subselect.c 24.2 KB
Newer Older
1 2
/*-------------------------------------------------------------------------
 *
3
 * subselect.c
4 5
 *	  Planning routines for subselects and parameters.
 *
B
Bruce Momjian 已提交
6
 * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
B
Add:  
Bruce Momjian 已提交
7
 * Portions Copyright (c) 1994, Regents of the University of California
8 9
 *
 * IDENTIFICATION
10
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/plan/subselect.c,v 1.65 2003/01/13 00:29:26 tgl Exp $
11 12 13 14 15
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

16
#include "catalog/pg_operator.h"
17
#include "catalog/pg_type.h"
18
#include "miscadmin.h"
19
#include "nodes/makefuncs.h"
20
#include "nodes/params.h"
21
#include "optimizer/clauses.h"
22 23
#include "optimizer/cost.h"
#include "optimizer/planmain.h"
B
Bruce Momjian 已提交
24 25
#include "optimizer/planner.h"
#include "optimizer/subselect.h"
26
#include "parser/parsetree.h"
27 28
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
29
#include "utils/lsyscache.h"
30
#include "utils/syscache.h"
31

32

33
Index		PlannerQueryLevel;	/* level of current query */
34
List	   *PlannerInitPlan;	/* init subplans for current query */
35
List	   *PlannerParamVar;	/* to get Var from Param->paramid */
36 37

int			PlannerPlanId = 0;	/* to assign unique ID to subquery plans */
38 39 40 41 42 43 44 45 46 47 48 49

/*--------------------
 * PlannerParamVar is a list of Var nodes, wherein the n'th entry
 * (n counts from 0) corresponds to Param->paramid = n.  The Var nodes
 * are ordinary except for one thing: their varlevelsup field does NOT
 * have the usual interpretation of "subplan levels out from current".
 * Instead, it contains the absolute plan level, with the outermost
 * plan being level 1 and nested plans having higher level numbers.
 * This nonstandardness is useful because we don't have to run around
 * and update the list elements when we enter or exit a subplan
 * recursion level.  But we must pay attention not to confuse this
 * meaning with the normal meaning of varlevelsup.
50 51 52 53
 *
 * We also need to create Param slots that don't correspond to any outer Var.
 * For these, we set varno = 0 and varlevelsup = 0, so that they can't
 * accidentally match an outer Var.
54 55
 *--------------------
 */
56 57


58 59 60 61 62 63
typedef struct finalize_primnode_results
{
	List	   *paramids;		/* List of PARAM_EXEC paramids found */
} finalize_primnode_results;


64 65 66
static List *convert_sublink_opers(List *lefthand, List *operOids,
								   List *targetlist, List **paramIds);
static bool subplan_is_hashable(SubLink *slink, SubPlan *node);
67 68 69
static Node *replace_correlation_vars_mutator(Node *node, void *context);
static Node *process_sublinks_mutator(Node *node, void *context);
static bool finalize_primnode(Node *node, finalize_primnode_results *results);
70 71


72 73 74
/*
 * Create a new entry in the PlannerParamVar list, and return its index.
 *
75 76 77 78
 * var contains the data to use, except for varlevelsup which
 * is set from the absolute level value given by varlevel.  NOTE that
 * the passed var is scribbled on and placed directly into the list!
 * Generally, caller should have just created or copied it.
79
 */
80
static int
81
new_param(Var *var, Index varlevel)
82
{
83
	var->varlevelsup = varlevel;
84

85
	PlannerParamVar = lappend(PlannerParamVar, var);
86

87
	return length(PlannerParamVar) - 1;
88 89
}

90 91 92 93
/*
 * Generate a Param node to replace the given Var,
 * which is expected to have varlevelsup > 0 (ie, it is not local).
 */
94
static Param *
95
replace_var(Var *var)
96
{
97
	List	   *ppv;
98
	Param	   *retval;
99
	Index		varlevel;
100 101
	int			i;

102 103
	Assert(var->varlevelsup > 0 && var->varlevelsup < PlannerQueryLevel);
	varlevel = PlannerQueryLevel - var->varlevelsup;
104

