnull */
		if (isnull)
B
Bruce Momjian 已提交
1403
		{
1404 1405
			null_cnt++;
			continue;
B
Bruce Momjian 已提交
1406
		}
1407
		nonnull_cnt++;
B
Bruce Momjian 已提交
1408

1409
		/*
1410
		 * If it's a variable-width field, add up widths for average width
1411 1412 1413
		 * calculation.  Note that if the value is toasted, we use the
		 * toasted width.  We don't bother with this calculation if it's a
		 * fixed-width type.
1414 1415
		 */
		if (is_varlena)
B
Bruce Momjian 已提交
1416
		{
1417
			total_width += VARSIZE(DatumGetPointer(value));
1418

1419 1420
			/*
			 * If the value is toasted, we want to detoast it just once to
1421 1422 1423 1424
			 * avoid repeated detoastings and resultant excess memory
			 * usage during the comparisons.  Also, check to see if the
			 * value is excessively wide, and if so don't detoast at all
			 * --- just ignore the value.
1425 1426
			 */
			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
B
Bruce Momjian 已提交
1427
			{
1428 1429
				toowide_cnt++;
				continue;
B
Bruce Momjian 已提交
1430
			}
1431 1432
			value = PointerGetDatum(PG_DETOAST_DATUM(value));
		}
1433 1434 1435 1436 1437
		else if (is_varwidth)
		{
			/* must be cstring */
			total_width += strlen(DatumGetCString(value)) + 1;
		}
B
Bruce Momjian 已提交
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		/* Add it to the list to be sorted */
		values[values_cnt].value = value;
		values[values_cnt].tupno = values_cnt;
		tupnoLink[values_cnt] = values_cnt;
		values_cnt++;
	}

	/* We can only compute valid stats if we found some sortable values. */
	if (values_cnt > 0)
	{
1449 1450 1451 1452 1453
		int			ndistinct,	/* # distinct values in sample */
					nmultiple,	/* # that appear multiple times */
					num_hist,
					dups_cnt;
		int			slot_idx = 0;
1454 1455 1456 1457 1458 1459 1460 1461 1462

		/* Sort the collected values */
		datumCmpFn = &f_cmpfn;
		datumCmpFnKind = cmpFnKind;
		datumCmpTupnoLink = tupnoLink;
		qsort((void *) values, values_cnt,
			  sizeof(ScalarItem), compare_scalars);

		/*
1463 1464
		 * Now scan the values in order, find the most common ones, and
		 * also accumulate ordering-correlation statistics.
1465 1466
		 *
		 * To determine which are most common, we first have to count the
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
		 * number of duplicates of each value.	The duplicates are
		 * adjacent in the sorted list, so a brute-force approach is to
		 * compare successive datum values until we find two that are not
		 * equal. However, that requires N-1 invocations of the datum
		 * comparison routine, which are completely redundant with work
		 * that was done during the sort.  (The sort algorithm must at
		 * some point have compared each pair of items that are adjacent
		 * in the sorted order; otherwise it could not know that it's
		 * ordered the pair correctly.) We exploit this by having
		 * compare_scalars remember the highest tupno index that each
		 * ScalarItem has been found equal to.	At the end of the sort, a
		 * ScalarItem's tupnoLink will still point to itself if and only
		 * if it is the last item of its group of duplicates (since the
		 * group will be ordered by tupno).
1481 1482 1483 1484 1485 1486 1487 1488 1489
		 */
		corr_xysum = 0;
		ndistinct = 0;
		nmultiple = 0;
		dups_cnt = 0;
		for (i = 0; i < values_cnt; i++)
		{
			int			tupno = values[i].tupno;

1490
			corr_xysum += ((double) i) * ((double) tupno);
1491 1492
			dups_cnt++;
			if (tupnoLink[tupno] == tupno)
B
Bruce Momjian 已提交
1493
			{
1494 1495 1496
				/* Reached end of duplicates of this value */
				ndistinct++;
				if (dups_cnt > 1)
B
Bruce Momjian 已提交
1497
				{
1498 1499
					nmultiple++;
					if (track_cnt < num_mcv ||
1500
						dups_cnt > track[track_cnt - 1].count)
1501 1502 1503 1504 1505 1506 1507
					{
						/*
						 * Found a new item for the mcv list; find its
						 * position, bubbling down old items if needed.
						 * Loop invariant is that j points at an empty/
						 * replaceable slot.
						 */
1508
						int			j;
1509 1510 1511

