subselect.c 29.5 KB
Newer Older
1 2
/*-------------------------------------------------------------------------
 *
3
 * subselect.c
4 5
 *	  Planning routines for subselects and parameters.
 *
B
Bruce Momjian 已提交
6
 * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
B
Add:  
Bruce Momjian 已提交
7
 * Portions Copyright (c) 1994, Regents of the University of California
8 9
 *
 * IDENTIFICATION
10
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/plan/subselect.c,v 1.75 2003/04/29 22:13:09 tgl Exp $
11 12 13 14 15
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

16
#include "catalog/pg_operator.h"
17
#include "catalog/pg_type.h"
18
#include "miscadmin.h"
19
#include "nodes/makefuncs.h"
20
#include "nodes/params.h"
21
#include "optimizer/clauses.h"
22 23
#include "optimizer/cost.h"
#include "optimizer/planmain.h"
B
Bruce Momjian 已提交
24 25
#include "optimizer/planner.h"
#include "optimizer/subselect.h"
26
#include "optimizer/var.h"
27
#include "parser/parsetree.h"
28 29
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
30
#include "parser/parse_relation.h"
31
#include "utils/builtins.h"
32
#include "utils/lsyscache.h"
33
#include "utils/syscache.h"
34

35

36
Index		PlannerQueryLevel;	/* level of current query */
37
List	   *PlannerInitPlan;	/* init subplans for current query */
38
List	   *PlannerParamVar;	/* to get Var from Param->paramid */
39 40

int			PlannerPlanId = 0;	/* to assign unique ID to subquery plans */
41 42 43 44 45 46 47 48 49 50 51 52

/*--------------------
 * PlannerParamVar is a list of Var nodes, wherein the n'th entry
 * (n counts from 0) corresponds to Param->paramid = n.  The Var nodes
 * are ordinary except for one thing: their varlevelsup field does NOT
 * have the usual interpretation of "subplan levels out from current".
 * Instead, it contains the absolute plan level, with the outermost
 * plan being level 1 and nested plans having higher level numbers.
 * This nonstandardness is useful because we don't have to run around
 * and update the list elements when we enter or exit a subplan
 * recursion level.  But we must pay attention not to confuse this
 * meaning with the normal meaning of varlevelsup.
53 54 55 56
 *
 * We also need to create Param slots that don't correspond to any outer Var.
 * For these, we set varno = 0 and varlevelsup = 0, so that they can't
 * accidentally match an outer Var.
57 58
 *--------------------
 */
59 60


61
typedef struct finalize_primnode_context
62
{
63 64 65
	Bitmapset   *paramids;		/* Set of PARAM_EXEC paramids found */
	Bitmapset   *outer_params;	/* Set of accessible outer paramids */
} finalize_primnode_context;
66 67


68
static List *convert_sublink_opers(List *lefthand, List *operOids,
69 70
								   List *targetlist, int rtindex,
								   List **righthandIds);
71
static bool subplan_is_hashable(SubLink *slink, SubPlan *node);
72
static Node *replace_correlation_vars_mutator(Node *node, void *context);
73
static Node *process_sublinks_mutator(Node *node, bool *isTopQual);
74 75 76 77
static Bitmapset *finalize_plan(Plan *plan, List *rtable,
								Bitmapset *outer_params,
								Bitmapset *valid_params);
static bool finalize_primnode(Node *node, finalize_primnode_context *context);
78 79


80 81 82
/*
 * Create a new entry in the PlannerParamVar list, and return its index.
 *
83 84 85 86
 * var contains the data to use, except for varlevelsup which
 * is set from the absolute level value given by varlevel.  NOTE that
 * the passed var is scribbled on and placed directly into the list!
 * Generally, caller should have just created or copied it.
87
 */
88
static int
89
new_param(Var *var, Index varlevel)
90
{
91
	var->varlevelsup = varlevel;
92

93
	PlannerParamVar = lappend(PlannerParamVar, var);
94

95
	return length(PlannerParamVar) - 1;
96 97
}

98 99 100 101
/*
 * Generate a Param node to replace the given Var,
 * which is expected to have varlevelsup > 0 (ie, it is not local).
 */
102
static Param *
103
replace_var(Var *var)
104
{
105
	List	   *ppv;
106
	Param	   *retval;
107
	Index		varlevel;
108 109
	int			i;

110 111
	Assert(var->varlevelsup > 0 && var->varlevelsup < PlannerQueryLevel);
	varlevel = PlannerQueryLevel - var->varlevelsup;
112