105
	/*
106
	 * If there's already a PlannerParamVar entry for this same Var, just
B
Bruce Momjian 已提交
107 108 109 110 111 112
	 * use it.	NOTE: in sufficiently complex querytrees, it is possible
	 * for the same varno/varlevel to refer to different RTEs in different
	 * parts of the parsetree, so that different fields might end up
	 * sharing the same Param number.  As long as we check the vartype as
	 * well, I believe that this sort of aliasing will cause no trouble.
	 * The correct field should get stored into the Param slot at
113
	 * execution in each part of the tree.
114 115 116
	 */
	i = 0;
	foreach(ppv, PlannerParamVar)
117
	{
118
		Var		   *pvar = lfirst(ppv);
119 120 121 122 123

		if (pvar->varno == var->varno &&
			pvar->varattno == var->varattno &&
			pvar->varlevelsup == varlevel &&
			pvar->vartype == var->vartype)
124
			break;
125
		i++;
126
	}
127

128
	if (!ppv)
129 130
	{
		/* Nope, so make a new one */
131
		i = new_param((Var *) copyObject(var), varlevel);
132
	}
133

134 135 136 137
	retval = makeNode(Param);
	retval->paramkind = PARAM_EXEC;
	retval->paramid = (AttrNumber) i;
	retval->paramtype = var->vartype;
138

139
	return retval;
140 141
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 * Generate a new Param node that will not conflict with any other.
 */
static Param *
generate_new_param(Oid paramtype, int32 paramtypmod)
{
	Var		   *var = makeVar(0, 0, paramtype, paramtypmod, 0);
	Param	   *retval = makeNode(Param);

	retval->paramkind = PARAM_EXEC;
	retval->paramid = (AttrNumber) new_param(var, 0);
	retval->paramtype = paramtype;

	return retval;
}

158
/*
159 160 161 162 163 164 165 166 167 168
 * Convert a bare SubLink (as created by the parser) into a SubPlan.
 *
 * We are given the raw SubLink and the already-processed lefthand argument
 * list (use this instead of the SubLink's own field).
 *
 * The result is whatever we need to substitute in place of the SubLink
 * node in the executable expression.  This will be either the SubPlan
 * node (if we have to do the subplan as a subplan), or a Param node
 * representing the result of an InitPlan, or possibly an AND or OR tree
 * containing InitPlan Param nodes.
169
 */
170
static Node *
171
make_subplan(SubLink *slink, List *lefthand)
172
{
173
	SubPlan	   *node = makeNode(SubPlan);
174
	Query	   *subquery = (Query *) (slink->subselect);
175
	double		tuple_fraction;
176 177 178
	Plan	   *plan;
	List	   *lst;
	Node	   *result;
179

180
	/*
B
Bruce Momjian 已提交
181 182 183 184
	 * Copy the source Query node.	This is a quick and dirty kluge to
	 * resolve the fact that the parser can generate trees with multiple
	 * links to the same sub-Query node, but the planner wants to scribble
	 * on the Query. Try to clean this up when we do querytree redesign...
185 186 187
	 */
	subquery = (Query *) copyObject(subquery);

188
	/*
189 190 191 192 193 194 195
	 * For an EXISTS subplan, tell lower-level planner to expect that only
	 * the first tuple will be retrieved.  For ALL and ANY subplans, we
	 * will be able to stop evaluating if the test condition fails, so
	 * very often not all the tuples will be retrieved; for lack of a
	 * better idea, specify 50% retrieval.	For EXPR and MULTIEXPR
	 * subplans, use default behavior (we're only expecting one row out,
	 * anyway).
196
	 *
197 198 199
	 * NOTE: if you change these numbers, also change cost_qual_eval_walker()
	 * in path/costsize.c.
	 *
200 201 202
	 * XXX If an ALL/ANY subplan is uncorrelated, we may decide to hash or
	 * materialize its result below.  In that case it would've been better to
	 * specify full retrieval.  At present, however, we can only detect
203 204 205 206 207
	 * correlation or lack of it after we've made the subplan :-(. Perhaps
	 * detection of correlation should be done as a separate step.
	 * Meanwhile, we don't want to be too optimistic about the percentage
	 * of tuples retrieved, for fear of selecting a plan that's bad for
	 * the materialization case.
208 209 210
	 */
	if (slink->subLinkType == EXISTS_SUBLINK)
		tuple_fraction = 1.0;	/* just like a LIMIT 1 */
211 212
	else if (slink->subLinkType == ALL_SUBLINK ||
			 slink->subLinkType == ANY_SUBLINK)
213
		tuple_fraction = 0.5;	/* 50% */
214 215
	else
		tuple_fraction = -1.0;	/* default behavior */
216

