planner.c 139.8 KB
Newer Older
1 2
/*-------------------------------------------------------------------------
 *
3
 * planner.c
4
 *	  The query optimizer external interface.
5
 *
B
Bruce Momjian 已提交
6
 * Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
B
Add:  
Bruce Momjian 已提交
7
 * Portions Copyright (c) 1994, Regents of the University of California
8 9 10
 *
 *
 * IDENTIFICATION
11
 *	  src/backend/optimizer/plan/planner.c
12 13 14
 *
 *-------------------------------------------------------------------------
 */
M
Marc G. Fournier 已提交
15

16 17
#include "postgres.h"

18
#include <limits.h>
19
#include <math.h>
20

21
#include "access/htup_details.h"
22
#include "executor/executor.h"
23
#include "executor/nodeAgg.h"
24
#include "foreign/fdwapi.h"
25
#include "miscadmin.h"
26
#include "lib/bipartite_match.h"
B
Bruce Momjian 已提交
27
#include "nodes/makefuncs.h"
28
#include "nodes/nodeFuncs.h"
29 30 31
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
B
Bruce Momjian 已提交
32
#include "optimizer/clauses.h"
33 34
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
35
#include "optimizer/paths.h"
36
#include "optimizer/plancat.h"
B
Bruce Momjian 已提交
37
#include "optimizer/planmain.h"
38 39
#include "optimizer/planner.h"
#include "optimizer/prep.h"
40
#include "optimizer/subselect.h"
41
#include "optimizer/tlist.h"
42
#include "parser/analyze.h"
43
#include "parser/parsetree.h"
44
#include "parser/parse_agg.h"
45
#include "rewrite/rewriteManip.h"
46
#include "utils/rel.h"
47
#include "utils/selfuncs.h"
48

49

50
/* GUC parameter */
51
double		cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
52

53 54 55 56
/* Hook for plugins to get control in planner() */
planner_hook_type planner_hook = NULL;


57
/* Expression kind codes for preprocess_expression */
58 59 60
#define EXPRKIND_QUAL			0
#define EXPRKIND_TARGET			1
#define EXPRKIND_RTFUNC			2
B
Bruce Momjian 已提交
61
#define EXPRKIND_RTFUNC_LATERAL 3
62
#define EXPRKIND_VALUES			4
B
Bruce Momjian 已提交
63
#define EXPRKIND_VALUES_LATERAL 5
64 65 66
#define EXPRKIND_LIMIT			6
#define EXPRKIND_APPINFO		7
#define EXPRKIND_PHV			8
B
Bruce Momjian 已提交
67
#define EXPRKIND_TABLESAMPLE	9
68

69 70 71 72 73
/* Passthrough data for standard_qp_callback */
typedef struct
{
	List	   *tlist;			/* preprocessed query targetlist */
	List	   *activeWindows;	/* active windows, if any */
74
	List	   *groupClause;	/* overrides parse->groupClause */
75
} standard_qp_extra;
76

77
/* Local functions */
78 79
static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
80
static Plan *inheritance_planner(PlannerInfo *root);
81
static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
82
static void preprocess_rowmarks(PlannerInfo *root);
83
static double preprocess_limit(PlannerInfo *root,
B
Bruce Momjian 已提交
84
				 double tuple_fraction,
B
Bruce Momjian 已提交
85
				 int64 *offset_est, int64 *count_est);
86
static bool limit_needed(Query *parse);
87 88 89
static List *preprocess_groupclause(PlannerInfo *root, List *force);
static List *extract_rollup_sets(List *groupingSets);
static List *reorder_grouping_sets(List *groupingSets, List *sortclause);
90
static void standard_qp_callback(PlannerInfo *root, void *extra);
91 92
static bool choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
93
					   double path_rows, int path_width,
94
					   Path *cheapest_path, Path *sorted_path,
95
					   double dNumGroups, AggClauseCosts *agg_costs);
96 97
static bool choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
98 99 100 101
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
102
					   double dNumDistinctRows);
103
static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
104
					   AttrNumber **groupColIdx, bool *need_tlist_eval);
105
static int	get_grouping_column_index(Query *parse, TargetEntry *tle);
106
static void locate_grouping_columns(PlannerInfo *root,
B
Bruce Momjian 已提交
107 108 109
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx);
110
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
T
Tom Lane 已提交
111
static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
112 113
static List *make_windowInputTargetList(PlannerInfo *root,
						   List *tlist, List *activeWindows);
T
Tom Lane 已提交
114
static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
115
						 List *tlist);
T
Tom Lane 已提交
116
static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
117 118 119 120 121 122 123 124
						   List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators);
125
static Plan *build_grouping_chain(PlannerInfo *root,
B
Bruce Momjian 已提交
126 127 128 129 130 131 132 133 134
					 Query *parse,
					 List *tlist,
					 bool need_sort_for_grouping,
					 List *rollup_groupclauses,
					 List *rollup_lists,
					 AttrNumber *groupColIdx,
					 AggClauseCosts *agg_costs,
					 long numGroups,
					 Plan *result_plan);
135 136 137

/*****************************************************************************
 *
138 139
 *	   Query optimizer entry point
 *
140 141 142 143 144 145 146 147
 * To support loadable plugins that monitor or modify planner behavior,
 * we provide a hook variable that lets a plugin get control before and
 * after the standard planning process.  The plugin would normally call
 * standard_planner().
 *
 * Note to plugin authors: standard_planner() scribbles on its Query input,
 * so you'd better copy that data structure if you want to plan more than once.
 *
148
 *****************************************************************************/
149
PlannedStmt *
150
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
151 152 153 154 155 156 157 158 159 160 161 162
{
	PlannedStmt *result;

	if (planner_hook)
		result = (*planner_hook) (parse, cursorOptions, boundParams);
	else
		result = standard_planner(parse, cursorOptions, boundParams);
	return result;
}

PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
163
{
164
	PlannedStmt *result;
165
	PlannerGlobal *glob;
166
	double		tuple_fraction;
167 168
	PlannerInfo *root;
	Plan	   *top_plan;
169
	ListCell   *lp,
170
			   *lr;
171

172 173 174 175 176
	/* Cursor options may come from caller or from DECLARE CURSOR stmt */
	if (parse->utilityStmt &&
		IsA(parse->utilityStmt, DeclareCursorStmt))
		cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;

177
	/*
178 179 180 181
	 * Set up global state for this planner invocation.  This data is needed
	 * across all levels of sub-Query that might exist in the given command,
	 * so we keep it in a separate struct that's linked to by each per-Query
	 * PlannerInfo.
182
	 */
183
	glob = makeNode(PlannerGlobal);
184

185
	glob->boundParams = boundParams;
186
	glob->subplans = NIL;
187
	glob->subroots = NIL;
188
	glob->rewindPlanIDs = NULL;
189
	glob->finalrtable = NIL;
190
	glob->finalrowmarks = NIL;
191
	glob->resultRelations = NIL;
192
	glob->relationOids = NIL;
193
	glob->invalItems = NIL;
194
	glob->nParamExec = 0;
195
	glob->lastPHId = 0;
196
	glob->lastRowMarkId = 0;
197
	glob->transientPlan = false;
198
	glob->hasRowSecurity = false;
199

200
	/* Determine what fraction of the plan is likely to be scanned */
201
	if (cursorOptions & CURSOR_OPT_FAST_PLAN)
202 203
	{
		/*
B
Bruce Momjian 已提交
204
		 * We have no real idea how many tuples the user will ultimately FETCH
205 206 207 208 209 210 211 212
		 * from a cursor, but it is often the case that he doesn't want 'em
		 * all, or would prefer a fast-start plan anyway so that he can
		 * process some of the tuples sooner.  Use a GUC parameter to decide
		 * what fraction to optimize for.
		 */
		tuple_fraction = cursor_tuple_fraction;

		/*
213
		 * We document cursor_tuple_fraction as simply being a fraction, which
B
Bruce Momjian 已提交
214
		 * means the edge cases 0 and 1 have to be treated specially here.  We
215
		 * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
216
		 */
217 218 219 220
		if (tuple_fraction >= 1.0)
			tuple_fraction = 0.0;
		else if (tuple_fraction <= 0.0)
			tuple_fraction = 1e-10;
221 222 223 224 225 226 227
	}
	else
	{
		/* Default assumption is we need all the tuples */
		tuple_fraction = 0.0;
	}

228
	/* primary planning entry point (may recurse for subqueries) */
229 230
	top_plan = subquery_planner(glob, parse, NULL,
								false, tuple_fraction, &root);
231

232
	/*
B
Bruce Momjian 已提交
233 234
	 * If creating a plan for a scrollable cursor, make sure it can run
	 * backwards on demand.  Add a Material node at the top at need.
235
	 */
236
	if (cursorOptions & CURSOR_OPT_SCROLL)
237
	{
238 239
		if (!ExecSupportsBackwardScan(top_plan))
			top_plan = materialize_finished_plan(top_plan);
240 241
	}

242
	/* final cleanup of the plan */
243
	Assert(glob->finalrtable == NIL);
244
	Assert(glob->finalrowmarks == NIL);
245
	Assert(glob->resultRelations == NIL);
246
	top_plan = set_plan_references(root, top_plan);
247
	/* ... and the subplans (both regular subplans and initplans) */
248 249
	Assert(list_length(glob->subplans) == list_length(glob->subroots));
	forboth(lp, glob->subplans, lr, glob->subroots)
250
	{
B
Bruce Momjian 已提交
251
		Plan	   *subplan = (Plan *) lfirst(lp);
252
		PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);
253

254
		lfirst(lp) = set_plan_references(subroot, subplan);
255
	}
256 257 258 259 260

	/* build the PlannedStmt result */
	result = makeNode(PlannedStmt);

	result->commandType = parse->commandType;
261
	result->queryId = parse->queryId;
262
	result->hasReturning = (parse->returningList != NIL);
263
	result->hasModifyingCTE = parse->hasModifyingCTE;
264
	result->canSetTag = parse->canSetTag;
265
	result->transientPlan = glob->transientPlan;
266
	result->planTree = top_plan;
267
	result->rtable = glob->finalrtable;
268
	result->resultRelations = glob->resultRelations;
269
	result->utilityStmt = parse->utilityStmt;
270
	result->subplans = glob->subplans;
271
	result->rewindPlanIDs = glob->rewindPlanIDs;
272
	result->rowMarks = glob->finalrowmarks;
273
	result->relationOids = glob->relationOids;
274
	result->invalItems = glob->invalItems;
275
	result->nParamExec = glob->nParamExec;
276
	result->hasRowSecurity = glob->hasRowSecurity;
277 278

	return result;
279
}
280

281

282
/*--------------------
283 284 285
 * subquery_planner
 *	  Invokes the planner on a subquery.  We recurse to here for each
 *	  sub-SELECT found in the query tree.
286
 *
287
 * glob is the global state for the current planner run.
288
 * parse is the querytree produced by the parser & rewriter.
289 290
 * parent_root is the immediate parent Query's info (NULL at the top level).
 * hasRecursion is true if this is a recursive WITH query.
291
 * tuple_fraction is the fraction of tuples we expect will be retrieved.
292
 * tuple_fraction is interpreted as explained for grouping_planner, below.
293
 *
294 295
 * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
 * among other things this tells the output sort ordering of the plan.
296
 *
297
 * Basically, this routine does the stuff that should only be done once
298 299 300 301 302
 * per Query object.  It then calls grouping_planner.  At one time,
 * grouping_planner could be invoked recursively on the same Query object;
 * that's not currently true, but we keep the separation between the two
 * routines anyway, in case we need it again someday.
 *
303 304
 * subquery_planner will be called recursively to handle sub-Query nodes
 * found within the query's expressions and rangetable.
305
 *
306 307
 * Returns a query plan.
 *--------------------
308
 */
309
Plan *
310
subquery_planner(PlannerGlobal *glob, Query *parse,
311 312
				 PlannerInfo *parent_root,
				 bool hasRecursion, double tuple_fraction,
313
				 PlannerInfo **subroot)
314
{
315
	int			num_old_subplans = list_length(glob->subplans);
316
	PlannerInfo *root;
317
	Plan	   *plan;
318
	List	   *newWithCheckOptions;
319
	List	   *newHaving;
320
	bool		hasOuterJoins;
321
	ListCell   *l;
322