						if (track_cnt < num_mcv)
							track_cnt++;
1512
						for (j = track_cnt - 1; j > 0; j--)
1513
						{
1514
							if (dups_cnt <= track[j - 1].count)
1515
								break;
1516 1517
							track[j].count = track[j - 1].count;
							track[j].first = track[j - 1].first;
1518 1519 1520 1521 1522 1523 1524 1525
						}
						track[j].count = dups_cnt;
						track[j].first = i + 1 - dups_cnt;
					}
				}
				dups_cnt = 0;
			}
		}
B
Bruce Momjian 已提交
1526

1527 1528
		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
1529
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
1530
		if (is_varwidth)
1531 1532 1533
			stats->stawidth = total_width / (double) nonnull_cnt;
		else
			stats->stawidth = stats->attrtype->typlen;
B
Bruce Momjian 已提交
1534

1535 1536 1537 1538 1539 1540 1541 1542
		if (nmultiple == 0)
		{
			/* If we found no repeated values, assume it's a unique column */
			stats->stadistinct = -1.0;
		}
		else if (toowide_cnt == 0 && nmultiple == ndistinct)
		{
			/*
1543 1544
			 * Every value in the sample appeared more than once.  Assume
			 * the column has just these values.
1545 1546 1547 1548 1549 1550 1551
			 */
			stats->stadistinct = ndistinct;
		}
		else
		{
			/*----------
			 * Estimate the number of distinct values using the estimator
1552 1553 1554 1555 1556 1557 1558 1559 1560
			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
			 *		n*d / (n - f1 + f1*n/N)
			 * where f1 is the number of distinct values that occurred
			 * exactly once in our sample of n rows (from a total of N),
			 * and d is the total number of distinct values in the sample.
			 * This is their Duj1 estimator; the other estimators they
			 * recommend are considerably more complex, and are numerically
			 * very unstable when n is much smaller than N.
			 *
1561 1562 1563
			 * Overwidth values are assumed to have been distinct.
			 *----------
			 */
1564
			int			f1 = ndistinct - nmultiple + toowide_cnt;
1565
			int			d = f1 + nmultiple;
B
Bruce Momjian 已提交
1566 1567 1568 1569
			double		numer,
						denom,
						stadistinct;

1570
			numer = (double) samplerows *(double) d;
1571

1572 1573
			denom = (double) (samplerows - f1) +
				(double) f1 *(double) samplerows / totalrows;
B
Bruce Momjian 已提交
1574

1575 1576 1577 1578 1579 1580 1581
			stadistinct = numer / denom;
			/* Clamp to sane range in case of roundoff error */
			if (stadistinct < (double) d)
				stadistinct = (double) d;
			if (stadistinct > totalrows)
				stadistinct = totalrows;
			stats->stadistinct = floor(stadistinct + 0.5);
1582 1583 1584 1585 1586 1587 1588 1589 1590
		}

		/*
		 * If we estimated the number of distinct values at more than 10%
		 * of the total row count (a very arbitrary limit), then assume
		 * that stadistinct should scale with the row count rather than be
		 * a fixed value.
		 */
		if (stats->stadistinct > 0.1 * totalrows)
1591
			stats->stadistinct = -(stats->stadistinct / totalrows);
1592

1593 1594 1595 1596
		/*
		 * Decide how many values are worth storing as most-common values.
		 * If we are able to generate a complete MCV list (all the values
		 * in the sample will fit, and we think these are all the ones in
1597 1598 1599 1600 1601 1602 1603 1604
		 * the table), then do so.	Otherwise, store only those values
		 * that are significantly more common than the (estimated)
		 * average. We set the threshold rather arbitrarily at 25% more
		 * than average, with at least 2 instances in the sample.  Also,
		 * we won't suppress values that have a frequency of at least 1/K
		 * where K is the intended number of histogram bins; such values
		 * might otherwise cause us to emit duplicate histogram bin
		 * boundaries.
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
		 */
		if (track_cnt == ndistinct && toowide_cnt == 0 &&
			stats->stadistinct > 0 &&
			track_cnt <= num_mcv)
		{
			/* Track list includes all values seen, and all will fit */
			num_mcv = track_cnt;
		}
		else
		{
1615 1616 1617 1618
			double		ndistinct = stats->stadistinct;
			double		avgcount,
						mincount,
						maxmincount;
1619 1620