217
	/*
218
	 * Generate the plan for the subquery.
219
	 */
220
	node->plan = plan = subquery_planner(subquery, tuple_fraction);
221

B
Bruce Momjian 已提交
222
	node->plan_id = PlannerPlanId++;	/* Assign unique ID to this
223
										 * SubPlan */
224

225
	node->rtable = subquery->rtable;
226

227
	/*
228
	 * Initialize other fields of the SubPlan node.
229 230
	 */
	node->subLinkType = slink->subLinkType;
231
	node->useOr = slink->useOr;
232 233 234 235
	node->exprs = NIL;
	node->paramIds = NIL;
	node->useHashTable = false;
	node->unknownEqFalse = false;
236 237 238
	node->setParam = NIL;
	node->parParam = NIL;
	node->args = NIL;
239

240
	/*
B
Bruce Momjian 已提交
241 242
	 * Make parParam list of params that current query level will pass to
	 * this child plan.
243
	 */
244
	foreach(lst, plan->extParam)
245
	{
246 247
		int			paramid = lfirsti(lst);
		Var		   *var = nth(paramid, PlannerParamVar);
248

249
		/* note varlevelsup is absolute level number */
250
		if (var->varlevelsup == PlannerQueryLevel)
251
			node->parParam = lappendi(node->parParam, paramid);
252
	}
253 254

	/*
255
	 * Un-correlated or undirect correlated plans of EXISTS, EXPR, or
256 257
	 * MULTIEXPR types can be used as initPlans.  For EXISTS or EXPR, we
	 * just produce a Param referring to the result of evaluating the
258 259 260
	 * initPlan.  For MULTIEXPR, we must build an AND or OR-clause of the
	 * individual comparison operators, using the appropriate lefthand
	 * side expressions and Params for the initPlan's target items.
261
	 */
262 263
	if (node->parParam == NIL && slink->subLinkType == EXISTS_SUBLINK)
	{
264
		Param	   *prm;
265

266
		prm = generate_new_param(BOOLOID, -1);
267 268 269 270 271 272 273
		node->setParam = lappendi(node->setParam, prm->paramid);
		PlannerInitPlan = lappend(PlannerInitPlan, node);
		result = (Node *) prm;
	}
	else if (node->parParam == NIL && slink->subLinkType == EXPR_SUBLINK)
	{
		TargetEntry *te = lfirst(plan->targetlist);
274
		Param	   *prm;
275

276
		Assert(!te->resdom->resjunk);
277
		prm = generate_new_param(te->resdom->restype, te->resdom->restypmod);
278 279 280 281 282
		node->setParam = lappendi(node->setParam, prm->paramid);
		PlannerInitPlan = lappend(PlannerInitPlan, node);
		result = (Node *) prm;
	}
	else if (node->parParam == NIL && slink->subLinkType == MULTIEXPR_SUBLINK)
283
	{
284 285 286 287 288 289 290 291
		List   *exprs;

		/* Convert the lefthand exprs and oper OIDs into executable exprs */
		exprs = convert_sublink_opers(lefthand,
									  slink->operOids,
									  plan->targetlist,
									  &node->paramIds);
		node->setParam = nconc(node->setParam, listCopy(node->paramIds));
292
		PlannerInitPlan = lappend(PlannerInitPlan, node);
293 294 295 296 297 298 299 300
		/*
		 * The executable expressions are returned to become part of the
		 * outer plan's expression tree; they are not kept in the initplan
		 * node.
		 */
		if (length(exprs) > 1)
			result = (Node *) (node->useOr ? make_orclause(exprs) :
							   make_andclause(exprs));
301
		else
302
			result = (Node *) lfirst(exprs);
303
	}
304
	else
305
	{
306
		List	   *args;
307