323 324 325
	/* Create a PlannerInfo data structure for this subquery */
	root = makeNode(PlannerInfo);
	root->parse = parse;
326
	root->glob = glob;
327 328
	root->query_level = parent_root ? parent_root->query_level + 1 : 1;
	root->parent_root = parent_root;
329
	root->plan_params = NIL;
330
	root->planner_cxt = CurrentMemoryContext;
331
	root->init_plans = NIL;
332
	root->cte_plan_ids = NIL;
333
	root->multiexpr_params = NIL;
334
	root->eq_classes = NIL;
335
	root->append_rel_list = NIL;
336
	root->rowMarks = NIL;
337
	root->hasInheritedTarget = false;
338
	root->grouping_map = NULL;
339

340 341
	root->hasRecursion = hasRecursion;
	if (hasRecursion)
342
		root->wt_param_id = SS_assign_special_param(root);
343 344 345 346 347
	else
		root->wt_param_id = -1;
	root->non_recursive_plan = NULL;

	/*
348 349
	 * If there is a WITH list, process each WITH query and build an initplan
	 * SubPlan structure for it.
350 351 352 353
	 */
	if (parse->cteList)
		SS_process_ctes(root);

354
	/*
355 356 357 358
	 * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
	 * to transform them into joins.  Note that this step does not descend
	 * into subqueries; if we pull up any subqueries below, their SubLinks are
	 * processed just before pulling them up.
359 360
	 */
	if (parse->hasSubLinks)
361
		pull_up_sublinks(root);
362

363
	/*
364 365
	 * Scan the rangetable for set-returning functions, and inline them if
	 * possible (producing subqueries that might get pulled up next).
366
	 * Recursion issues here are handled in the same way as for SubLinks.
367 368 369
	 */
	inline_set_returning_functions(root);

370
	/*
371 372
	 * Check to see if any subqueries in the jointree can be merged into this
	 * query.
373
	 */
374
	pull_up_subqueries(root);
B
Bruce Momjian 已提交
375

376
	/*
377 378 379
	 * If this is a simple UNION ALL query, flatten it into an appendrel. We
	 * do this now because it requires applying pull_up_subqueries to the leaf
	 * queries of the UNION ALL, which weren't touched above because they
380 381 382 383 384
	 * weren't referenced by the jointree (they will be after we do this).
	 */
	if (parse->setOperations)
		flatten_simple_union_all(root);

385
	/*
B
Bruce Momjian 已提交
386 387
	 * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
	 * avoid the expense of doing flatten_join_alias_vars().  Also check for
388 389 390
	 * outer joins --- if none, we can skip reduce_outer_joins().  And check
	 * for LATERAL RTEs, too.  This must be done after we have done
	 * pull_up_subqueries(), of course.
391
	 */
392
	root->hasJoinRTEs = false;
393
	root->hasLateralRTEs = false;
394
	hasOuterJoins = false;
395
	foreach(l, parse->rtable)
396
	{
397
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
398 399 400

		if (rte->rtekind == RTE_JOIN)
		{
401
			root->hasJoinRTEs = true;
402
			if (IS_OUTER_JOIN(rte->jointype))
403
				hasOuterJoins = true;
404
		}
405 406
		if (rte->lateral)
			root->hasLateralRTEs = true;
407 408
	}

409
	/*
B
Bruce Momjian 已提交
410
	 * Preprocess RowMark information.  We need to do this after subquery
411 412 413
	 * pullup (so that all non-inherited RTEs are present) and before
	 * inheritance expansion (so that the info is available for
	 * expand_inherited_tables to examine and modify).
414
	 */
415
	preprocess_rowmarks(root);
416

417 418 419 420 421 422 423 424 425 426
	/*
	 * Expand any rangetable entries that are inheritance sets into "append
	 * relations".  This can add entries to the rangetable, but they must be
	 * plain base relations not joins, so it's OK (and marginally more
	 * efficient) to do it after checking for join RTEs.  We must do it after
	 * pulling up subqueries, else we'd fail to handle inherited tables in
	 * subqueries.
	 */
	expand_inherited_tables(root);

427 428
	/*
	 * Set hasHavingQual to remember if HAVING clause is present.  Needed
B
Bruce Momjian 已提交
429 430
	 * because preprocess_expression will reduce a constant-true condition to
	 * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
431
	 */
432
	root->hasHavingQual = (parse->havingQual != NULL);
433

434 435 436
	/* Clear this flag; might get set in distribute_qual_to_rels */
	root->hasPseudoConstantQuals = false;

437
	/*
438 439 440 441
	 * Do expression preprocessing on targetlist and quals, as well as other
	 * random expressions in the querytree.  Note that we do not need to
	 * handle sort/group expressions explicitly, because they are actually
	 * part of the targetlist.
442
	 */
443
	parse->targetList = (List *)
444
		preprocess_expression(root, (Node *) parse->targetList,
445 446
							  EXPRKIND_TARGET);

447 448 449 450 451 452 453 454 455 456 457 458
	newWithCheckOptions = NIL;
	foreach(l, parse->withCheckOptions)
	{
		WithCheckOption *wco = (WithCheckOption *) lfirst(l);

		wco->qual = preprocess_expression(root, wco->qual,
										  EXPRKIND_QUAL);
		if (wco->qual != NULL)
			newWithCheckOptions = lappend(newWithCheckOptions, wco);
	}
	parse->withCheckOptions = newWithCheckOptions;

459 460 461 462
	parse->returningList = (List *)
		preprocess_expression(root, (Node *) parse->returningList,
							  EXPRKIND_TARGET);

463
	preprocess_qual_conditions(root, (Node *) parse->jointree);
464

465
	parse->havingQual = preprocess_expression(root, parse->havingQual,
466 467
											  EXPRKIND_QUAL);

468 469 470 471 472 473 474 475 476 477 478
	foreach(l, parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(l);

		/* partitionClause/orderClause are sort/group expressions */
		wc->startOffset = preprocess_expression(root, wc->startOffset,
												EXPRKIND_LIMIT);
		wc->endOffset = preprocess_expression(root, wc->endOffset,
											  EXPRKIND_LIMIT);
	}

479
	parse->limitOffset = preprocess_expression(root, parse->limitOffset,
480
											   EXPRKIND_LIMIT);
481
	parse->limitCount = preprocess_expression(root, parse->limitCount,
482 483
											  EXPRKIND_LIMIT);

484 485 486 487 488 489 490 491 492 493 494
	if (parse->onConflict)
	{
		parse->onConflict->onConflictSet = (List *)
			preprocess_expression(root, (Node *) parse->onConflict->onConflictSet,
								  EXPRKIND_TARGET);

		parse->onConflict->onConflictWhere =
			preprocess_expression(root, (Node *) parse->onConflict->onConflictWhere,
								  EXPRKIND_QUAL);
	}

495 496
	root->append_rel_list = (List *)
		preprocess_expression(root, (Node *) root->append_rel_list,
497
							  EXPRKIND_APPINFO);
498

499
	/* Also need to preprocess expressions within RTEs */
500
	foreach(l, parse->rtable)
501
	{
502
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
503
		int			kind;
504

505 506 507 508 509 510 511 512 513 514 515 516 517
		if (rte->rtekind == RTE_RELATION)
		{
			if (rte->tablesample)
			{
				rte->tablesample->args = (List *)
					preprocess_expression(root, (Node *) rte->tablesample->args,
										  EXPRKIND_TABLESAMPLE);
				rte->tablesample->repeatable = (Node *)
					preprocess_expression(root, rte->tablesample->repeatable,
										  EXPRKIND_TABLESAMPLE);
			}
		}
		else if (rte->rtekind == RTE_SUBQUERY)
518 519 520 521 522 523 524 525 526 527 528 529 530 531
		{
			/*
			 * We don't want to do all preprocessing yet on the subquery's
			 * expressions, since that will happen when we plan it.  But if it
			 * contains any join aliases of our level, those have to get
			 * expanded now, because planning of the subquery won't do it.
			 * That's only possible if the subquery is LATERAL.
			 */
			if (rte->lateral && root->hasJoinRTEs)
				rte->subquery = (Query *)
					flatten_join_alias_vars(root, (Node *) rte->subquery);
		}
		else if (rte->rtekind == RTE_FUNCTION)
		{
532
			/* Preprocess the function expression(s) fully */
533
			kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
534
			rte->functions = (List *) preprocess_expression(root, (Node *) rte->functions, kind);
535
		}
536
		else if (rte->rtekind == RTE_VALUES)
537 538 539
		{
			/* Preprocess the values lists fully */
			kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
540
			rte->values_lists = (List *)
541 542
				preprocess_expression(root, (Node *) rte->values_lists, kind);
		}
543 544
	}

545
	/*
B
Bruce Momjian 已提交
546 547 548
	 * In some cases we may want to transfer a HAVING clause into WHERE. We
	 * cannot do so if the HAVING clause contains aggregates (obviously) or
	 * volatile functions (since a HAVING clause is supposed to be executed
549 550 551 552
	 * only once per group).  Also, it may be that the clause is so expensive
	 * to execute that we're better off doing it only once per group, despite
	 * the loss of selectivity.  This is hard to estimate short of doing the
	 * entire planning process twice, so we use a heuristic: clauses
B
Bruce Momjian 已提交
553
	 * containing subplans are left in HAVING.  Otherwise, we move or copy the
B
Bruce Momjian 已提交
554
	 * HAVING clause into WHERE, in hopes of eliminating tuples before
555 556
	 * aggregation instead of after.
	 *
557 558 559 560 561 562 563 564
	 * If the query has explicit grouping then we can simply move such a
	 * clause into WHERE; any group that fails the clause will not be in the
	 * output because none of its tuples will reach the grouping or
	 * aggregation stage.  Otherwise we must have a degenerate (variable-free)
	 * HAVING clause, which we put in WHERE so that query_planner() can use it
	 * in a gating Result node, but also keep in HAVING to ensure that we
	 * don't emit a bogus aggregated row. (This could be done better, but it
	 * seems not worth optimizing.)
565 566
	 *
	 * Note that both havingQual and parse->jointree->quals are in
B
Bruce Momjian 已提交
567 568
	 * implicitly-ANDed-list form at this point, even though they are declared
	 * as Node *.
569 570
	 */
	newHaving = NIL;
571
	foreach(l, (List *) parse->havingQual)
572
	{
573
		Node	   *havingclause = (Node *) lfirst(l);
574

575 576
		if (contain_agg_clause(havingclause) ||
			contain_volatile_functions(havingclause) ||
577 578
			contain_subplans(havingclause) ||
			parse->groupingSets)
579 580
		{
			/* keep it in HAVING */
581
			newHaving = lappend(newHaving, havingclause);
582 583 584 585
		}
		else if (parse->groupClause)
		{
			/* move it to WHERE */
586 587
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals, havingclause);
588 589 590 591 592 593 594 595 596
		}
		else
		{
			/* put a copy in WHERE, keep it in HAVING */
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals,
						copyObject(havingclause));
			newHaving = lappend(newHaving, havingclause);
		}
597 598 599
	}
	parse->havingQual = (Node *) newHaving;

600
	/*
B
Bruce Momjian 已提交
601 602
	 * If we have any outer joins, try to reduce them to plain inner joins.
	 * This step is most easily done after we've done expression
B
Bruce Momjian 已提交
603
	 * preprocessing.
604
	 */
605
	if (hasOuterJoins)
606
		reduce_outer_joins(root);
607

608
	/*
B
Bruce Momjian 已提交
609 610
	 * Do the main planning.  If we have an inherited target relation, that
	 * needs special processing, else go straight to grouping_planner.
611
	 */
612
	if (parse->resultRelation &&
613 614
		rt_fetch(parse->resultRelation, parse->rtable)->inh)
		plan = inheritance_planner(root);
615
	else
616
	{
617
		plan = grouping_planner(root, tuple_fraction);
618 619 620
		/* If it's not SELECT, we need a ModifyTable node */
		if (parse->commandType != CMD_SELECT)
		{
621
			List	   *withCheckOptionLists;
B
Bruce Momjian 已提交
622 623
			List	   *returningLists;
			List	   *rowMarks;
624