113
	/*
114
	 * If there's already a PlannerParamVar entry for this same Var, just
B
Bruce Momjian 已提交
115 116 117 118 119 120
	 * use it.	NOTE: in sufficiently complex querytrees, it is possible
	 * for the same varno/varlevel to refer to different RTEs in different
	 * parts of the parsetree, so that different fields might end up
	 * sharing the same Param number.  As long as we check the vartype as
	 * well, I believe that this sort of aliasing will cause no trouble.
	 * The correct field should get stored into the Param slot at
121
	 * execution in each part of the tree.
122 123 124
	 */
	i = 0;
	foreach(ppv, PlannerParamVar)
125
	{
126
		Var		   *pvar = lfirst(ppv);
127 128 129 130 131

		if (pvar->varno == var->varno &&
			pvar->varattno == var->varattno &&
			pvar->varlevelsup == varlevel &&
			pvar->vartype == var->vartype)
132
			break;
133
		i++;
134
	}
135

136
	if (!ppv)
137 138
	{
		/* Nope, so make a new one */
139
		i = new_param((Var *) copyObject(var), varlevel);
140
	}
141

142 143 144 145
	retval = makeNode(Param);
	retval->paramkind = PARAM_EXEC;
	retval->paramid = (AttrNumber) i;
	retval->paramtype = var->vartype;
146

147
	return retval;
148 149
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/*
 * Generate a new Param node that will not conflict with any other.
 */
static Param *
generate_new_param(Oid paramtype, int32 paramtypmod)
{
	Var		   *var = makeVar(0, 0, paramtype, paramtypmod, 0);
	Param	   *retval = makeNode(Param);

	retval->paramkind = PARAM_EXEC;
	retval->paramid = (AttrNumber) new_param(var, 0);
	retval->paramtype = paramtype;

	return retval;
}

166
/*
167 168 169
 * Convert a bare SubLink (as created by the parser) into a SubPlan.
 *
 * We are given the raw SubLink and the already-processed lefthand argument
170 171
 * list (use this instead of the SubLink's own field).  We are also told if
 * this expression appears at top level of a WHERE/HAVING qual.
172 173 174 175 176 177
 *
 * The result is whatever we need to substitute in place of the SubLink
 * node in the executable expression.  This will be either the SubPlan
 * node (if we have to do the subplan as a subplan), or a Param node
 * representing the result of an InitPlan, or possibly an AND or OR tree
 * containing InitPlan Param nodes.
178
 */
179
static Node *
180
make_subplan(SubLink *slink, List *lefthand, bool isTopQual)
181
{
182
	SubPlan	   *node = makeNode(SubPlan);
183
	Query	   *subquery = (Query *) (slink->subselect);
184
	double		tuple_fraction;
185
	Plan	   *plan;
186 187
	Bitmapset  *tmpset;
	int			paramid;
188 189
	List	   *lst;
	Node	   *result;
190

191
	/*
B
Bruce Momjian 已提交
192 193 194 195
	 * Copy the source Query node.	This is a quick and dirty kluge to
	 * resolve the fact that the parser can generate trees with multiple
	 * links to the same sub-Query node, but the planner wants to scribble
	 * on the Query. Try to clean this up when we do querytree redesign...
196 197 198
	 */
	subquery = (Query *) copyObject(subquery);

199
	/*
200 201 202 203 204 205 206
	 * For an EXISTS subplan, tell lower-level planner to expect that only
	 * the first tuple will be retrieved.  For ALL and ANY subplans, we
	 * will be able to stop evaluating if the test condition fails, so
	 * very often not all the tuples will be retrieved; for lack of a
	 * better idea, specify 50% retrieval.	For EXPR and MULTIEXPR
	 * subplans, use default behavior (we're only expecting one row out,
	 * anyway).
207
	 *
208 209 210
	 * NOTE: if you change these numbers, also change cost_qual_eval_walker()
	 * in path/costsize.c.
	 *
211 212 213
	 * XXX If an ALL/ANY subplan is uncorrelated, we may decide to hash or
	 * materialize its result below.  In that case it would've been better to
	 * specify full retrieval.  At present, however, we can only detect
214 215 216 217 218
	 * correlation or lack of it after we've made the subplan :-(. Perhaps
	 * detection of correlation should be done as a separate step.
	 * Meanwhile, we don't want to be too optimistic about the percentage
	 * of tuples retrieved, for fear of selecting a plan that's bad for
	 * the materialization case.
219 220 221
	 */
	if (slink->subLinkType == EXISTS_SUBLINK)
		tuple_fraction = 1.0;	/* just like a LIMIT 1 */
222 223
	else if (slink->subLinkType == ALL_SUBLINK ||
			 slink->subLinkType == ANY_SUBLINK)
224
		tuple_fraction = 0.5;	/* 50% */
225
	else
226
		tuple_fraction = 0.0;	/* default behavior */
227