			if (ndistinct < 0)
1621
				ndistinct = -ndistinct * totalrows;
1622
			/* estimate # of occurrences in sample of a typical value */
1623
			avgcount = (double) samplerows / ndistinct;
1624 1625 1626 1627 1628
			/* set minimum threshold count to store a value */
			mincount = avgcount * 1.25;
			if (mincount < 2)
				mincount = 2;
			/* don't let threshold exceed 1/K, however */
1629
			maxmincount = (double) samplerows / (double) num_bins;
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
			if (mincount > maxmincount)
				mincount = maxmincount;
			if (num_mcv > track_cnt)
				num_mcv = track_cnt;
			for (i = 0; i < num_mcv; i++)
			{
				if (track[i].count < mincount)
				{
					num_mcv = i;
					break;
				}
			}
		}

		/* Generate MCV slot entry */
1645 1646 1647
		if (num_mcv > 0)
		{
			MemoryContext old_context;
1648 1649
			Datum	   *mcv_values;
			float4	   *mcv_freqs;
1650

1651
			/* Must copy the target values into anl_context */
1652
			old_context = MemoryContextSwitchTo(stats->anl_context);
1653 1654 1655 1656 1657 1658 1659
			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
			for (i = 0; i < num_mcv; i++)
			{
				mcv_values[i] = datumCopy(values[track[i].first].value,
										  stats->attr->attbyval,
										  stats->attr->attlen);
1660
				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
B
Bruce Momjian 已提交
1661
			}
1662 1663 1664
			MemoryContextSwitchTo(old_context);

			stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
1665
			stats->staop[slot_idx] = mystats->eqopr;
1666 1667 1668 1669 1670 1671
			stats->stanumbers[slot_idx] = mcv_freqs;
			stats->numnumbers[slot_idx] = num_mcv;
			stats->stavalues[slot_idx] = mcv_values;
			stats->numvalues[slot_idx] = num_mcv;
			slot_idx++;
		}
B
Bruce Momjian 已提交
1672

1673 1674 1675 1676 1677 1678
		/*
		 * Generate a histogram slot entry if there are at least two
		 * distinct values not accounted for in the MCV list.  (This
		 * ensures the histogram won't collapse to empty or a singleton.)
		 */
		num_hist = ndistinct - num_mcv;
1679 1680
		if (num_hist > num_bins)
			num_hist = num_bins + 1;
1681 1682 1683
		if (num_hist >= 2)
		{
			MemoryContext old_context;
1684 1685
			Datum	   *hist_values;
			int			nvals;
B
Bruce Momjian 已提交
1686

1687 1688 1689
			/* Sort the MCV items into position order to speed next loop */
			qsort((void *) track, num_mcv,
				  sizeof(ScalarMCVItem), compare_mcvs);
B
Bruce Momjian 已提交
1690 1691

			/*
1692
			 * Collapse out the MCV items from the values[] array.
B
Bruce Momjian 已提交
1693
			 *
1694
			 * Note we destroy the values[] array here... but we don't need
1695 1696 1697
			 * it for anything more.  We do, however, still need
			 * values_cnt. nvals will be the number of remaining entries
			 * in values[].
B
Bruce Momjian 已提交
1698
			 */
1699
			if (num_mcv > 0)
B
Bruce Momjian 已提交
1700
			{
1701 1702 1703
				int			src,
							dest;
				int			j;
B
Bruce Momjian 已提交
1704

1705 1706 1707 1708
				src = dest = 0;
				j = 0;			/* index of next interesting MCV item */
				while (src < values_cnt)
				{
1709
					int			ncopy;
1710 1711 1712

					if (j < num_mcv)
					{
1713
						int			first = track[j].first;
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

						if (src >= first)
						{
							/* advance past this MCV item */
							src = first + track[j].count;
							j++;
							continue;
						}
						ncopy = first - src;
					}
					else
						ncopy = values_cnt - src;
					memmove(&values[dest], &values[src],
							ncopy * sizeof(ScalarItem));
					src += ncopy;
					dest += ncopy;
				}
				nvals = dest;
			}
			else
				nvals = values_cnt;
			Assert(nvals >= num_hist);
B
Bruce Momjian 已提交
1736