625
			/*
626 627
			 * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if
			 * needed.
628
			 */
629 630 631 632 633
			if (parse->withCheckOptions)
				withCheckOptionLists = list_make1(parse->withCheckOptions);
			else
				withCheckOptionLists = NIL;

634
			if (parse->returningList)
635
				returningLists = list_make1(parse->returningList);
636 637 638
			else
				returningLists = NIL;

639
			/*
B
Bruce Momjian 已提交
640 641 642
			 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
			 * will have dealt with fetching non-locked marked rows, else we
			 * need to have ModifyTable do that.
643 644 645 646 647 648
			 */
			if (parse->rowMarks)
				rowMarks = NIL;
			else
				rowMarks = root->rowMarks;

T
Tom Lane 已提交
649 650
			plan = (Plan *) make_modifytable(root,
											 parse->commandType,
651
											 parse->canSetTag,
652
											 parse->resultRelation,
653
									   list_make1_int(parse->resultRelation),
654
											 list_make1(plan),
655
											 withCheckOptionLists,
656 657
											 returningLists,
											 rowMarks,
658
											 parse->onConflict,
659
											 SS_assign_special_param(root));
660 661
		}
	}
662 663

	/*
664 665 666
	 * If any subplans were generated, or if there are any parameters to worry
	 * about, build initPlan list and extParam/allParam sets for plan nodes,
	 * and attach the initPlans to the top plan node.
667
	 */
668
	if (list_length(glob->subplans) != num_old_subplans ||
669
		root->glob->nParamExec > 0)
670
		SS_finalize_plan(root, plan, true);
B
Bruce Momjian 已提交
671

672 673 674
	/* Return internal info if caller wants it */
	if (subroot)
		*subroot = root;
675

676
	return plan;
677
}
678

679 680 681 682
/*
 * preprocess_expression
 *		Do subquery_planner's preprocessing work for an expression,
 *		which can be a targetlist, a WHERE clause (including JOIN/ON
683
 *		conditions), a HAVING clause, or a few other things.
684 685
 */
static Node *
686
preprocess_expression(PlannerInfo *root, Node *expr, int kind)
687
{
688
	/*
B
Bruce Momjian 已提交
689 690 691
	 * Fall out quickly if expression is empty.  This occurs often enough to
	 * be worth checking.  Note that null->null is the correct conversion for
	 * implicit-AND result format, too.
692 693 694 695
	 */
	if (expr == NULL)
		return NULL;

696 697
	/*
	 * If the query has any join RTEs, replace join alias variables with
698 699 700 701
	 * base-relation variables.  We must do this before sublink processing,
	 * else sublinks expanded out from join aliases would not get processed.
	 * We can skip it in non-lateral RTE functions and VALUES lists, however,
	 * since they can't contain any Vars of the current query level.
702
	 */
703 704
	if (root->hasJoinRTEs &&
		!(kind == EXPRKIND_RTFUNC || kind == EXPRKIND_VALUES))
705
		expr = flatten_join_alias_vars(root, expr);
706

707
	/*
708
	 * Simplify constant expressions.
709
	 *
710
	 * Note: an essential effect of this is to convert named-argument function
B
Bruce Momjian 已提交
711 712 713 714 715
	 * calls to positional notation and insert the current actual values of
	 * any default arguments for functions.  To ensure that happens, we *must*
	 * process all expressions here.  Previous PG versions sometimes skipped
	 * const-simplification if it didn't seem worth the trouble, but we can't
	 * do that anymore.
716
	 *
717 718 719 720 721
	 * Note: this also flattens nested AND and OR expressions into N-argument
	 * form.  All processing of a qual expression after this point must be
	 * careful to maintain AND/OR flatness --- that is, do not generate a tree
	 * with AND directly under AND, nor OR directly under OR.
	 */
722
	expr = eval_const_expressions(root, expr);
723 724 725

	/*
	 * If it's a qual or havingQual, canonicalize it.
726
	 */
727
	if (kind == EXPRKIND_QUAL)
728
	{
729
		expr = (Node *) canonicalize_qual((Expr *) expr);
730 731 732 733 734 735

#ifdef OPTIMIZER_DEBUG
		printf("After canonicalize_qual()\n");
		pprint(expr);
#endif
	}
736

737
	/* Expand SubLinks to SubPlans */
738
	if (root->parse->hasSubLinks)
739
		expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
740

741
	/*
B
Bruce Momjian 已提交
742 743
	 * XXX do not insert anything here unless you have grokked the comments in
	 * SS_replace_correlation_vars ...
744 745
	 */

746
	/* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
747 748
	if (root->query_level > 1)
		expr = SS_replace_correlation_vars(root, expr);
749

750
	/*
B
Bruce Momjian 已提交
751 752 753
	 * If it's a qual or havingQual, convert it to implicit-AND format. (We
	 * don't want to do this before eval_const_expressions, since the latter
	 * would be unable to simplify a top-level AND correctly. Also,
754
	 * SS_process_sublinks expects explicit-AND format.)
755 756 757 758
	 */
	if (kind == EXPRKIND_QUAL)
		expr = (Node *) make_ands_implicit((Expr *) expr);

759 760 761 762 763 764 765 766 767
	return expr;
}

/*
 * preprocess_qual_conditions
 *		Recursively scan the query's jointree and do subquery_planner's
 *		preprocessing work on each qual condition found therein.
 */
static void
768
preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
769 770 771 772 773 774 775 776 777 778
{
	if (jtnode == NULL)
		return;
	if (IsA(jtnode, RangeTblRef))
	{
		/* nothing to do here */
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
779
		ListCell   *l;
780

781
		foreach(l, f->fromlist)
782
			preprocess_qual_conditions(root, lfirst(l));
783

784
		f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
785 786 787 788 789
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

790 791
		preprocess_qual_conditions(root, j->larg);
		preprocess_qual_conditions(root, j->rarg);
792

793
		j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
794 795
	}
	else
796 797
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
798
}
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * preprocess_phv_expression
 *	  Do preprocessing on a PlaceHolderVar expression that's been pulled up.
 *
 * If a LATERAL subquery references an output of another subquery, and that
 * output must be wrapped in a PlaceHolderVar because of an intermediate outer
 * join, then we'll push the PlaceHolderVar expression down into the subquery
 * and later pull it back up during find_lateral_references, which runs after
 * subquery_planner has preprocessed all the expressions that were in the
 * current query level to start with.  So we need to preprocess it then.
 */
Expr *
preprocess_phv_expression(PlannerInfo *root, Expr *expr)
{
	return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
}

817
/*
818 819 820 821
 * inheritance_planner
 *	  Generate a plan in the case where the result relation is an
 *	  inheritance set.
 *
822 823 824 825
 * We have to handle this case differently from cases where a source relation
 * is an inheritance set. Source inheritance is expanded at the bottom of the
 * plan tree (see allpaths.c), but target inheritance has to be expanded at
 * the top.  The reason is that for UPDATE, each target relation needs a
826
 * different targetlist matching its own column set.  Fortunately,
827 828
 * the UPDATE/DELETE target can never be the nullable side of an outer join,
 * so it's OK to generate the plan this way.
829 830 831 832
 *
 * Returns a query plan.
 */
static Plan *
833
inheritance_planner(PlannerInfo *root)
834
{
835
	Query	   *parse = root->parse;
836
	int			parentRTindex = parse->resultRelation;
837
	Bitmapset  *resultRTindexes = NULL;
838
	int			nominalRelation = -1;
839 840 841
	List	   *final_rtable = NIL;
	int			save_rel_array_size = 0;
	RelOptInfo **save_rel_array = NULL;
842
	List	   *subplans = NIL;
843
	List	   *resultRelations = NIL;
844
	List	   *withCheckOptionLists = NIL;
845
	List	   *returningLists = NIL;
846
	List	   *rowMarks;
847
	ListCell   *lc;
848

849 850
	Assert(parse->commandType != CMD_INSERT);

851 852 853 854 855 856 857 858 859 860 861 862 863 864
	/*
	 * We generate a modified instance of the original Query for each target
	 * relation, plan that, and put all the plans into a list that will be
	 * controlled by a single ModifyTable node.  All the instances share the
	 * same rangetable, but each instance must have its own set of subquery
	 * RTEs within the finished rangetable because (1) they are likely to get
	 * scribbled on during planning, and (2) it's not inconceivable that
	 * subqueries could get planned differently in different cases.  We need
	 * not create duplicate copies of other RTE kinds, in particular not the
	 * target relations, because they don't have either of those issues.  Not
	 * having to duplicate the target relations is important because doing so
	 * (1) would result in a rangetable of length O(N^2) for N targets, with
	 * at least O(N^3) work expended here; and (2) would greatly complicate
	 * management of the rowMarks list.
865 866 867
	 *
	 * Note that any RTEs with security barrier quals will be turned into
	 * subqueries during planning, and so we must create copies of them too,
B
Bruce Momjian 已提交
868 869
	 * except where they are target relations, which will each only be used in
	 * a single plan.
870
	 */
871 872 873 874
	resultRTindexes = bms_add_member(resultRTindexes, parentRTindex);
	foreach(lc, root->append_rel_list)
	{
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
B
Bruce Momjian 已提交
875

876 877 878 879 880
		if (appinfo->parent_relid == parentRTindex)
			resultRTindexes = bms_add_member(resultRTindexes,
											 appinfo->child_relid);
	}

881
	foreach(lc, root->append_rel_list)
882
	{
883 884
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
		PlannerInfo subroot;
B
Bruce Momjian 已提交
885
		Plan	   *subplan;
886
		Index		rti;
887

888 889 890 891
		/* append_rel_list contains all append rels; ignore others */
		if (appinfo->parent_relid != parentRTindex)
			continue;

892
		/*
893 894
		 * We need a working copy of the PlannerInfo so that we can control
		 * propagation of information back to the main copy.
895 896
		 */
		memcpy(&subroot, root, sizeof(PlannerInfo));
897 898 899 900 901 902 903

		/*
		 * Generate modified query with this rel as target.  We first apply
		 * adjust_appendrel_attrs, which copies the Query and changes
		 * references to the parent RTE to refer to the current child RTE,
		 * then fool around with subquery RTEs.
		 */
904
		subroot.parse = (Query *)
905 906
			adjust_appendrel_attrs(root,
								   (Node *) parse,
907
								   appinfo);
908 909 910

		/*
		 * The rowMarks list might contain references to subquery RTEs, so
911 912 913
		 * make a copy that we can apply ChangeVarNodes to.  (Fortunately, the
		 * executor doesn't need to see the modified copies --- we can just
		 * pass it the original rowMarks list.)
914 915 916
		 */
		subroot.rowMarks = (List *) copyObject(root->rowMarks);

917 918 919 920 921 922 923
		/*
		 * The append_rel_list likewise might contain references to subquery
		 * RTEs (if any subqueries were flattenable UNION ALLs).  So prepare
		 * to apply ChangeVarNodes to that, too.
		 */
		subroot.append_rel_list = (List *) copyObject(root->append_rel_list);

924 925 926 927 928 929 930 931 932 933 934 935
		/*
		 * Add placeholders to the child Query's rangetable list to fill the
		 * RT indexes already reserved for subqueries in previous children.
		 * These won't be referenced, so there's no need to make them very
		 * valid-looking.
		 */
		while (list_length(subroot.parse->rtable) < list_length(final_rtable))
			subroot.parse->rtable = lappend(subroot.parse->rtable,
											makeNode(RangeTblEntry));

		/*
		 * If this isn't the first child Query, generate duplicates of all
936 937 938 939 940
		 * subquery RTEs, and adjust Var numbering to reference the
		 * duplicates. To simplify the loop logic, we scan the original rtable
		 * not the copy just made by adjust_appendrel_attrs; that should be OK
		 * since subquery RTEs couldn't contain any references to the target
		 * rel.
941 942 943 944 945 946 947 948 949 950
		 */
		if (final_rtable != NIL)
		{
			ListCell   *lr;

			rti = 1;
			foreach(lr, parse->rtable)
			{
				RangeTblEntry *rte = (RangeTblEntry *) lfirst(lr);