228
	/*
229
	 * Generate the plan for the subquery.
230
	 */
231
	node->plan = plan = subquery_planner(subquery, tuple_fraction);
232

B
Bruce Momjian 已提交
233
	node->plan_id = PlannerPlanId++;	/* Assign unique ID to this
234
										 * SubPlan */
235

236
	node->rtable = subquery->rtable;
237

238
	/*
239
	 * Initialize other fields of the SubPlan node.
240 241
	 */
	node->subLinkType = slink->subLinkType;
242
	node->useOr = slink->useOr;
243 244 245
	node->exprs = NIL;
	node->paramIds = NIL;
	node->useHashTable = false;
246 247
	/* At top level of a qual, can treat UNKNOWN the same as FALSE */
	node->unknownEqFalse = isTopQual;
248 249 250
	node->setParam = NIL;
	node->parParam = NIL;
	node->args = NIL;
251

252
	/*
B
Bruce Momjian 已提交
253 254
	 * Make parParam list of params that current query level will pass to
	 * this child plan.
255
	 */
256 257
	tmpset = bms_copy(plan->extParam);
	while ((paramid = bms_first_member(tmpset)) >= 0)
258
	{
259
		Var		   *var = nth(paramid, PlannerParamVar);
260

261
		/* note varlevelsup is absolute level number */
262
		if (var->varlevelsup == PlannerQueryLevel)
263
			node->parParam = lappendi(node->parParam, paramid);
264
	}
265
	bms_free(tmpset);
266 267

	/*
268 269 270
	 * Un-correlated or undirect correlated plans of EXISTS, EXPR, ARRAY, or
	 * MULTIEXPR types can be used as initPlans.  For EXISTS, EXPR, or ARRAY,
	 * we just produce a Param referring to the result of evaluating the
271 272 273
	 * initPlan.  For MULTIEXPR, we must build an AND or OR-clause of the
	 * individual comparison operators, using the appropriate lefthand
	 * side expressions and Params for the initPlan's target items.
274
	 */
275 276
	if (node->parParam == NIL && slink->subLinkType == EXISTS_SUBLINK)
	{
277
		Param	   *prm;
278

279
		prm = generate_new_param(BOOLOID, -1);
280
		node->setParam = makeListi1(prm->paramid);
281 282 283 284 285 286
		PlannerInitPlan = lappend(PlannerInitPlan, node);
		result = (Node *) prm;
	}
	else if (node->parParam == NIL && slink->subLinkType == EXPR_SUBLINK)
	{
		TargetEntry *te = lfirst(plan->targetlist);
287
		Param	   *prm;
288

289
		Assert(!te->resdom->resjunk);
290
		prm = generate_new_param(te->resdom->restype, te->resdom->restypmod);
291
		node->setParam = makeListi1(prm->paramid);
292 293 294
		PlannerInitPlan = lappend(PlannerInitPlan, node);
		result = (Node *) prm;
	}
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	else if (node->parParam == NIL && slink->subLinkType == ARRAY_SUBLINK)
	{
		TargetEntry *te = lfirst(plan->targetlist);
		Oid			arraytype;
		Param	   *prm;

		Assert(!te->resdom->resjunk);
		arraytype = get_array_type(te->resdom->restype);
		if (!OidIsValid(arraytype))
			elog(ERROR, "Cannot find array type for datatype %s",
				 format_type_be(te->resdom->restype));
		prm = generate_new_param(arraytype, -1);
		node->setParam = makeListi1(prm->paramid);
		PlannerInitPlan = lappend(PlannerInitPlan, node);
		result = (Node *) prm;
	}
311
	else if (node->parParam == NIL && slink->subLinkType == MULTIEXPR_SUBLINK)
312
	{
313 314 315 316 317 318
		List   *exprs;

		/* Convert the lefthand exprs and oper OIDs into executable exprs */
		exprs = convert_sublink_opers(lefthand,
									  slink->operOids,
									  plan->targetlist,
319
									  0,
320
									  &node->paramIds);
321
		node->setParam = listCopy(node->paramIds);
322
		PlannerInitPlan = lappend(PlannerInitPlan, node);
323 324 325 326 327 328 329 330
		/*
		 * The executable expressions are returned to become part of the
		 * outer plan's expression tree; they are not kept in the initplan
		 * node.
		 */
		if (length(exprs) > 1)
			result = (Node *) (node->useOr ? make_orclause(exprs) :
							   make_andclause(exprs));
331
		else
332
			result = (Node *) lfirst(exprs);
333
	}
334
	else
335
	{
336
		List	   *args;
337