308
		/*
309 310 311
		 * We can't convert subplans of ALL_SUBLINK or ANY_SUBLINK types
		 * to initPlans, even when they are uncorrelated or undirect
		 * correlated, because we need to scan the output of the subplan
312 313 314 315 316 317 318 319 320 321 322 323 324 325
		 * for each outer tuple.  But if it's an IN (= ANY) test, we might
		 * be able to use a hashtable to avoid comparing all the tuples.
		 */
		if (subplan_is_hashable(slink, node))
			node->useHashTable = true;
		/*
		 * Otherwise, we have the option to tack a MATERIAL node onto the top
		 * of the subplan, to reduce the cost of reading it repeatedly.  This
		 * is pointless for a direct-correlated subplan, since we'd have to
		 * recompute its results each time anyway.  For uncorrelated/undirect
		 * correlated subplans, we add MATERIAL if the subplan's top plan node
		 * is anything more complicated than a plain sequential scan, and we
		 * do it even for seqscan if the qual appears selective enough to
		 * eliminate many tuples.
326 327 328 329 330 331
		 *
		 * XXX It's pretty ugly to be inserting a MATERIAL node at this
		 * point.  Since subquery_planner has already run SS_finalize_plan
		 * on the subplan tree, we have to kluge up parameter lists for
		 * the MATERIAL node.  Possibly this could be fixed by postponing
		 * SS_finalize_plan processing until setrefs.c is run.
332
		 */
333
		else if (node->parParam == NIL)
334 335 336 337 338 339
		{
			bool		use_material;

			switch (nodeTag(plan))
			{
				case T_SeqScan:
340
					if (plan->initPlan)
341 342 343 344 345 346 347 348 349 350 351
						use_material = true;
					else
					{
						Selectivity qualsel;

						qualsel = clauselist_selectivity(subquery,
														 plan->qual,
														 0);
						/* Is 10% selectivity a good threshold?? */
						use_material = qualsel < 0.10;
					}
352 353
					break;
				case T_Material:
354
				case T_FunctionScan:
355
				case T_Sort:
356 357 358

					/*
					 * Don't add another Material node if there's one
359 360
					 * already, nor if the top node is any other type that
					 * materializes its output anyway.
361 362 363 364 365 366 367 368 369
					 */
					use_material = false;
					break;
				default:
					use_material = true;
					break;
			}
			if (use_material)
			{
B
Bruce Momjian 已提交
370
				Plan	   *matplan;
371
				Path		matpath; /* dummy for result of cost_material */
372 373

				matplan = (Plan *) make_material(plan->targetlist, plan);
374 375 376 377 378 379 380
				/* need to calculate costs */
				cost_material(&matpath,
							  plan->total_cost,
							  plan->plan_rows,
							  plan->plan_width);
				matplan->startup_cost = matpath.startup_cost;
				matplan->total_cost = matpath.total_cost;
381 382
				matplan->plan_rows = plan->plan_rows;
				matplan->plan_width = plan->plan_width;
383
				/* parameter kluge --- see comments above */
384 385 386
				matplan->extParam = listCopy(plan->extParam);
				matplan->locParam = listCopy(plan->locParam);
				node->plan = plan = matplan;
387 388 389
			}
		}

390 391 392 393 394
		/* Convert the lefthand exprs and oper OIDs into executable exprs */
		node->exprs = convert_sublink_opers(lefthand,
											slink->operOids,
											plan->targetlist,
											&node->paramIds);
395

396
		/*
397
		 * Make node->args from parParam.
398
		 */
399
		args = NIL;
400
		foreach(lst, node->parParam)
401
		{
402 403 404
			Var		   *var = nth(lfirsti(lst), PlannerParamVar);

			var = (Var *) copyObject(var);
405 406 407 408 409

			/*
			 * Must fix absolute-level varlevelsup from the
			 * PlannerParamVar entry.  But since var is at current subplan
			 * level, this is easy:
410
			 */
411
			var->varlevelsup = 0;
412
			args = lappend(args, var);
413
		}
414
		node->args = args;
415

416
		result = (Node *) node;
417 418 419 420 421 422
	}

	return result;
}

/*
423 424 425 426
 * convert_sublink_opers: given a lefthand-expressions list and a list of
 * operator OIDs, build a list of actually executable expressions.  The
 * righthand sides of the expressions are Params representing the results
 * of the sub-select.
427
 *
428
 * The paramids of the Params created are returned in the *paramIds list.
429
 */
430
static List *
431 432
convert_sublink_opers(List *lefthand, List *operOids,
					  List *targetlist, List **paramIds)
433
{
434
	List	   *result = NIL;
435 436
	List	   *lst;

437 438 439
	*paramIds = NIL;

	foreach(lst, operOids)
440
	{
441 442
		Oid			opid = (Oid) lfirsti(lst);
		Node	   *leftop = lfirst(lefthand);
443 444 445 446 447 448 449
		TargetEntry *te = lfirst(targetlist);
		Param	   *prm;
		Operator	tup;
		Form_pg_operator opform;
		Node	   *left,
				   *right;