951 952 953 954 955 956 957 958
				/*
				 * Copy subquery RTEs and RTEs with security barrier quals
				 * that will be turned into subqueries, except those that are
				 * target relations.
				 */
				if (rte->rtekind == RTE_SUBQUERY ||
					(rte->securityQuals != NIL &&
					 !bms_is_member(rti, resultRTindexes)))
959
				{
960
					Index		newrti;
961 962 963

					/*
					 * The RTE can't contain any references to its own RT
964 965 966
					 * index, except in the security barrier quals, so we can
					 * save a few cycles by applying ChangeVarNodes before we
					 * append the RTE to the rangetable.
967 968 969 970
					 */
					newrti = list_length(subroot.parse->rtable) + 1;
					ChangeVarNodes((Node *) subroot.parse, rti, newrti, 0);
					ChangeVarNodes((Node *) subroot.rowMarks, rti, newrti, 0);
971
					ChangeVarNodes((Node *) subroot.append_rel_list, rti, newrti, 0);
972
					rte = copyObject(rte);
973
					ChangeVarNodes((Node *) rte->securityQuals, rti, newrti, 0);
974 975 976 977 978 979 980
					subroot.parse->rtable = lappend(subroot.parse->rtable,
													rte);
				}
				rti++;
			}
		}

981
		/* There shouldn't be any OJ or LATERAL info to translate, as yet */
982
		Assert(subroot.join_info_list == NIL);
983
		Assert(subroot.lateral_info_list == NIL);
984 985
		/* and we haven't created PlaceHolderInfos, either */
		Assert(subroot.placeholder_list == NIL);
986 987
		/* hack to mark target relation as an inheritance partition */
		subroot.hasInheritedTarget = true;
988

989
		/* Generate plan */
990 991
		subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );

992
		/*
B
Bruce Momjian 已提交
993 994
		 * Planning may have modified the query result relation (if there were
		 * security barrier quals on the result RTE).
995 996 997
		 */
		appinfo->child_relid = subroot.parse->resultRelation;

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		/*
		 * We'll use the first child relation (even if it's excluded) as the
		 * nominal target relation of the ModifyTable node.  Because of the
		 * way expand_inherited_rtentry works, this should always be the RTE
		 * representing the parent table in its role as a simple member of the
		 * inheritance set.  (It would be logically cleaner to use the
		 * inheritance parent RTE as the nominal target; but since that RTE
		 * will not be otherwise referenced in the plan, doing so would give
		 * rise to confusing use of multiple aliases in EXPLAIN output for
		 * what the user will think is the "same" table.)
		 */
		if (nominalRelation < 0)
			nominalRelation = appinfo->child_relid;

1012
		/*
B
Bruce Momjian 已提交
1013
		 * If this child rel was excluded by constraint exclusion, exclude it
1014
		 * from the result plan.
1015 1016 1017
		 */
		if (is_dummy_plan(subplan))
			continue;
B
Bruce Momjian 已提交
1018

1019 1020
		subplans = lappend(subplans, subplan);

1021 1022 1023 1024 1025 1026 1027 1028
		/*
		 * If this is the first non-excluded child, its post-planning rtable
		 * becomes the initial contents of final_rtable; otherwise, append
		 * just its modified subquery RTEs to final_rtable.
		 */
		if (final_rtable == NIL)
			final_rtable = subroot.parse->rtable;
		else
1029 1030
		{
			List	   *tmp_rtable = NIL;
B
Bruce Momjian 已提交
1031 1032
			ListCell   *cell1,
					   *cell2;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

			/*
			 * Check to see if any of the original RTEs were turned into
			 * subqueries during planning.  Currently, this should only ever
			 * happen due to securityQuals being involved which push a
			 * relation down under a subquery, to ensure that the security
			 * barrier quals are evaluated first.
			 *
			 * When this happens, we want to use the new subqueries in the
			 * final rtable.
			 */
			forboth(cell1, final_rtable, cell2, subroot.parse->rtable)
			{
				RangeTblEntry *rte1 = (RangeTblEntry *) lfirst(cell1);
				RangeTblEntry *rte2 = (RangeTblEntry *) lfirst(cell2);

				if (rte1->rtekind == RTE_RELATION &&
					rte2->rtekind == RTE_SUBQUERY)
				{
					/* Should only be when there are securityQuals today */
					Assert(rte1->securityQuals != NIL);
					tmp_rtable = lappend(tmp_rtable, rte2);
				}
				else
					tmp_rtable = lappend(tmp_rtable, rte1);
			}

			final_rtable = list_concat(tmp_rtable,
1061
									   list_copy_tail(subroot.parse->rtable,
1062
												 list_length(final_rtable)));
1063
		}
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

		/*
		 * We need to collect all the RelOptInfos from all child plans into
		 * the main PlannerInfo, since setrefs.c will need them.  We use the
		 * last child's simple_rel_array (previous ones are too short), so we
		 * have to propagate forward the RelOptInfos that were already built
		 * in previous children.
		 */
		Assert(subroot.simple_rel_array_size >= save_rel_array_size);
		for (rti = 1; rti < save_rel_array_size; rti++)
		{
			RelOptInfo *brel = save_rel_array[rti];

			if (brel)
				subroot.simple_rel_array[rti] = brel;
		}
		save_rel_array_size = subroot.simple_rel_array_size;
		save_rel_array = subroot.simple_rel_array;

1083
		/* Make sure any initplans from this rel get into the outer list */
1084
		root->init_plans = subroot.init_plans;
1085

1086
		/* Build list of target-relation RT indexes */
1087 1088
		resultRelations = lappend_int(resultRelations, appinfo->child_relid);

1089 1090 1091 1092
		/* Build lists of per-relation WCO and RETURNING targetlists */
		if (parse->withCheckOptions)
			withCheckOptionLists = lappend(withCheckOptionLists,
										   subroot.parse->withCheckOptions);
1093
		if (parse->returningList)
1094 1095
			returningLists = lappend(returningLists,
									 subroot.parse->returningList);
1096 1097

		Assert(!parse->onConflict);
1098 1099
	}

1100 1101 1102 1103
	/* Mark result as unordered (probably unnecessary) */
	root->query_pathkeys = NIL;

	/*
B
Bruce Momjian 已提交
1104 1105
	 * If we managed to exclude every child rel, return a dummy plan; it
	 * doesn't even need a ModifyTable node.
1106 1107
	 */
	if (subplans == NIL)
1108 1109
	{
		/* although dummy, it must have a valid tlist for executor */
1110 1111
		List	   *tlist;

1112
		tlist = preprocess_targetlist(root, parse->targetList);
1113 1114
		return (Plan *) make_result(root,
									tlist,
1115 1116 1117
									(Node *) list_make1(makeBoolConst(false,
																	  false)),
									NULL);
1118
	}
1119

1120
	/*
1121
	 * Put back the final adjusted rtable into the master copy of the Query.
1122
	 */
1123 1124 1125
	parse->rtable = final_rtable;
	root->simple_rel_array_size = save_rel_array_size;
	root->simple_rel_array = save_rel_array;
1126

1127
	/*
B
Bruce Momjian 已提交
1128 1129
	 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will
	 * have dealt with fetching non-locked marked rows, else we need to have
B
Bruce Momjian 已提交
1130
	 * ModifyTable do that.
1131 1132 1133 1134 1135 1136
	 */
	if (parse->rowMarks)
		rowMarks = NIL;
	else
		rowMarks = root->rowMarks;

1137
	/* And last, tack on a ModifyTable node to do the UPDATE/DELETE work */
T
Tom Lane 已提交
1138 1139
	return (Plan *) make_modifytable(root,
									 parse->commandType,
1140
									 parse->canSetTag,
1141
									 nominalRelation,
1142
									 resultRelations,
B
Bruce Momjian 已提交
1143
									 subplans,
1144
									 withCheckOptionLists,
1145 1146
									 returningLists,
									 rowMarks,
1147
									 NULL,
1148
									 SS_assign_special_param(root));
1149 1150 1151 1152 1153 1154 1155
}

/*--------------------
 * grouping_planner
 *	  Perform planning steps related to grouping, aggregation, etc.
 *	  This primarily means adding top-level processing to the basic
 *	  query plan produced by query_planner.
1156 1157 1158 1159
 *
 * tuple_fraction is the fraction of tuples we expect will be retrieved
 *
 * tuple_fraction is interpreted as follows:
1160
 *	  0: expect all tuples to be retrieved (normal case)
1161 1162 1163 1164 1165
 *	  0 < tuple_fraction < 1: expect the given fraction of tuples available
 *		from the plan to be retrieved
 *	  tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
 *		expected to be retrieved (ie, a LIMIT specification)
 *
1166
 * Returns a query plan.  Also, root->query_pathkeys is returned as the
1167
 * actual output ordering of the plan (in pathkey format).
1168 1169
 *--------------------
 */
1170
static Plan *
1171
grouping_planner(PlannerInfo *root, double tuple_fraction)
1172
{
1173
	Query	   *parse = root->parse;
1174
	List	   *tlist = parse->targetList;
B
Bruce Momjian 已提交
1175 1176
	int64		offset_est = 0;
	int64		count_est = 0;
1177
	double		limit_tuples = -1.0;
1178 1179
	Plan	   *result_plan;
	List	   *current_pathkeys;
1180
	double		dNumGroups = 0;
1181 1182
	bool		use_hashed_distinct = false;
	bool		tested_hashed_distinct = false;
1183

1184 1185
	/* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
	if (parse->limitCount || parse->limitOffset)
1186
	{
1187 1188
		tuple_fraction = preprocess_limit(root, tuple_fraction,
										  &offset_est, &count_est);
B
Bruce Momjian 已提交
1189

1190
		/*
B
Bruce Momjian 已提交
1191 1192
		 * If we have a known LIMIT, and don't have an unknown OFFSET, we can
		 * estimate the effects of using a bounded sort.
1193 1194 1195 1196
		 */
		if (count_est > 0 && offset_est >= 0)
			limit_tuples = (double) count_est + (double) offset_est;
	}
1197

1198
	if (parse->setOperations)
B
Bruce Momjian 已提交
1199
	{
B
Bruce Momjian 已提交
1200
		List	   *set_sortclauses;
1201

1202
		/*
B
Bruce Momjian 已提交
1203
		 * If there's a top-level ORDER BY, assume we have to fetch all the
B
Bruce Momjian 已提交
1204
		 * tuples.  This might be too simplistic given all the hackery below
1205 1206
		 * to possibly avoid the sort; but the odds of accurate estimates here
		 * are pretty low anyway.
1207 1208 1209 1210
		 */
		if (parse->sortClause)
			tuple_fraction = 0.0;

1211
		/*
B
Bruce Momjian 已提交
1212
		 * Construct the plan for set operations.  The result will not need
1213 1214 1215
		 * any work except perhaps a top-level sort and/or LIMIT.  Note that
		 * any special work for recursive unions is the responsibility of
		 * plan_set_operations.
1216
		 */
1217
		result_plan = plan_set_operations(root, tuple_fraction,
1218 1219 1220
										  &set_sortclauses);

		/*
B
Bruce Momjian 已提交
1221 1222 1223
		 * Calculate pathkeys representing the sort order (if any) of the set
		 * operation's result.  We have to do this before overwriting the sort
		 * key information...
1224
		 */
1225 1226
		current_pathkeys = make_pathkeys_for_sortclauses(root,
														 set_sortclauses,
B
Bruce Momjian 已提交
1227
													result_plan->targetlist);
1228 1229

		/*
B
Bruce Momjian 已提交
1230
		 * We should not need to call preprocess_targetlist, since we must be
B
Bruce Momjian 已提交
1231
		 * in a SELECT query node.  Instead, use the targetlist returned by
B
Bruce Momjian 已提交
1232 1233 1234
		 * plan_set_operations (since this tells whether it returned any
		 * resjunk columns!), and transfer any sort key information from the
		 * original tlist.
1235 1236
		 */
		Assert(parse->commandType == CMD_SELECT);
1237

1238 1239
		tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
										tlist);
1240