338
		/*
339 340 341
		 * We can't convert subplans of ALL_SUBLINK or ANY_SUBLINK types
		 * to initPlans, even when they are uncorrelated or undirect
		 * correlated, because we need to scan the output of the subplan
342 343 344 345 346 347 348 349 350 351 352 353 354 355
		 * for each outer tuple.  But if it's an IN (= ANY) test, we might
		 * be able to use a hashtable to avoid comparing all the tuples.
		 */
		if (subplan_is_hashable(slink, node))
			node->useHashTable = true;
		/*
		 * Otherwise, we have the option to tack a MATERIAL node onto the top
		 * of the subplan, to reduce the cost of reading it repeatedly.  This
		 * is pointless for a direct-correlated subplan, since we'd have to
		 * recompute its results each time anyway.  For uncorrelated/undirect
		 * correlated subplans, we add MATERIAL if the subplan's top plan node
		 * is anything more complicated than a plain sequential scan, and we
		 * do it even for seqscan if the qual appears selective enough to
		 * eliminate many tuples.
356
		 */
357
		else if (node->parParam == NIL)
358 359 360 361 362 363
		{
			bool		use_material;

			switch (nodeTag(plan))
			{
				case T_SeqScan:
364
					if (plan->initPlan)
365 366 367 368 369 370 371
						use_material = true;
					else
					{
						Selectivity qualsel;

						qualsel = clauselist_selectivity(subquery,
														 plan->qual,
372
														 0, JOIN_INNER);
373 374 375
						/* Is 10% selectivity a good threshold?? */
						use_material = qualsel < 0.10;
					}
376 377
					break;
				case T_Material:
378
				case T_FunctionScan:
379
				case T_Sort:
380 381 382

					/*
					 * Don't add another Material node if there's one
383 384
					 * already, nor if the top node is any other type that
					 * materializes its output anyway.
385 386 387 388 389 390 391 392 393
					 */
					use_material = false;
					break;
				default:
					use_material = true;
					break;
			}
			if (use_material)
			{
394
				node->plan = plan = materialize_finished_plan(plan);
395 396 397
			}
		}

398 399 400 401
		/* Convert the lefthand exprs and oper OIDs into executable exprs */
		node->exprs = convert_sublink_opers(lefthand,
											slink->operOids,
											plan->targetlist,
402
											0,
403
											&node->paramIds);
404

405
		/*
406
		 * Make node->args from parParam.
407
		 */
408
		args = NIL;
409
		foreach(lst, node->parParam)
410
		{
411 412 413
			Var		   *var = nth(lfirsti(lst), PlannerParamVar);

			var = (Var *) copyObject(var);
414 415 416 417 418

			/*
			 * Must fix absolute-level varlevelsup from the
			 * PlannerParamVar entry.  But since var is at current subplan
			 * level, this is easy:
419
			 */
420
			var->varlevelsup = 0;
421
			args = lappend(args, var);
422
		}
423
		node->args = args;
424

425
		result = (Node *) node;
426 427 428 429 430 431
	}

	return result;
}

/*
432 433
 * convert_sublink_opers: given a lefthand-expressions list and a list of
 * operator OIDs, build a list of actually executable expressions.  The
434 435
 * righthand sides of the expressions are Params or Vars representing the
 * results of the sub-select.
436
 *
437 438 439 440 441 442
 * If rtindex is 0, we build Params to represent the sub-select outputs.
 * The paramids of the Params created are returned in the *righthandIds list.
 *
 * If rtindex is not 0, we build Vars using that rtindex as varno.  The
 * Vars themselves are returned in *righthandIds (this is a bit of a type
 * cheat, but we can get away with it).
443
 */
444
static List *
445
convert_sublink_opers(List *lefthand, List *operOids,
446 447
					  List *targetlist, int rtindex,
					  List **righthandIds)
448
{
449
	List	   *result = NIL;
450 451
	List	   *lst;

452
	*righthandIds = NIL;
453 454

	foreach(lst, operOids)
455
	{
456
		Oid			opid = lfirsto(lst);
457
		Node	   *leftop = lfirst(lefthand);
458
		TargetEntry *te = lfirst(targetlist);
459
		Node	   *rightop;
460 461
		Operator	tup;

462 463
		Assert(!te->resdom->resjunk);

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
		if (rtindex)
		{
			/* Make the Var node representing the subplan's result */
			rightop = (Node *) makeVar(rtindex,
									   te->resdom->resno,
									   te->resdom->restype,
									   te->resdom->restypmod,
									   0);
			/* Record it for caller */
			*righthandIds = lappend(*righthandIds, rightop);
		}
		else
		{
			/* Make the Param node representing the subplan's result */
			Param	   *prm;

			prm = generate_new_param(te->resdom->restype,
									 te->resdom->restypmod);
			/* Record its ID */
			*righthandIds = lappendi(*righthandIds, prm->paramid);
			rightop = (Node *) prm;
		}
486