450 451
		Assert(!te->resdom->resjunk);

452 453 454 455
		/* Make the Param node representing the subplan's result */
		prm = generate_new_param(te->resdom->restype,
								 te->resdom->restypmod);

456 457
		/* Record its ID */
		*paramIds = lappendi(*paramIds, prm->paramid);
458

459
		/* Look up the operator to get its declared input types */
460
		tup = SearchSysCache(OPEROID,
461
							 ObjectIdGetDatum(opid),
462 463
							 0, 0, 0);
		if (!HeapTupleIsValid(tup))
464
			elog(ERROR, "cache lookup failed for operator %u", opid);
465 466
		opform = (Form_pg_operator) GETSTRUCT(tup);

467
		/*
468 469 470 471
		 * Make the expression node.
		 *
		 * Note: we use make_operand in case runtime type conversion
		 * function calls must be inserted for this operator!
472
		 */
473
		left = make_operand(leftop, exprType(leftop), opform->oprleft);
474
		right = make_operand((Node *) prm, prm->paramtype, opform->oprright);
475 476 477 478 479 480
		result = lappend(result,
						 make_opclause(opid,
									   opform->oprresult,
									   false, /* set-result not allowed */
									   (Expr *) left,
									   (Expr *) right));
481

482 483
		ReleaseSysCache(tup);

484
		lefthand = lnext(lefthand);
485
		targetlist = lnext(targetlist);
486
	}
487

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	return result;
}

/*
 * subplan_is_hashable: decide whether we can implement a subplan by hashing
 *
 * Caution: the SubPlan node is not completely filled in yet.  We can rely
 * on its plan and parParam fields, however.
 */
static bool
subplan_is_hashable(SubLink *slink, SubPlan *node)
{
	double		subquery_size;
	List	   *opids;

	/*
	 * The sublink type must be "= ANY" --- that is, an IN operator.
	 * (We require the operator name to be unqualified, which may be
	 * overly paranoid, or may not be.)  XXX since we also check that the
	 * operators are hashable, the test on operator name may be redundant?
	 */
	if (slink->subLinkType != ANY_SUBLINK)
		return false;
	if (length(slink->operName) != 1 ||
		strcmp(strVal(lfirst(slink->operName)), "=") != 0)
		return false;
	/*
	 * The subplan must not have any direct correlation vars --- else we'd
	 * have to recompute its output each time, so that the hashtable wouldn't
	 * gain anything.
	 */
	if (node->parParam != NIL)
		return false;
	/*
	 * The estimated size of the subquery result must fit in SortMem.
	 * (XXX what about hashtable overhead?)
	 */
	subquery_size = node->plan->plan_rows *
		(MAXALIGN(node->plan->plan_width) + MAXALIGN(sizeof(HeapTupleData)));
	if (subquery_size > SortMem * 1024L)
		return false;
	/*
530 531 532 533 534 535 536 537 538 539 540
	 * The combining operators must be hashable, strict, and self-commutative.
	 * The need for hashability is obvious, since we want to use hashing.
	 * Without strictness, behavior in the presence of nulls is too
	 * unpredictable.  (We actually must assume even more than plain
	 * strictness, see nodeSubplan.c for details.)  And commutativity ensures
	 * that the left and right datatypes are the same; this allows us to
	 * assume that the combining operators are equality for the righthand
	 * datatype, so that they can be used to compare righthand tuples as
	 * well as comparing lefthand to righthand tuples.  (This last restriction
	 * could be relaxed by using two different sets of operators with the
	 * hash table, but there is no obvious usefulness to that at present.)
541 542 543 544 545 546 547 548 549 550 551 552 553
	 */
	foreach(opids, slink->operOids)
	{
		Oid			opid = (Oid) lfirsti(opids);
		HeapTuple	tup;
		Form_pg_operator optup;

		tup = SearchSysCache(OPEROID,
							 ObjectIdGetDatum(opid),
							 0, 0, 0);
		if (!HeapTupleIsValid(tup))
			elog(ERROR, "cache lookup failed for operator %u", opid);
		optup = (Form_pg_operator) GETSTRUCT(tup);
554 555
		if (!optup->oprcanhash || optup->oprcom != opid ||
			!func_strict(optup->oprcode))
556 557 558 559 560 561 562
		{
			ReleaseSysCache(tup);
			return false;
		}
		ReleaseSysCache(tup);
	}
	return true;
563 564
}