1241
		/*
B
Bruce Momjian 已提交
1242 1243
		 * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
		 * checked already, but let's make sure).
1244 1245
		 */
		if (parse->rowMarks)
1246 1247
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
B
Bruce Momjian 已提交
1248 1249
			/*------
			  translator: %s is a SQL row locking clause such as FOR UPDATE */
1250 1251
					 errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
							LCS_asString(((RowMarkClause *)
B
Bruce Momjian 已提交
1252
									linitial(parse->rowMarks))->strength))));
1253

1254
		/*
1255
		 * Calculate pathkeys that represent result ordering requirements
1256
		 */
1257
		Assert(parse->distinctClause == NIL);
1258 1259
		root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
															parse->sortClause,
1260
															tlist);
B
Bruce Momjian 已提交
1261
	}
1262
	else
1263
	{
1264
		/* No set operations, do regular planning */
B
Bruce Momjian 已提交
1265
		List	   *sub_tlist;
1266
		AttrNumber *groupColIdx = NULL;
1267
		bool		need_tlist_eval = true;
1268
		long		numGroups = 0;
1269
		AggClauseCosts agg_costs;
1270
		int			numGroupCols;
1271 1272
		double		path_rows;
		int			path_width;
1273
		bool		use_hashed_grouping = false;
T
Tom Lane 已提交
1274 1275
		WindowFuncLists *wflists = NULL;
		List	   *activeWindows = NIL;
1276
		OnConflictExpr *onconfl;
1277 1278 1279 1280 1281 1282 1283 1284 1285
		int			maxref = 0;
		int		   *tleref_to_colnum_map;
		List	   *rollup_lists = NIL;
		List	   *rollup_groupclauses = NIL;
		standard_qp_extra qp_extra;
		RelOptInfo *final_rel;
		Path	   *cheapest_path;
		Path	   *sorted_path;
		Path	   *best_path;
1286

1287
		MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
1288

1289 1290 1291
		/* A recursive query should always have setOperations */
		Assert(!root->hasRecursion);

1292 1293 1294 1295
		/* Preprocess Grouping set, if any */
		if (parse->groupingSets)
			parse->groupingSets = expand_grouping_sets(parse->groupingSets, -1);

1296
		if (parse->groupClause)
1297 1298 1299 1300 1301 1302
		{
			ListCell   *lc;

			foreach(lc, parse->groupClause)
			{
				SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
				if (gc->tleSortGroupRef > maxref)
					maxref = gc->tleSortGroupRef;
			}
		}

		tleref_to_colnum_map = palloc((maxref + 1) * sizeof(int));

		if (parse->groupingSets)
		{
			ListCell   *lc;
			ListCell   *lc2;
			ListCell   *lc_set;
			List	   *sets = extract_rollup_sets(parse->groupingSets);

			foreach(lc_set, sets)
			{
B
Bruce Momjian 已提交
1320 1321 1322 1323 1324 1325
				List	   *current_sets = reorder_grouping_sets(lfirst(lc_set),
													  (list_length(sets) == 1
													   ? parse->sortClause
													   : NIL));
				List	   *groupclause = preprocess_groupclause(root, linitial(current_sets));
				int			ref = 0;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

				/*
				 * Now that we've pinned down an order for the groupClause for
				 * this list of grouping sets, we need to remap the entries in
				 * the grouping sets from sortgrouprefs to plain indices
				 * (0-based) into the groupClause for this collection of
				 * grouping sets.
				 */

				foreach(lc, groupclause)
				{
					SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
					tleref_to_colnum_map[gc->tleSortGroupRef] = ref++;
				}

				foreach(lc, current_sets)
				{
					foreach(lc2, (List *) lfirst(lc))
					{
						lfirst_int(lc2) = tleref_to_colnum_map[lfirst_int(lc2)];
					}
				}

				rollup_lists = lcons(current_sets, rollup_lists);
				rollup_groupclauses = lcons(groupclause, rollup_groupclauses);
			}
		}
		else
		{
			/* Preprocess GROUP BY clause, if any */
			if (parse->groupClause)
				parse->groupClause = preprocess_groupclause(root, NIL);
			rollup_groupclauses = list_make1(parse->groupClause);
		}

1362 1363
		numGroupCols = list_length(parse->groupClause);

1364
		/* Preprocess targetlist */
1365
		tlist = preprocess_targetlist(root, tlist);
B
Bruce Momjian 已提交
1366

1367 1368 1369 1370 1371 1372 1373
		onconfl = parse->onConflict;
		if (onconfl)
			onconfl->onConflictSet =
				preprocess_onconflict_targetlist(onconfl->onConflictSet,
												 parse->resultRelation,
												 parse->rtable);

1374 1375 1376 1377 1378
		/*
		 * Expand any rangetable entries that have security barrier quals.
		 * This may add new security barrier subquery RTEs to the rangetable.
		 */
		expand_security_quals(root, tlist);
1379
		root->glob->hasRowSecurity = parse->hasRowSecurity;
1380

T
Tom Lane 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		/*
		 * Locate any window functions in the tlist.  (We don't need to look
		 * anywhere else, since expressions used in ORDER BY will be in there
		 * too.)  Note that they could all have been eliminated by constant
		 * folding, in which case we don't need to do any more work.
		 */
		if (parse->hasWindowFuncs)
		{
			wflists = find_window_functions((Node *) tlist,
											list_length(parse->windowClause));
			if (wflists->numWindowFuncs > 0)
				activeWindows = select_active_windows(root, wflists);
			else
				parse->hasWindowFuncs = false;
		}

1397
		/*
B
Bruce Momjian 已提交
1398 1399
		 * Generate appropriate target list for subplan; may be different from
		 * tlist if grouping or aggregation is needed.
1400
		 */
1401
		sub_tlist = make_subplanTargetList(root, tlist,
B
Bruce Momjian 已提交
1402
										   &groupColIdx, &need_tlist_eval);
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		/*
		 * Do aggregate preprocessing, if the query has any aggs.
		 *
		 * Note: think not that we can turn off hasAggs if we find no aggs. It
		 * is possible for constant-expression simplification to remove all
		 * explicit references to aggs, but we still have to follow the
		 * aggregate semantics (eg, producing only one output row).
		 */
		if (parse->hasAggs)
		{
			/*
B
Bruce Momjian 已提交
1415 1416
			 * Collect statistics about aggregates for estimating costs. Note:
			 * we do not attempt to detect duplicate aggregates here; a
1417
			 * somewhat-overestimated cost is okay for our present purposes.
1418
			 */
1419 1420
			count_agg_clauses(root, (Node *) tlist, &agg_costs);
			count_agg_clauses(root, parse->havingQual, &agg_costs);
1421 1422

			/*
1423 1424 1425 1426
			 * Preprocess MIN/MAX aggregates, if any.  Note: be careful about
			 * adding logic between here and the optimize_minmax_aggregates
			 * call.  Anything that is needed in MIN/MAX-optimizable cases
			 * will have to be duplicated in planagg.c.
1427 1428 1429 1430
			 */
			preprocess_minmax_aggregates(root, tlist);
		}

1431 1432 1433
		/* Make tuple_fraction accessible to lower-level routines */
		root->tuple_fraction = tuple_fraction;

1434 1435 1436 1437 1438 1439 1440
		/*
		 * Figure out whether there's a hard limit on the number of rows that
		 * query_planner's result subplan needs to return.  Even if we know a
		 * hard limit overall, it doesn't apply if the query has any
		 * grouping/aggregation operations.
		 */
		if (parse->groupClause ||
1441
			parse->groupingSets ||
1442 1443 1444 1445
			parse->distinctClause ||
			parse->hasAggs ||
			parse->hasWindowFuncs ||
			root->hasHavingQual)
1446
			root->limit_tuples = -1.0;
1447
		else
1448
			root->limit_tuples = limit_tuples;
1449

1450 1451 1452
		/* Set up data needed by standard_qp_callback */
		qp_extra.tlist = tlist;
		qp_extra.activeWindows = activeWindows;
1453
		qp_extra.groupClause = llast(rollup_groupclauses);
1454

1455
		/*
B
Bruce Momjian 已提交
1456
		 * Generate the best unsorted and presorted paths for this Query (but
B
Bruce Momjian 已提交
1457
		 * note there may not be any presorted paths).  We also generate (in
1458
		 * standard_qp_callback) pathkey representations of the query's sort
1459
		 * clause, distinct clause, etc.
1460
		 */
1461 1462
		final_rel = query_planner(root, sub_tlist,
								  standard_qp_callback, &qp_extra);
1463

1464
		/*
1465
		 * Extract rowcount and width estimates for use below.
1466
		 */
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		path_rows = final_rel->rows;
		path_width = final_rel->width;

		/*
		 * If there's grouping going on, estimate the number of result groups.
		 * We couldn't do this any earlier because it depends on relation size
		 * estimates that are created within query_planner().
		 *
		 * Then convert tuple_fraction to fractional form if it is absolute,
		 * and if grouping or aggregation is involved, adjust tuple_fraction
		 * to describe the fraction of the underlying un-aggregated tuples
		 * that will be fetched.
		 */
		dNumGroups = 1;			/* in case not grouping */

		if (parse->groupClause)
		{
			List	   *groupExprs;

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
			if (parse->groupingSets)
			{
				ListCell   *lc,
						   *lc2;

				dNumGroups = 0;

				forboth(lc, rollup_groupclauses, lc2, rollup_lists)
				{
					ListCell   *lc3;

					groupExprs = get_sortgrouplist_exprs(lfirst(lc),
														 parse->targetList);

					foreach(lc3, lfirst(lc2))
					{
B
Bruce Momjian 已提交
1502
						List	   *gset = lfirst(lc3);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

						dNumGroups += estimate_num_groups(root,
														  groupExprs,
														  path_rows,
														  &gset);
					}
				}
			}
			else
			{
				groupExprs = get_sortgrouplist_exprs(parse->groupClause,
													 parse->targetList);

				dNumGroups = estimate_num_groups(root, groupExprs, path_rows,
												 NULL);
			}
1519 1520 1521

			/*
			 * In GROUP BY mode, an absolute LIMIT is relative to the number
B
Bruce Momjian 已提交
1522
			 * of groups not the number of tuples.  If the caller gave us a
1523 1524 1525 1526 1527 1528
			 * fraction, keep it as-is.  (In both cases, we are effectively
			 * assuming that all the groups are about the same size.)
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;

1529 1530 1531 1532 1533 1534 1535
			/*
			 * If there's more than one grouping set, we'll have to sort the
			 * entire input.
			 */
			if (list_length(rollup_lists) > 1)
				tuple_fraction = 0.0;

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
			/*
			 * If both GROUP BY and ORDER BY are specified, we will need two
			 * levels of sort --- and, therefore, certainly need to read all
			 * the tuples --- unless ORDER BY is a subset of GROUP BY.
			 * Likewise if we have both DISTINCT and GROUP BY, or if we have a
			 * window specification not compatible with the GROUP BY.
			 */
			if (!pathkeys_contained_in(root->sort_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->distinct_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->window_pathkeys,
									   root->group_pathkeys))
				tuple_fraction = 0.0;
		}
1551
		else if (parse->hasAggs || root->hasHavingQual || parse->groupingSets)
1552
		{
1553 1554
			/*
			 * Ungrouped aggregate will certainly want to read all the tuples,
1555 1556 1557
			 * and it will deliver a single result row per grouping set (or 1
			 * if no grouping sets were explicitly given, in which case leave
			 * dNumGroups as-is)
1558 1559
			 */
			tuple_fraction = 0.0;
1560 1561
			if (parse->groupingSets)
				dNumGroups = list_length(parse->groupingSets);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		}
		else if (parse->distinctClause)
		{
			/*
			 * Since there was no grouping or aggregation, it's reasonable to
			 * assume the UNIQUE filter has effects comparable to GROUP BY.
			 * (If DISTINCT is used with grouping, we ignore its effects for
			 * rowcount estimation purposes; this amounts to assuming the
			 * grouped rows are distinct already.)
			 */
			List	   *distinctExprs;

			distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
													parse->targetList);
1576
			dNumGroups = estimate_num_groups(root, distinctExprs, path_rows, NULL);
1577 1578 1579 1580 1581 1582