1737
			/* Must copy the target values into anl_context */
1738
			old_context = MemoryContextSwitchTo(stats->anl_context);
1739 1740 1741
			hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
			for (i = 0; i < num_hist; i++)
			{
1742
				int			pos;
B
Bruce Momjian 已提交
1743

1744 1745 1746 1747
				pos = (i * (nvals - 1)) / (num_hist - 1);
				hist_values[i] = datumCopy(values[pos].value,
										   stats->attr->attbyval,
										   stats->attr->attlen);
B
Bruce Momjian 已提交
1748
			}
1749 1750 1751
			MemoryContextSwitchTo(old_context);

			stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
1752
			stats->staop[slot_idx] = mystats->ltopr;
1753 1754 1755 1756 1757 1758 1759 1760 1761
			stats->stavalues[slot_idx] = hist_values;
			stats->numvalues[slot_idx] = num_hist;
			slot_idx++;
		}

		/* Generate a correlation entry if there are multiple values */
		if (values_cnt > 1)
		{
			MemoryContext old_context;
1762 1763 1764
			float4	   *corrs;
			double		corr_xsum,
						corr_x2sum;
1765

1766
			/* Must copy the target values into anl_context */
1767
			old_context = MemoryContextSwitchTo(stats->anl_context);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
			corrs = (float4 *) palloc(sizeof(float4));
			MemoryContextSwitchTo(old_context);

			/*----------
			 * Since we know the x and y value sets are both
			 *		0, 1, ..., values_cnt-1
			 * we have sum(x) = sum(y) =
			 *		(values_cnt-1)*values_cnt / 2
			 * and sum(x^2) = sum(y^2) =
			 *		(values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
			 *----------
			 */
1780 1781 1782 1783
			corr_xsum = ((double) (values_cnt - 1)) *
				((double) values_cnt) / 2.0;
			corr_x2sum = ((double) (values_cnt - 1)) *
				((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
1784

1785 1786 1787 1788 1789
			/* And the correlation coefficient reduces to */
			corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
				(values_cnt * corr_x2sum - corr_xsum * corr_xsum);

			stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
1790
			stats->staop[slot_idx] = mystats->ltopr;
1791 1792 1793
			stats->stanumbers[slot_idx] = corrs;
			stats->numnumbers[slot_idx] = 1;
			slot_idx++;
B
Bruce Momjian 已提交
1794 1795
		}
	}
1796 1797

	/* We don't need to bother cleaning up any of our temporary palloc's */
B
Bruce Momjian 已提交
1798 1799 1800
}

/*
1801
 * qsort comparator for sorting ScalarItems
B
Bruce Momjian 已提交
1802
 *
1803
 * Aside from sorting the items, we update the datumCmpTupnoLink[] array
1804
 * whenever two ScalarItems are found to contain equal datums.	The array
1805 1806 1807
 * is indexed by tupno; for each ScalarItem, it contains the highest
 * tupno that that item's datum has been found to be equal to.  This allows
 * us to avoid additional comparisons in compute_scalar_stats().
B
Bruce Momjian 已提交
1808
 */
1809 1810
static int
compare_scalars(const void *a, const void *b)
B
Bruce Momjian 已提交
1811
{
1812 1813 1814 1815
	Datum		da = ((ScalarItem *) a)->value;
	int			ta = ((ScalarItem *) a)->tupno;
	Datum		db = ((ScalarItem *) b)->value;
	int			tb = ((ScalarItem *) b)->tupno;
1816
	int32		compare;
B
Bruce Momjian 已提交
1817

1818 1819 1820 1821
	compare = ApplySortFunction(datumCmpFn, datumCmpFnKind,
								da, false, db, false);
	if (compare != 0)
		return compare;
B
Bruce Momjian 已提交
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	/*
	 * The two datums are equal, so update datumCmpTupnoLink[].
	 */
	if (datumCmpTupnoLink[ta] < tb)
		datumCmpTupnoLink[ta] = tb;
	if (datumCmpTupnoLink[tb] < ta)
		datumCmpTupnoLink[tb] = ta;

	/*
	 * For equal datums, sort by tupno
	 */
	return ta - tb;
}

/*
 * qsort comparator for sorting ScalarMCVItems by position
 */
static int
compare_mcvs(const void *a, const void *b)
{
	int			da = ((ScalarMCVItem *) a)->first;
	int			db = ((ScalarMCVItem *) b)->first;

	return da - db;
}