565 566
/*
 * Replace correlation vars (uplevel vars) with Params.
567
 */
568
Node *
569
SS_replace_correlation_vars(Node *expr)
570
{
571 572 573
	/* No setup needed for tree walk, so away we go */
	return replace_correlation_vars_mutator(expr, NULL);
}
574

575 576 577 578 579 580
static Node *
replace_correlation_vars_mutator(Node *node, void *context)
{
	if (node == NULL)
		return NULL;
	if (IsA(node, Var))
581
	{
582 583
		if (((Var *) node)->varlevelsup > 0)
			return (Node *) replace_var((Var *) node);
584
	}
585 586 587
	return expression_tree_mutator(node,
								   replace_correlation_vars_mutator,
								   context);
588 589
}

590 591
/*
 * Expand SubLinks to SubPlans in the given expression.
592
 */
593 594
Node *
SS_process_sublinks(Node *expr)
595
{
596
	/* No setup needed for tree walk, so away we go */
597
	return process_sublinks_mutator(expr, NULL);
598 599 600 601 602 603
}

static Node *
process_sublinks_mutator(Node *node, void *context)
{
	if (node == NULL)
604
		return NULL;
605
	if (IsA(node, SubLink))
606
	{
607
		SubLink    *sublink = (SubLink *) node;
608
		List	   *lefthand;
609

610
		/*
611
		 * First, recursively process the lefthand-side expressions, if any.
612
		 */
613
		lefthand = (List *)
614
			process_sublinks_mutator((Node *) sublink->lefthand, context);
615 616 617 618
		/*
		 * Now build the SubPlan node and make the expr to return.
		 */
		return make_subplan(sublink, lefthand);
619
	}
620

621
	/*
622
	 * Note that we will never see a SubPlan expression in the input
623 624 625
	 * (since this is the very routine that creates 'em to begin with). So
	 * the code in expression_tree_mutator() that might do inappropriate
	 * things with SubPlans or SubLinks will not be exercised.
626
	 */
627
	Assert(!is_subplan(node));
628

629 630 631
	return expression_tree_mutator(node,
								   process_sublinks_mutator,
								   context);
632 633
}

634 635 636 637 638 639
/*
 * SS_finalize_plan - do final sublink processing for a completed Plan.
 *
 * This recursively computes and sets the extParam and locParam lists
 * for every Plan node in the given tree.
 */
640
List *
641
SS_finalize_plan(Plan *plan, List *rtable)
642
{
643 644 645
	List	   *extParam = NIL;
	List	   *locParam = NIL;
	finalize_primnode_results results;
646 647 648
	List	   *lst;

	if (plan == NULL)
649
		return NIL;
650

651
	results.paramids = NIL;		/* initialize list to NIL */
652

653 654
	/*
	 * When we call finalize_primnode, results.paramids lists are
655 656
	 * automatically merged together.  But when recursing to self, we have
	 * to do it the hard way.  We want the paramids list to include params
657
	 * in subplans as well as at this level.
658 659
	 */

660
	/* Find params in targetlist and qual */
661
	finalize_primnode((Node *) plan->targetlist, &results);
662
	finalize_primnode((Node *) plan->qual, &results);
663

664
	/* Check additional node-type-specific fields */
665 666 667
	switch (nodeTag(plan))
	{
		case T_Result:
668 669
			finalize_primnode(((Result *) plan)->resconstantqual,
							  &results);
670 671
			break;

672 673 674 675 676 677
		case T_IndexScan:
			finalize_primnode((Node *) ((IndexScan *) plan)->indxqual,
							  &results);

			/*
			 * we need not look at indxqualorig, since it will have the
678
			 * same param references as indxqual.
679 680 681 682 683 684
			 */
			break;

		case T_TidScan:
			finalize_primnode((Node *) ((TidScan *) plan)->tideval,
							  &results);
685
			break;
686

687
		case T_SubqueryScan:
B
Bruce Momjian 已提交
688

689
			/*
B
Bruce Momjian 已提交
690 691 692 693 694
			 * In a SubqueryScan, SS_finalize_plan has already been run on
			 * the subplan by the inner invocation of subquery_planner, so
			 * there's no need to do it again.  Instead, just pull out the
			 * subplan's extParams list, which represents the params it
			 * needs from my level and higher levels.
695
			 */
696
			results.paramids = set_unioni(results.paramids,
B
Bruce Momjian 已提交
697
							 ((SubqueryScan *) plan)->subplan->extParam);
698 699
			break;