			/*
			 * Adjust tuple_fraction the same way as for GROUP BY, too.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;
1583 1584
		}
		else
1585
		{
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
			/*
			 * Plain non-grouped, non-aggregated query: an absolute tuple
			 * fraction can be divided by the number of tuples.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= path_rows;
		}

		/*
		 * Pick out the cheapest-total path as well as the cheapest presorted
		 * path for the requested pathkeys (if there is one).  We should take
		 * the tuple fraction into account when selecting the cheapest
		 * presorted path, but not when selecting the cheapest-total path,
		 * since if we have to sort then we'll have to fetch all the tuples.
		 * (But there's a special case: if query_pathkeys is NIL, meaning
		 * order doesn't matter, then the "cheapest presorted" path will be
		 * the cheapest overall for the tuple fraction.)
		 */
		cheapest_path = final_rel->cheapest_total_path;

		sorted_path =
			get_cheapest_fractional_path_for_pathkeys(final_rel->pathlist,
													  root->query_pathkeys,
													  NULL,
													  tuple_fraction);

		/* Don't consider same path in both guises; just wastes effort */
		if (sorted_path == cheapest_path)
			sorted_path = NULL;

		/*
		 * Forget about the presorted path if it would be cheaper to sort the
		 * cheapest-total path.  Here we need consider only the behavior at
		 * the tuple_fraction point.  Also, limit_tuples is only relevant if
		 * not grouping/aggregating, so use root->limit_tuples in the
		 * cost_sort call.
		 */
		if (sorted_path)
		{
			Path		sort_path;		/* dummy for result of cost_sort */

			if (root->query_pathkeys == NIL ||
				pathkeys_contained_in(root->query_pathkeys,
									  cheapest_path->pathkeys))
			{
				/* No sort needed for cheapest path */
				sort_path.startup_cost = cheapest_path->startup_cost;
				sort_path.total_cost = cheapest_path->total_cost;
			}
			else
			{
				/* Figure cost for sorting */
				cost_sort(&sort_path, root, root->query_pathkeys,
						  cheapest_path->total_cost,
						  path_rows, path_width,
						  0.0, work_mem, root->limit_tuples);
			}

			if (compare_fractional_path_costs(sorted_path, &sort_path,
											  tuple_fraction) > 0)
			{
				/* Presorted path is a loser */
				sorted_path = NULL;
			}
1650
		}
1651

1652 1653 1654
		/*
		 * Consider whether we want to use hashing instead of sorting.
		 */
1655 1656
		if (parse->groupClause)
		{
1657
			/*
1658
			 * If grouping, decide whether to use sorted or hashed grouping.
1659 1660
			 * If grouping sets are present, we can currently do only sorted
			 * grouping.
1661
			 */
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

			if (parse->groupingSets)
			{
				use_hashed_grouping = false;
			}
			else
			{
				use_hashed_grouping =
					choose_hashed_grouping(root,
										   tuple_fraction, limit_tuples,
										   path_rows, path_width,
										   cheapest_path, sorted_path,
										   dNumGroups, &agg_costs);
			}

1677 1678
			/* Also convert # groups to long int --- but 'ware overflow! */
			numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
1679
		}
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		else if (parse->distinctClause && sorted_path &&
				 !root->hasHavingQual && !parse->hasAggs && !activeWindows)
		{
			/*
			 * We'll reach the DISTINCT stage without any intermediate
			 * processing, so figure out whether we will want to hash or not
			 * so we can choose whether to use cheapest or sorted path.
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   path_rows, path_width,
									   cheapest_path->startup_cost,
									   cheapest_path->total_cost,
									   sorted_path->startup_cost,
									   sorted_path->total_cost,
									   sorted_path->pathkeys,
									   dNumGroups);
			tested_hashed_distinct = true;
		}
1700

B
Bruce Momjian 已提交
1701
		/*
1702
		 * Select the best path.  If we are doing hashed grouping, we will
B
Bruce Momjian 已提交
1703
		 * always read all the input tuples, so use the cheapest-total path.
1704
		 * Otherwise, the comparison above is correct.
1705
		 */
1706
		if (use_hashed_grouping || use_hashed_distinct || !sorted_path)
1707
			best_path = cheapest_path;
1708
		else
1709
			best_path = sorted_path;
1710

1711
		/*
B
Bruce Momjian 已提交
1712 1713 1714 1715
		 * Check to see if it's possible to optimize MIN/MAX aggregates. If
		 * so, we will forget all the work we did so far to choose a "regular"
		 * path ... but we had to do it anyway to be able to tell which way is
		 * cheaper.
1716
		 */
1717
		result_plan = optimize_minmax_aggregates(root,
1718
												 tlist,
1719
												 &agg_costs,
1720 1721 1722 1723
												 best_path);
		if (result_plan != NULL)
		{
			/*
B
Bruce Momjian 已提交
1724 1725
			 * optimize_minmax_aggregates generated the full plan, with the
			 * right tlist, and it has no sort order.
1726 1727 1728 1729
			 */
			current_pathkeys = NIL;
		}
		else
1730
		{
1731
			/*
1732 1733
			 * Normal case --- create a plan according to query_planner's
			 * results.
1734
			 */
1735
			bool		need_sort_for_grouping = false;
1736

1737
			result_plan = create_plan(root, best_path);
1738 1739
			current_pathkeys = best_path->pathkeys;

1740 1741
			/* Detect if we'll need an explicit sort for grouping */
			if (parse->groupClause && !use_hashed_grouping &&
B
Bruce Momjian 已提交
1742
			  !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1743 1744
			{
				need_sort_for_grouping = true;
1745

1746
				/*
1747 1748
				 * Always override create_plan's tlist, so that we don't sort
				 * useless data from a "physical" tlist.
1749 1750 1751 1752
				 */
				need_tlist_eval = true;
			}

1753
			/*
1754 1755 1756 1757
			 * create_plan returns a plan with just a "flat" tlist of required
			 * Vars.  Usually we need to insert the sub_tlist as the tlist of
			 * the top plan node.  However, we can skip that if we determined
			 * that whatever create_plan chose to return will be good enough.
1758 1759
			 */
			if (need_tlist_eval)
1760
			{
1761 1762
				/*
				 * If the top-level plan node is one that cannot do expression
1763 1764
				 * evaluation and its existing target list isn't already what
				 * we need, we must insert a Result node to project the
1765 1766
				 * desired tlist.
				 */
1767 1768
				if (!is_projection_capable_plan(result_plan) &&
					!tlist_same_exprs(sub_tlist, result_plan->targetlist))
1769
				{
1770 1771 1772
					result_plan = (Plan *) make_result(root,
													   sub_tlist,
													   NULL,
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
													   result_plan);
				}
				else
				{
					/*
					 * Otherwise, just replace the subplan's flat tlist with
					 * the desired tlist.
					 */
					result_plan->targetlist = sub_tlist;
				}

				/*
				 * Also, account for the cost of evaluation of the sub_tlist.
1786
				 * See comments for add_tlist_costs_to_plan() for more info.
1787
				 */
1788
				add_tlist_costs_to_plan(root, result_plan, sub_tlist);
1789 1790 1791 1792
			}
			else
			{
				/*
1793
				 * Since we're using create_plan's tlist and not the one
1794 1795
				 * make_subplanTargetList calculated, we have to refigure any
				 * grouping-column indexes make_subplanTargetList computed.
1796
				 */
1797
				locate_grouping_columns(root, tlist, result_plan->targetlist,
1798
										groupColIdx);
1799
			}
B
Bruce Momjian 已提交
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
			/*
			 * groupColIdx is now cast in stone, so record a mapping from
			 * tleSortGroupRef to column index. setrefs.c needs this to
			 * finalize GROUPING() operations.
			 */

			if (parse->groupingSets)
			{
				AttrNumber *grouping_map = palloc0(sizeof(AttrNumber) * (maxref + 1));
				ListCell   *lc;
				int			i = 0;

				foreach(lc, parse->groupClause)
				{
					SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1816

1817 1818 1819 1820 1821 1822
					grouping_map[gc->tleSortGroupRef] = groupColIdx[i++];
				}

				root->grouping_map = grouping_map;
			}

1823
			/*
1824 1825
			 * Insert AGG or GROUP node if needed, plus an explicit sort step
			 * if necessary.
1826
			 *
1827
			 * HAVING clause, if any, becomes qual of the Agg or Group node.
1828
			 */
1829 1830 1831
			if (use_hashed_grouping)
			{
				/* Hashed aggregate plan --- no sort needed */
1832
				result_plan = (Plan *) make_agg(root,
1833 1834 1835
												tlist,
												(List *) parse->havingQual,
												AGG_HASHED,
1836
												&agg_costs,
1837 1838
												numGroupCols,
												groupColIdx,
B
Bruce Momjian 已提交
1839
									extract_grouping_ops(parse->groupClause),
1840
												NIL,
1841 1842 1843 1844 1845
												numGroups,
												result_plan);
				/* Hashed aggregation produces randomly-ordered results */
				current_pathkeys = NIL;
			}
1846
			else if (parse->hasAggs || (parse->groupingSets && parse->groupClause))
1847
			{
1848
				/*
B
Bruce Momjian 已提交
1849 1850 1851
				 * Output is in sorted order by group_pathkeys if, and only
				 * if, there is a single rollup operation on a non-empty list
				 * of grouping expressions.
1852 1853 1854 1855
				 */
				if (list_length(rollup_groupclauses) == 1
					&& list_length(linitial(rollup_groupclauses)) > 0)
					current_pathkeys = root->group_pathkeys;
1856 1857 1858
				else
					current_pathkeys = NIL;

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
				result_plan = build_grouping_chain(root,
												   parse,
												   tlist,
												   need_sort_for_grouping,
												   rollup_groupclauses,
												   rollup_lists,
												   groupColIdx,
												   &agg_costs,
												   numGroups,
												   result_plan);

				/*
B
Bruce Momjian 已提交
1871 1872
				 * these are destroyed by build_grouping_chain, so make sure
				 * we don't try and touch them again
1873 1874 1875
				 */
				rollup_groupclauses = NIL;
				rollup_lists = NIL;
1876 1877
			}
			else if (parse->groupClause)
1878
			{
1879 1880 1881 1882
				/*
				 * GROUP BY without aggregation, so insert a group node (plus
				 * the appropriate sort node, if necessary).
				 *
1883 1884
				 * Add an explicit sort if we couldn't make the path come out
				 * the way the GROUP node needs it.
1885
				 */
1886
				if (need_sort_for_grouping)
1887
				{
1888
					result_plan = (Plan *)
1889
						make_sort_from_groupcols(root,
1890 1891 1892
												 parse->groupClause,
												 groupColIdx,
												 result_plan);
1893
					current_pathkeys = root->group_pathkeys;
1894
				}
B
Bruce Momjian 已提交
1895

1896
				result_plan = (Plan *) make_group(root,
1897 1898 1899 1900
												  tlist,
												  (List *) parse->havingQual,
												  numGroupCols,
												  groupColIdx,
1901
									extract_grouping_ops(parse->groupClause),
1902 1903 1904
												  dNumGroups,
												  result_plan);
				/* The Group node won't change sort ordering */
1905
			}
1906
			else if (root->hasHavingQual || parse->groupingSets)
1907
			{
B
Bruce Momjian 已提交
1908
				int			nrows = list_length(parse->groupingSets);
1909

1910
				/*
B
Bruce Momjian 已提交
1911 1912
				 * No aggregates, and no GROUP BY, but we have a HAVING qual
				 * or grouping sets (which by elimination of cases above must
1913 1914 1915
				 * consist solely of empty grouping sets, since otherwise
				 * groupClause will be non-empty).
				 *
1916
				 * This is a degenerate case in which we are supposed to emit
B
Bruce Momjian 已提交
1917 1918 1919 1920
				 * either 0 or 1 row for each grouping set depending on
				 * whether HAVING succeeds.  Furthermore, there cannot be any
				 * variables in either HAVING or the targetlist, so we
				 * actually do not need the FROM table at all!	We can just
T
Tom Lane 已提交
1921 1922 1923 1924
				 * throw away the plan-so-far and generate a Result node. This
				 * is a sufficiently unusual corner case that it's not worth
				 * contorting the structure of this routine to avoid having to
				 * generate the plan in the first place.
1925
				 */
1926 1927
				result_plan = (Plan *) make_result(root,
												   tlist,
1928 1929
												   parse->havingQual,
												   NULL);
1930 1931 1932 1933 1934 1935 1936 1937