487
		/* Look up the operator to pass to make_op_expr */
488
		tup = SearchSysCache(OPEROID,
489
							 ObjectIdGetDatum(opid),
490 491
							 0, 0, 0);
		if (!HeapTupleIsValid(tup))
492
			elog(ERROR, "cache lookup failed for operator %u", opid);
493

494
		/*
495 496
		 * Make the expression node.
		 *
497
		 * Note: we use make_op_expr in case runtime type conversion
498 499 500
		 * function calls must be inserted for this operator!  (But we
		 * are not expecting to have to resolve unknown Params, so
		 * it's okay to pass a null pstate.)
501
		 */
502
		result = lappend(result,
503 504
						 make_op_expr(NULL,
									  tup,
505 506 507 508
									  leftop,
									  rightop,
									  exprType(leftop),
									  te->resdom->restype));
509

510 511
		ReleaseSysCache(tup);

512
		lefthand = lnext(lefthand);
513
		targetlist = lnext(targetlist);
514
	}
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	return result;
}

/*
 * subplan_is_hashable: decide whether we can implement a subplan by hashing
 *
 * Caution: the SubPlan node is not completely filled in yet.  We can rely
 * on its plan and parParam fields, however.
 */
static bool
subplan_is_hashable(SubLink *slink, SubPlan *node)
{
	double		subquery_size;
	List	   *opids;

	/*
	 * The sublink type must be "= ANY" --- that is, an IN operator.
	 * (We require the operator name to be unqualified, which may be
	 * overly paranoid, or may not be.)  XXX since we also check that the
	 * operators are hashable, the test on operator name may be redundant?
	 */
	if (slink->subLinkType != ANY_SUBLINK)
		return false;
	if (length(slink->operName) != 1 ||
		strcmp(strVal(lfirst(slink->operName)), "=") != 0)
		return false;
	/*
	 * The subplan must not have any direct correlation vars --- else we'd
	 * have to recompute its output each time, so that the hashtable wouldn't
	 * gain anything.
	 */
	if (node->parParam != NIL)
		return false;
	/*
	 * The estimated size of the subquery result must fit in SortMem.
	 * (XXX what about hashtable overhead?)
	 */
	subquery_size = node->plan->plan_rows *
		(MAXALIGN(node->plan->plan_width) + MAXALIGN(sizeof(HeapTupleData)));
	if (subquery_size > SortMem * 1024L)
		return false;
	/*
558 559 560 561 562 563 564 565 566 567 568
	 * The combining operators must be hashable, strict, and self-commutative.
	 * The need for hashability is obvious, since we want to use hashing.
	 * Without strictness, behavior in the presence of nulls is too
	 * unpredictable.  (We actually must assume even more than plain
	 * strictness, see nodeSubplan.c for details.)  And commutativity ensures
	 * that the left and right datatypes are the same; this allows us to
	 * assume that the combining operators are equality for the righthand
	 * datatype, so that they can be used to compare righthand tuples as
	 * well as comparing lefthand to righthand tuples.  (This last restriction
	 * could be relaxed by using two different sets of operators with the
	 * hash table, but there is no obvious usefulness to that at present.)
569 570 571
	 */
	foreach(opids, slink->operOids)
	{
572
		Oid			opid = lfirsto(opids);
573 574 575 576 577 578 579 580 581
		HeapTuple	tup;
		Form_pg_operator optup;

		tup = SearchSysCache(OPEROID,
							 ObjectIdGetDatum(opid),
							 0, 0, 0);
		if (!HeapTupleIsValid(tup))
			elog(ERROR, "cache lookup failed for operator %u", opid);
		optup = (Form_pg_operator) GETSTRUCT(tup);
582 583
		if (!optup->oprcanhash || optup->oprcom != opid ||
			!func_strict(optup->oprcode))
584 585 586 587 588 589 590
		{
			ReleaseSysCache(tup);
			return false;
		}
		ReleaseSysCache(tup);
	}
	return true;
591 592
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/*
 * convert_IN_to_join: can we convert an IN SubLink to join style?
 *
 * The caller has found a SubLink at the top level of WHERE, but has not
 * checked the properties of the SubLink at all.  Decide whether it is
 * appropriate to process this SubLink in join style.  If not, return NULL.
 * If so, build the qual clause(s) to replace the SubLink, and return them.
 *
 * Side effects of a successful conversion include adding the SubLink's
 * subselect to the query's rangetable and adding an InClauseInfo node to
 * its in_info_list.
 */
Node *
convert_IN_to_join(Query *parse, SubLink *sublink)
{
	Query	   *subselect = (Query *) sublink->subselect;
609
	Relids		left_varnos;
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	int			rtindex;
	RangeTblEntry *rte;
	RangeTblRef *rtr;
	InClauseInfo  *ininfo;
	List	   *exprs;