700 701 702
		case T_FunctionScan:
			{
				RangeTblEntry *rte;
703

704 705 706 707 708 709 710 711 712 713
				rte = rt_fetch(((FunctionScan *) plan)->scan.scanrelid,
							   rtable);
				Assert(rte->rtekind == RTE_FUNCTION);
				finalize_primnode(rte->funcexpr, &results);
			}
			break;

		case T_Append:
			foreach(lst, ((Append *) plan)->appendplans)
				results.paramids = set_unioni(results.paramids,
B
Bruce Momjian 已提交
714 715
								   SS_finalize_plan((Plan *) lfirst(lst),
													rtable));
716 717
			break;

718 719 720 721 722
		case T_NestLoop:
			finalize_primnode((Node *) ((Join *) plan)->joinqual,
							  &results);
			break;

723
		case T_MergeJoin:
724 725
			finalize_primnode((Node *) ((Join *) plan)->joinqual,
							  &results);
726 727
			finalize_primnode((Node *) ((MergeJoin *) plan)->mergeclauses,
							  &results);
728 729 730
			break;

		case T_HashJoin:
731 732
			finalize_primnode((Node *) ((Join *) plan)->joinqual,
							  &results);
733 734
			finalize_primnode((Node *) ((HashJoin *) plan)->hashclauses,
							  &results);
735
			break;
736

737
		case T_Hash:
738
			finalize_primnode((Node *) ((Hash *) plan)->hashkeys,
739
							  &results);
740 741 742 743 744 745 746
			break;

		case T_Agg:
		case T_SeqScan:
		case T_Material:
		case T_Sort:
		case T_Unique:
747
		case T_SetOp:
748
		case T_Limit:
749 750
		case T_Group:
			break;
751

752
		default:
753 754
			elog(ERROR, "SS_finalize_plan: node %d unsupported",
				 nodeTag(plan));
755
	}
756

757
	/* Process left and right child plans, if any */
758
	results.paramids = set_unioni(results.paramids,
759 760
								  SS_finalize_plan(plan->lefttree,
												   rtable));
761
	results.paramids = set_unioni(results.paramids,
762 763
								  SS_finalize_plan(plan->righttree,
												   rtable));
764

765
	/* Now we have all the paramids */
766

767
	foreach(lst, results.paramids)
768
	{
769 770
		int			paramid = lfirsti(lst);
		Var		   *var = nth(paramid, PlannerParamVar);
771

772
		/* note varlevelsup is absolute level number */
773
		if (var->varlevelsup < PlannerQueryLevel)
774
			extParam = lappendi(extParam, paramid);
775
		else if (var->varlevelsup > PlannerQueryLevel)
776
			elog(ERROR, "SS_finalize_plan: plan shouldn't reference subplan's variable");
777 778
		else
		{
779
			Assert(var->varno == 0 && var->varattno == 0);
780
			locParam = lappendi(locParam, paramid);
781 782
		}
	}
783

784 785 786
	plan->extParam = extParam;
	plan->locParam = locParam;

787
	return results.paramids;
788
}
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

/*
 * finalize_primnode: build lists of params appearing
 * in the given expression tree.  NOTE: items are added to list passed in,
 * so caller must initialize list to NIL before first call!
 */
static bool
finalize_primnode(Node *node, finalize_primnode_results *results)
{
	if (node == NULL)
		return false;
	if (IsA(node, Param))
	{
		if (((Param *) node)->paramkind == PARAM_EXEC)
		{
			int			paramid = (int) ((Param *) node)->paramid;

			if (!intMember(paramid, results->paramids))
				results->paramids = lconsi(paramid, results->paramids);
		}
		return false;			/* no more to do here */
	}
	if (is_subplan(node))
	{
		SubPlan	   *subplan = (SubPlan *) node;
		List	   *lst;

		/* Check extParam list for params to add to paramids */
		foreach(lst, subplan->plan->extParam)
		{
			int			paramid = lfirsti(lst);
			Var		   *var = nth(paramid, PlannerParamVar);

			/* note varlevelsup is absolute level number */
			if (var->varlevelsup < PlannerQueryLevel &&
				!intMember(paramid, results->paramids))
				results->paramids = lconsi(paramid, results->paramids);
		}
		/* fall through to recurse into subplan args */
	}
	return expression_tree_walker(node, finalize_primnode,
								  (void *) results);
}