				/*
				 * Doesn't seem worthwhile writing code to cons up a
				 * generate_series or a values scan to emit multiple rows.
				 * Instead just clone the result in an Append.
				 */
				if (nrows > 1)
				{
B
Bruce Momjian 已提交
1938
					List	   *plans = list_make1(result_plan);
1939 1940 1941 1942 1943 1944

					while (--nrows > 0)
						plans = lappend(plans, copyObject(result_plan));

					result_plan = (Plan *) make_append(plans, tlist);
				}
1945
			}
1946
		}						/* end of non-minmax-aggregate case */
T
Tom Lane 已提交
1947 1948

		/*
1949 1950 1951
		 * Since each window function could require a different sort order, we
		 * stack up a WindowAgg node for each window, with sort steps between
		 * them as needed.
T
Tom Lane 已提交
1952 1953 1954 1955 1956 1957 1958 1959
		 */
		if (activeWindows)
		{
			List	   *window_tlist;
			ListCell   *l;

			/*
			 * If the top-level plan node is one that cannot do expression
1960 1961
			 * evaluation, we must insert a Result node to project the desired
			 * tlist.  (In some cases this might not really be required, but
1962 1963 1964
			 * it's not worth trying to avoid it.  In particular, think not to
			 * skip adding the Result if the initial window_tlist matches the
			 * top-level plan node's output, because we might change the tlist
B
Bruce Momjian 已提交
1965
			 * inside the following loop.)	Note that on second and subsequent
1966 1967 1968
			 * passes through the following loop, the top-level node will be a
			 * WindowAgg which we know can project; so we only need to check
			 * once.
T
Tom Lane 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
			 */
			if (!is_projection_capable_plan(result_plan))
			{
				result_plan = (Plan *) make_result(root,
												   NIL,
												   NULL,
												   result_plan);
			}

			/*
1979
			 * The "base" targetlist for all steps of the windowing process is
B
Bruce Momjian 已提交
1980
			 * a flat tlist of all Vars and Aggs needed in the result.  (In
1981 1982 1983
			 * some cases we wouldn't need to propagate all of these all the
			 * way to the top, since they might only be needed as inputs to
			 * WindowFuncs.  It's probably not worth trying to optimize that
1984 1985 1986
			 * though.)  We also add window partitioning and sorting
			 * expressions to the base tlist, to ensure they're computed only
			 * once at the bottom of the stack (that's critical for volatile
B
Bruce Momjian 已提交
1987
			 * functions).  As we climb up the stack, we'll add outputs for
1988 1989 1990 1991 1992 1993 1994 1995
			 * the WindowFuncs computed at each level.
			 */
			window_tlist = make_windowInputTargetList(root,
													  tlist,
													  activeWindows);

			/*
			 * The copyObject steps here are needed to ensure that each plan
B
Bruce Momjian 已提交
1996
			 * node has a separately modifiable tlist.  (XXX wouldn't a
1997
			 * shallow list copy do for that?)
T
Tom Lane 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
			 */
			result_plan->targetlist = (List *) copyObject(window_tlist);

			foreach(l, activeWindows)
			{
				WindowClause *wc = (WindowClause *) lfirst(l);
				List	   *window_pathkeys;
				int			partNumCols;
				AttrNumber *partColIdx;
				Oid		   *partOperators;
				int			ordNumCols;
				AttrNumber *ordColIdx;
				Oid		   *ordOperators;

				window_pathkeys = make_pathkeys_for_window(root,
														   wc,
2014
														   tlist);
T
Tom Lane 已提交
2015 2016 2017 2018 2019 2020

				/*
				 * This is a bit tricky: we build a sort node even if we don't
				 * really have to sort.  Even when no explicit sort is needed,
				 * we need to have suitable resjunk items added to the input
				 * plan's tlist for any partitioning or ordering columns that
2021 2022
				 * aren't plain Vars.  (In theory, make_windowInputTargetList
				 * should have provided all such columns, but let's not assume
B
Bruce Momjian 已提交
2023
				 * that here.)	Furthermore, this way we can use existing
2024 2025
				 * infrastructure to identify which input columns are the
				 * interesting ones.
T
Tom Lane 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
				 */
				if (window_pathkeys)
				{
					Sort	   *sort_plan;

					sort_plan = make_sort_from_pathkeys(root,
														result_plan,
														window_pathkeys,
														-1.0);
					if (!pathkeys_contained_in(window_pathkeys,
											   current_pathkeys))
					{
						/* we do indeed need to sort */
						result_plan = (Plan *) sort_plan;
						current_pathkeys = window_pathkeys;
					}
					/* In either case, extract the per-column information */
					get_column_info_for_window(root, wc, tlist,
											   sort_plan->numCols,
											   sort_plan->sortColIdx,
											   &partNumCols,
											   &partColIdx,
											   &partOperators,
											   &ordNumCols,
											   &ordColIdx,
											   &ordOperators);
				}
				else
				{
					/* empty window specification, nothing to sort */
					partNumCols = 0;
					partColIdx = NULL;
					partOperators = NULL;
					ordNumCols = 0;
					ordColIdx = NULL;
					ordOperators = NULL;
				}

				if (lnext(l))
				{
					/* Add the current WindowFuncs to the running tlist */
					window_tlist = add_to_flat_tlist(window_tlist,
2068
										   wflists->windowFuncs[wc->winref]);
T
Tom Lane 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
				}
				else
				{
					/* Install the original tlist in the topmost WindowAgg */
					window_tlist = tlist;
				}

				/* ... and make the WindowAgg plan node */
				result_plan = (Plan *)
					make_windowagg(root,
								   (List *) copyObject(window_tlist),
2080
								   wflists->windowFuncs[wc->winref],
2081
								   wc->winref,
T
Tom Lane 已提交
2082 2083 2084 2085 2086 2087
								   partNumCols,
								   partColIdx,
								   partOperators,
								   ordNumCols,
								   ordColIdx,
								   ordOperators,
2088
								   wc->frameOptions,
2089 2090
								   wc->startOffset,
								   wc->endOffset,
T
Tom Lane 已提交
2091 2092 2093
								   result_plan);
			}
		}
B
Bruce Momjian 已提交
2094
	}							/* end of if (setOperations) */
2095

2096
	/*
2097
	 * If there is a DISTINCT clause, add the necessary node(s).
2098
	 */
2099
	if (parse->distinctClause)
2100
	{
2101 2102
		double		dNumDistinctRows;
		long		numDistinctRows;
2103 2104 2105 2106 2107

		/*
		 * If there was grouping or aggregation, use the current number of
		 * rows as the estimated number of DISTINCT rows (ie, assume the
		 * result was already mostly unique).  If not, use the number of
2108
		 * distinct-groups calculated previously.
2109
		 */
2110
		if (parse->groupClause || parse->groupingSets || root->hasHavingQual || parse->hasAggs)
2111 2112 2113 2114 2115 2116 2117
			dNumDistinctRows = result_plan->plan_rows;
		else
			dNumDistinctRows = dNumGroups;

		/* Also convert to long int --- but 'ware overflow! */
		numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);

2118 2119
		/* Choose implementation method if we didn't already */
		if (!tested_hashed_distinct)
2120
		{
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
			/*
			 * At this point, either hashed or sorted grouping will have to
			 * work from result_plan, so we pass that as both "cheapest" and
			 * "sorted".
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   result_plan->plan_rows,
									   result_plan->plan_width,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   current_pathkeys,
									   dNumDistinctRows);
2137 2138 2139 2140 2141 2142 2143 2144 2145
		}

		if (use_hashed_distinct)
		{
			/* Hashed aggregate plan --- no sort needed */
			result_plan = (Plan *) make_agg(root,
											result_plan->targetlist,
											NIL,
											AGG_HASHED,
2146
											NULL,
2147 2148 2149 2150
										  list_length(parse->distinctClause),
								 extract_grouping_cols(parse->distinctClause,
													result_plan->targetlist),
								 extract_grouping_ops(parse->distinctClause),
2151
											NIL,
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
											numDistinctRows,
											result_plan);
			/* Hashed aggregation produces randomly-ordered results */
			current_pathkeys = NIL;
		}
		else
		{
			/*
			 * Use a Unique node to implement DISTINCT.  Add an explicit sort
			 * if we couldn't make the path come out the way the Unique node
2162 2163 2164 2165
			 * needs it.  If we do have to sort, always sort by the more
			 * rigorous of DISTINCT and ORDER BY, to avoid a second sort
			 * below.  However, for regular DISTINCT, don't sort now if we
			 * don't have to --- sorting afterwards will likely be cheaper,
2166 2167 2168
			 * and also has the possibility of optimizing via LIMIT.  But for
			 * DISTINCT ON, we *must* force the final sort now, else it won't
			 * have the desired behavior.
2169
			 */
2170
			List	   *needed_pathkeys;
2171 2172 2173 2174 2175 2176 2177 2178 2179

			if (parse->hasDistinctOn &&
				list_length(root->distinct_pathkeys) <
				list_length(root->sort_pathkeys))
				needed_pathkeys = root->sort_pathkeys;
			else
				needed_pathkeys = root->distinct_pathkeys;

			if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
			{
				if (list_length(root->distinct_pathkeys) >=
					list_length(root->sort_pathkeys))
					current_pathkeys = root->distinct_pathkeys;
				else
				{
					current_pathkeys = root->sort_pathkeys;
					/* Assert checks that parser didn't mess up... */
					Assert(pathkeys_contained_in(root->distinct_pathkeys,
												 current_pathkeys));
				}

				result_plan = (Plan *) make_sort_from_pathkeys(root,
															   result_plan,
2194
															current_pathkeys,
2195 2196 2197 2198 2199 2200 2201
															   -1.0);
			}

			result_plan = (Plan *) make_unique(result_plan,
											   parse->distinctClause);
			result_plan->plan_rows = dNumDistinctRows;
			/* The Unique node won't change sort ordering */
2202
		}
2203
	}
2204 2205

	/*
2206 2207
	 * If ORDER BY was given and we were not able to make the plan come out in
	 * the right order, add an explicit sort step.
2208
	 */
2209
	if (parse->sortClause)
2210
	{
2211 2212 2213 2214
		if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		{
			result_plan = (Plan *) make_sort_from_pathkeys(root,
														   result_plan,
2215
														 root->sort_pathkeys,
2216 2217 2218
														   limit_tuples);
			current_pathkeys = root->sort_pathkeys;
		}
2219
	}
2220

2221
	/*
B
Bruce Momjian 已提交
2222 2223 2224
	 * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
	 * (Note: we intentionally test parse->rowMarks not root->rowMarks here.
	 * If there are only non-locking rowmarks, they should be handled by the
B
Bruce Momjian 已提交
2225
	 * ModifyTable node instead.)
2226 2227 2228 2229
	 */
	if (parse->rowMarks)
	{
		result_plan = (Plan *) make_lockrows(result_plan,
2230 2231
											 root->rowMarks,
											 SS_assign_special_param(root));
B
Bruce Momjian 已提交
2232

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		/*
		 * The result can no longer be assumed sorted, since locking might
		 * cause the sort key columns to be replaced with new values.
		 */
		current_pathkeys = NIL;
	}

	/*
	 * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
	 */
2243
	if (limit_needed(parse))
2244 2245 2246 2247 2248 2249
	{
		result_plan = (Plan *) make_limit(result_plan,
										  parse->limitOffset,
										  parse->limitCount,
										  offset_est,
										  count_est);
2250 2251
	}

2252
	/*
B
Bruce Momjian 已提交
2253 2254
	 * Return the actual output ordering in query_pathkeys for possible use by
	 * an outer query level.
2255
	 */
2256
	root->query_pathkeys = current_pathkeys;
2257