	/*
	 * The sublink type must be "= ANY" --- that is, an IN operator.
	 * (We require the operator name to be unqualified, which may be
	 * overly paranoid, or may not be.)
	 */
	if (sublink->subLinkType != ANY_SUBLINK)
		return NULL;
	if (length(sublink->operName) != 1 ||
		strcmp(strVal(lfirst(sublink->operName)), "=") != 0)
		return NULL;
	/*
	 * The sub-select must not refer to any Vars of the parent query.
	 * (Vars of higher levels should be okay, though.)
	 */
	if (contain_vars_of_level((Node *) subselect, 1))
		return NULL;
	/*
	 * The left-hand expressions must contain some Vars of the current
	 * query, else it's not gonna be a join.
	 */
	left_varnos = pull_varnos((Node *) sublink->lefthand);
637
	if (bms_is_empty(left_varnos))
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
		return NULL;
	/*
	 * The left-hand expressions mustn't be volatile.  (Perhaps we should
	 * test the combining operators, too?  We'd only need to point the
	 * function directly at the sublink ...)
	 */
	if (contain_volatile_functions((Node *) sublink->lefthand))
		return NULL;
	/*
	 * Okay, pull up the sub-select into top range table and jointree.
	 *
	 * We rely here on the assumption that the outer query has no references
	 * to the inner (necessarily true, other than the Vars that we build
	 * below).  Therefore this is a lot easier than what pull_up_subqueries
	 * has to go through.
	 */
	rte = addRangeTableEntryForSubquery(NULL,
										subselect,
										makeAlias("IN_subquery", NIL),
										false);
	parse->rtable = lappend(parse->rtable, rte);
	rtindex = length(parse->rtable);
	rtr = makeNode(RangeTblRef);
	rtr->rtindex = rtindex;
	parse->jointree->fromlist = lappend(parse->jointree->fromlist, rtr);
	/*
	 * Now build the InClauseInfo node.
	 */
	ininfo = makeNode(InClauseInfo);
	ininfo->lefthand = left_varnos;
668
	ininfo->righthand = bms_make_singleton(rtindex);
669 670 671 672 673 674 675 676 677 678 679 680 681 682
	parse->in_info_list = lcons(ininfo, parse->in_info_list);
	/*
	 * Build the result qual expressions.  As a side effect,
	 * ininfo->sub_targetlist is filled with a list of the Vars
	 * representing the subselect outputs.
	 */
	exprs = convert_sublink_opers(sublink->lefthand,
								  sublink->operOids,
								  subselect->targetList,
								  rtindex,
								  &ininfo->sub_targetlist);
	return (Node *) make_ands_explicit(exprs);
}

683 684
/*
 * Replace correlation vars (uplevel vars) with Params.
685
 */
686
Node *
687
SS_replace_correlation_vars(Node *expr)
688
{
689 690 691
	/* No setup needed for tree walk, so away we go */
	return replace_correlation_vars_mutator(expr, NULL);
}
692

693 694 695 696 697 698
static Node *
replace_correlation_vars_mutator(Node *node, void *context)
{
	if (node == NULL)
		return NULL;
	if (IsA(node, Var))
699
	{
700 701
		if (((Var *) node)->varlevelsup > 0)
			return (Node *) replace_var((Var *) node);
702
	}
703 704 705
	return expression_tree_mutator(node,
								   replace_correlation_vars_mutator,
								   context);
706 707
}

708 709
/*
 * Expand SubLinks to SubPlans in the given expression.
710 711 712 713
 *
 * The isQual argument tells whether or not this expression is a WHERE/HAVING
 * qualifier expression.  If it is, any sublinks appearing at top level need
 * not distinguish FALSE from UNKNOWN return values.
714
 */
715
Node *
716
SS_process_sublinks(Node *expr, bool isQual)
717
{
718 719
	/* The only context needed is the initial are-we-in-a-qual flag */
	return process_sublinks_mutator(expr, &isQual);
720 721 722
}

static Node *
723
process_sublinks_mutator(Node *node, bool *isTopQual)
724
{
725 726
	bool	locTopQual;

727
	if (node == NULL)
728
		return NULL;
729
	if (IsA(node, SubLink))
730
	{
731
		SubLink    *sublink = (SubLink *) node;
732
		List	   *lefthand;
733

734
		/*
735
		 * First, recursively process the lefthand-side expressions, if any.
736
		 */
737
		locTopQual = false;
738
		lefthand = (List *)
739
			process_sublinks_mutator((Node *) sublink->lefthand, &locTopQual);
740 741 742
		/*
		 * Now build the SubPlan node and make the expr to return.
		 */
743
		return make_subplan(sublink, lefthand, *isTopQual);
744
	}
745

746
	/*
747 748 749
	 * We should never see a SubPlan expression in the input (since this is
	 * the very routine that creates 'em to begin with).  We shouldn't find
	 * ourselves invoked directly on a Query, either.
750
	 */
751
	Assert(!is_subplan(node));
752
	Assert(!IsA(node, Query));
753

754 755 756 757 758 759 760 761 762
	/*
	 * If we recurse down through anything other than a List node, we are
	 * definitely not at top qual level anymore.
	 */
	if (IsA(node, List))
		locTopQual = *isTopQual;
	else
		locTopQual = false;

763 764
	return expression_tree_mutator(node,
								   process_sublinks_mutator,
765
								   (void *) &locTopQual);
766 767
}

768 769 770
/*
 * SS_finalize_plan - do final sublink processing for a completed Plan.
 *
771 772
 * This recursively computes the extParam and allParam sets
 * for every Plan node in the given plan tree.
773
 */
774
void
775
SS_finalize_plan(Plan *plan, List *rtable)
776
{
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	Bitmapset  *outer_params = NULL;
	Bitmapset  *valid_params = NULL;
	int			paramid;
	List	   *lst;

	/*
	 * First, scan the param list to discover the sets of params that
	 * are available from outer query levels and my own query level.
	 * We do this once to save time in the per-plan recursion steps.
	 */
	paramid = 0;
	foreach(lst, PlannerParamVar)
	{
		Var		   *var = (Var *) lfirst(lst);

		/* note varlevelsup is absolute level number */
		if (var->varlevelsup < PlannerQueryLevel)
		{
			/* valid outer-level parameter */
			outer_params = bms_add_member(outer_params, paramid);
			valid_params = bms_add_member(valid_params, paramid);
		}
		else if (var->varlevelsup == PlannerQueryLevel &&
				 var->varno == 0 && var->varattno == 0)
		{
			/* valid local parameter (i.e., a setParam of my child) */
			valid_params = bms_add_member(valid_params, paramid);
		}

		paramid++;
	}

	/*
	 * Now recurse through plan tree.
	 */
	(void) finalize_plan(plan, rtable, outer_params, valid_params);

	bms_free(outer_params);
	bms_free(valid_params);
}

/*
 * Recursive processing of all nodes in the plan tree
 *
 * The return value is the computed allParam set for the given Plan node.
 * This is just an internal notational convenience.
 */
static Bitmapset *
finalize_plan(Plan *plan, List *rtable,
			  Bitmapset *outer_params, Bitmapset *valid_params)
{
	finalize_primnode_context context;
829 830 831
	List	   *lst;

	if (plan == NULL)
832
		return NULL;
833

834 835
	context.paramids = NULL;	/* initialize set to empty */
	context.outer_params = outer_params;
836

837
	/*
838
	 * When we call finalize_primnode, context.paramids sets are
839
	 * automatically merged together.  But when recursing to self, we have
840
	 * to do it the hard way.  We want the paramids set to include params
841
	 * in subplans as well as at this level.
842 843
	 */

844
	/* Find params in targetlist and qual */
845 846
	finalize_primnode((Node *) plan->targetlist, &context);
	finalize_primnode((Node *) plan->qual, &context);
847

848
	/* Check additional node-type-specific fields */
849 850 851
	switch (nodeTag(plan))
	{
		case T_Result:
852
			finalize_primnode(((Result *) plan)->resconstantqual,
853
							  &context);
854 855
			break;

856 857
		case T_IndexScan:
			finalize_primnode((Node *) ((IndexScan *) plan)->indxqual,
858
							  &context);
859 860 861

			/*
			 * we need not look at indxqualorig, since it will have the
862
			 * same param references as indxqual.
863 864 865 866 867
			 */
			break;

		case T_TidScan:
			finalize_primnode((Node *) ((TidScan *) plan)->tideval,
868
							  &context);
869
			break;
870

871
		case T_SubqueryScan:
B
Bruce Momjian 已提交
872

873
			/*
B
Bruce Momjian 已提交
874 875 876 877 878
			 * In a SubqueryScan, SS_finalize_plan has already been run on
			 * the subplan by the inner invocation of subquery_planner, so
			 * there's no need to do it again.  Instead, just pull out the
			 * subplan's extParams list, which represents the params it
			 * needs from my level and higher levels.
879
			 */
880
			context.paramids = bms_add_members(context.paramids,
B
Bruce Momjian 已提交
881
							 ((SubqueryScan *) plan)->subplan->extParam);
882 883
			break;

884 885 886
		case T_FunctionScan:
			{
				RangeTblEntry *rte;
887

888 889 890
				rte = rt_fetch(((FunctionScan *) plan)->scan.scanrelid,
							   rtable);
				Assert(rte->rtekind == RTE_FUNCTION);
891
				finalize_primnode(rte->funcexpr, &context);
892 893 894 895 896
			}
			break;

		case T_Append:
			foreach(lst, ((Append *) plan)->appendplans)
897 898 899 900 901 902 903 904
			{
				context.paramids =
					bms_add_members(context.paramids,
									finalize_plan((Plan *) lfirst(lst),
												  rtable,
												  outer_params,
												  valid_params));
			}
905 906
			break;

907 908
		case T_NestLoop:
			finalize_primnode((Node *) ((Join *) plan)->joinqual,
909
							  &context);
910 911
			break;

912
		case T_MergeJoin:
913
			finalize_primnode((Node *) ((Join *) plan)->joinqual,
914
							  &context);
915
			finalize_primnode((Node *) ((MergeJoin *) plan)->mergeclauses,
916
							  &context);
917 918 919
			break;

		case T_HashJoin:
920
			finalize_primnode((Node *) ((Join *) plan)->joinqual,
921
							  &context);
922
			finalize_primnode((Node *) ((HashJoin *) plan)->hashclauses,
923
							  &context);
924
			break;
925

926
		case T_Hash:
927
			finalize_primnode((Node *) ((Hash *) plan)->hashkeys,
928
							  &context);
929 930 931 932 933 934 935
			break;

		case T_Agg:
		case T_SeqScan:
		case T_Material:
		case T_Sort:
		case T_Unique:
936
		case T_SetOp:
937
		case T_Limit:
938 939
		case T_Group:
			break;
940

941
		default:
942
			elog(ERROR, "finalize_plan: node %d unsupported",
943
				 nodeTag(plan));
944
	}
945

946
	/* Process left and right child plans, if any */
947 948 949 950 951 952 953 954 955 956 957
	context.paramids = bms_add_members(context.paramids,
									   finalize_plan(plan->lefttree,
													 rtable,
													 outer_params,
													 valid_params));

	context.paramids = bms_add_members(context.paramids,
									   finalize_plan(plan->righttree,
													 rtable,
													 outer_params,
													 valid_params));
958

959
	/* Now we have all the paramids */
960

961 962
	if (!bms_is_subset(context.paramids, valid_params))
		elog(ERROR, "finalize_plan: plan shouldn't reference subplan's variable");
963

964 965
	plan->extParam = bms_intersect(context.paramids, outer_params);
	plan->allParam = context.paramids;
966

967 968 969 970 971 972 973 974 975 976 977 978 979 980
	/*
	 * For speed at execution time, make sure extParam/allParam are actually
	 * NULL if they are empty sets.
	 */
	if (bms_is_empty(plan->extParam))
	{
		bms_free(plan->extParam);
		plan->extParam = NULL;
	}
	if (bms_is_empty(plan->allParam))
	{
		bms_free(plan->allParam);
		plan->allParam = NULL;
	}
981

982
	return plan->allParam;
983
}
984 985

/*
986 987
 * finalize_primnode: add IDs of all PARAM_EXEC params appearing in the given
 * expression tree to the result set.
988 989
 */
static bool
990
finalize_primnode(Node *node, finalize_primnode_context *context)
991 992 993 994 995 996 997 998 999
{
	if (node == NULL)
		return false;
	if (IsA(node, Param))
	{
		if (((Param *) node)->paramkind == PARAM_EXEC)
		{
			int			paramid = (int) ((Param *) node)->paramid;

1000
			context->paramids = bms_add_member(context->paramids, paramid);
1001 1002 1003 1004 1005 1006 1007
		}
		return false;			/* no more to do here */
	}
	if (is_subplan(node))
	{
		SubPlan	   *subplan = (SubPlan *) node;

1008 1009 1010 1011
		/* Add outer-level params needed by the subplan to paramids */
		context->paramids = bms_join(context->paramids,
									 bms_intersect(subplan->plan->extParam,
												   context->outer_params));
1012 1013 1014
		/* fall through to recurse into subplan args */
	}
	return expression_tree_walker(node, finalize_primnode,
1015
								  (void *) context);
1016
}