2258
	return result_plan;
2259 2260
}

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

/*
 * Given a groupclause for a collection of grouping sets, produce the
 * corresponding groupColIdx.
 *
 * root->grouping_map maps the tleSortGroupRef to the actual column position in
 * the input tuple. So we get the ref from the entries in the groupclause and
 * look them up there.
 */
static AttrNumber *
remap_groupColIdx(PlannerInfo *root, List *groupClause)
{
	AttrNumber *grouping_map = root->grouping_map;
	AttrNumber *new_grpColIdx;
	ListCell   *lc;
	int			i;

	Assert(grouping_map);

	new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));

	i = 0;
	foreach(lc, groupClause)
	{
		SortGroupClause *clause = lfirst(lc);
B
Bruce Momjian 已提交
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
	}

	return new_grpColIdx;
}

/*
 * Build Agg and Sort nodes to implement sorted grouping with one or more
 * grouping sets. (A plain GROUP BY or just the presence of aggregates counts
 * for this purpose as a single grouping set; the calling code is responsible
 * for providing a non-empty rollup_groupclauses list for such cases, though
 * rollup_lists may be null.)
 *
 * The last entry in rollup_groupclauses (which is the one the input is sorted
 * on, if at all) is the one used for the returned Agg node. Any additional
 * rollups are attached, with corresponding sort info, to subsidiary Agg and
 * Sort nodes attached to the side of the real Agg node; these nodes don't
 * participate in the plan directly, but they are both a convenient way to
 * represent the required data and a convenient way to account for the costs
 * of execution.
 *
 * rollup_groupclauses and rollup_lists are destroyed by this function.
 */
static Plan *
build_grouping_chain(PlannerInfo *root,
B
Bruce Momjian 已提交
2312 2313 2314 2315 2316
					 Query *parse,
					 List *tlist,
					 bool need_sort_for_grouping,
					 List *rollup_groupclauses,
					 List *rollup_lists,
2317 2318
					 AttrNumber *groupColIdx,
					 AggClauseCosts *agg_costs,
B
Bruce Momjian 已提交
2319 2320
					 long numGroups,
					 Plan *result_plan)
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
{
	AttrNumber *top_grpColIdx = groupColIdx;
	List	   *chain = NIL;

	/*
	 * Prepare the grpColIdx for the real Agg node first, because we may need
	 * it for sorting
	 */
	if (list_length(rollup_groupclauses) > 1)
	{
		Assert(rollup_lists && llast(rollup_lists));

		top_grpColIdx =
			remap_groupColIdx(root, llast(rollup_groupclauses));
	}

	/*
	 * If we need a Sort operation on the input, generate that.
	 */
	if (need_sort_for_grouping)
	{
		result_plan = (Plan *)
			make_sort_from_groupcols(root,
									 llast(rollup_groupclauses),
									 top_grpColIdx,
									 result_plan);
	}

	/*
	 * Generate the side nodes that describe the other sort and group
	 * operations besides the top one.
	 */
	while (list_length(rollup_groupclauses) > 1)
	{
		List	   *groupClause = linitial(rollup_groupclauses);
		List	   *gsets = linitial(rollup_lists);
		AttrNumber *new_grpColIdx;
		Plan	   *sort_plan;
		Plan	   *agg_plan;

		Assert(groupClause);
		Assert(gsets);

		new_grpColIdx = remap_groupColIdx(root, groupClause);

		sort_plan = (Plan *)
			make_sort_from_groupcols(root,
									 groupClause,
									 new_grpColIdx,
									 result_plan);

		/*
		 * sort_plan includes the cost of result_plan over again, which is not
B
Bruce Momjian 已提交
2374 2375
		 * what we want (since it's not actually running that plan). So
		 * correct the cost figures.
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		 */

		sort_plan->startup_cost -= result_plan->total_cost;
		sort_plan->total_cost -= result_plan->total_cost;

		agg_plan = (Plan *) make_agg(root,
									 tlist,
									 (List *) parse->havingQual,
									 AGG_SORTED,
									 agg_costs,
									 list_length(linitial(gsets)),
									 new_grpColIdx,
									 extract_grouping_ops(groupClause),
									 gsets,
									 numGroups,
									 sort_plan);

		sort_plan->lefttree = NULL;

		chain = lappend(chain, agg_plan);

		if (rollup_lists)
			rollup_lists = list_delete_first(rollup_lists);

		rollup_groupclauses = list_delete_first(rollup_groupclauses);
	}

	/*
	 * Now make the final Agg node
	 */
	{
		List	   *groupClause = linitial(rollup_groupclauses);
		List	   *gsets = rollup_lists ? linitial(rollup_lists) : NIL;
		int			numGroupCols;
		ListCell   *lc;

		if (gsets)
			numGroupCols = list_length(linitial(gsets));
		else
			numGroupCols = list_length(parse->groupClause);

		result_plan = (Plan *) make_agg(root,
										tlist,
										(List *) parse->havingQual,
B
Bruce Momjian 已提交
2420
								 (numGroupCols > 0) ? AGG_SORTED : AGG_PLAIN,
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
										agg_costs,
										numGroupCols,
										top_grpColIdx,
										extract_grouping_ops(groupClause),
										gsets,
										numGroups,
										result_plan);

		((Agg *) result_plan)->chain = chain;

		/*
		 * Add the additional costs. But only the total costs count, since the
		 * additional sorts aren't run on startup.
		 */
		foreach(lc, chain)
		{
B
Bruce Momjian 已提交
2437
			Plan	   *subplan = lfirst(lc);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

			result_plan->total_cost += subplan->total_cost;

			/*
			 * Nuke stuff we don't need to avoid bloating debug output.
			 */

			subplan->targetlist = NIL;
			subplan->qual = NIL;
			subplan->lefttree->targetlist = NIL;
		}
	}

	return result_plan;
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
/*
 * add_tlist_costs_to_plan
 *
 * Estimate the execution costs associated with evaluating the targetlist
 * expressions, and add them to the cost estimates for the Plan node.
 *
 * If the tlist contains set-returning functions, also inflate the Plan's cost
 * and plan_rows estimates accordingly.  (Hence, this must be called *after*
 * any logic that uses plan_rows to, eg, estimate qual evaluation costs.)
 *
 * Note: during initial stages of planning, we mostly consider plan nodes with
 * "flat" tlists, containing just Vars.  So their evaluation cost is zero
 * according to the model used by cost_qual_eval() (or if you prefer, the cost
 * is factored into cpu_tuple_cost).  Thus we can avoid accounting for tlist
 * cost throughout query_planner() and subroutines.  But once we apply a
 * tlist that might contain actual operators, sub-selects, etc, we'd better
 * account for its cost.  Any set-returning functions in the tlist must also
 * affect the estimated rowcount.
 *
 * Once grouping_planner() has applied a general tlist to the topmost
 * scan/join plan node, any tlist eval cost for added-on nodes should be
B
Bruce Momjian 已提交
2475
 * accounted for as we create those nodes.  Presently, of the node types we
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
 * can add on later, only Agg, WindowAgg, and Group project new tlists (the
 * rest just copy their input tuples) --- so make_agg(), make_windowagg() and
 * make_group() are responsible for calling this function to account for their
 * tlist costs.
 */
void
add_tlist_costs_to_plan(PlannerInfo *root, Plan *plan, List *tlist)
{
	QualCost	tlist_cost;
	double		tlist_rows;

	cost_qual_eval(&tlist_cost, tlist, root);
	plan->startup_cost += tlist_cost.startup;
	plan->total_cost += tlist_cost.startup +
		tlist_cost.per_tuple * plan->plan_rows;

	tlist_rows = tlist_returns_set_rows(tlist);
	if (tlist_rows > 1)
	{
		/*
		 * We assume that execution costs of the tlist proper were all
		 * accounted for by cost_qual_eval.  However, it still seems
		 * appropriate to charge something more for the executor's general
		 * costs of processing the added tuples.  The cost is probably less
		 * than cpu_tuple_cost, though, so we arbitrarily use half of that.
		 */
		plan->total_cost += plan->plan_rows * (tlist_rows - 1) *
			cpu_tuple_cost / 2;

		plan->plan_rows *= tlist_rows;
	}
}

2509 2510 2511 2512 2513
/*
 * Detect whether a plan node is a "dummy" plan created when a relation
 * is deemed not to need scanning due to constraint exclusion.
 *
 * Currently, such dummy plans are Result nodes with constant FALSE
2514 2515 2516
 * filter quals (see set_dummy_rel_pathlist and create_append_plan).
 *
 * XXX this probably ought to be somewhere else, but not clear where.
2517
 */
2518
bool
2519 2520 2521 2522
is_dummy_plan(Plan *plan)
{
	if (IsA(plan, Result))
	{
B
Bruce Momjian 已提交
2523
		List	   *rcqual = (List *) ((Result *) plan)->resconstantqual;
2524 2525 2526

		if (list_length(rcqual) == 1)
		{
B
Bruce Momjian 已提交
2527
			Const	   *constqual = (Const *) linitial(rcqual);
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

			if (constqual && IsA(constqual, Const))
			{
				if (!constqual->constisnull &&
					!DatumGetBool(constqual->constvalue))
					return true;
			}
		}
	}
	return false;
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/*
 * Create a bitmapset of the RT indexes of live base relations
 *
 * Helper for preprocess_rowmarks ... at this point in the proceedings,
 * the only good way to distinguish baserels from appendrel children
 * is to see what is in the join tree.
 */
static Bitmapset *
get_base_rel_indexes(Node *jtnode)
{
	Bitmapset  *result;

	if (jtnode == NULL)
		return NULL;
	if (IsA(jtnode, RangeTblRef))
	{
		int			varno = ((RangeTblRef *) jtnode)->rtindex;

		result = bms_make_singleton(varno);
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
		ListCell   *l;

		result = NULL;
		foreach(l, f->fromlist)
			result = bms_join(result,
							  get_base_rel_indexes(lfirst(l)));
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

		result = bms_join(get_base_rel_indexes(j->larg),
						  get_base_rel_indexes(j->rarg));
	}
	else
	{
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
		result = NULL;			/* keep compiler quiet */
	}
	return result;
}

/*
 * preprocess_rowmarks - set up PlanRowMarks if needed
 */
static void
preprocess_rowmarks(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	Bitmapset  *rels;
	List	   *prowmarks;
	ListCell   *l;
	int			i;

	if (parse->rowMarks)
	{
		/*
B
Bruce Momjian 已提交
2601 2602 2603
		 * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside
		 * grouping, since grouping renders a reference to individual tuple
		 * CTIDs invalid.  This is also checked at parse time, but that's
2604 2605
		 * insufficient because of rule substitution, query pullup, etc.
		 */
2606
		CheckSelectLocking(parse, ((RowMarkClause *)
B
Bruce Momjian 已提交
2607
								   linitial(parse->rowMarks))->strength);
2608 2609 2610 2611
	}
	else
	{
		/*
B
Bruce Momjian 已提交
2612 2613
		 * We only need rowmarks for UPDATE, DELETE, or FOR [KEY]
		 * UPDATE/SHARE.
2614 2615 2616 2617 2618 2619 2620
		 */
		if (parse->commandType != CMD_UPDATE &&
			parse->commandType != CMD_DELETE)
			return;
	}

	/*
B
Bruce Momjian 已提交
2621 2622
	 * We need to have rowmarks for all base relations except the target. We
	 * make a bitmapset of all base rels and then remove the items we don't
2623
	 * need or have FOR [KEY] UPDATE/SHARE marks for.
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	 */
	rels = get_base_rel_indexes((Node *) parse->jointree);
	if (parse->resultRelation)
		rels = bms_del_member(rels, parse->resultRelation);

	/*
	 * Convert RowMarkClauses to PlanRowMark representation.
	 */
	prowmarks = NIL;
	foreach(l, parse->rowMarks)
	{
		RowMarkClause *rc = (RowMarkClause *) lfirst(l);
2636 2637
		RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
		PlanRowMark *newrc;
2638

2639
		/*
2640
		 * Currently, it is syntactically impossible to have FOR UPDATE et al
B
Bruce Momjian 已提交
2641
		 * applied to an update/delete target rel.  If that ever becomes
2642 2643
		 * possible, we should drop the target from the PlanRowMark list.
		 */
2644
		Assert(rc->rti != parse->resultRelation);
2645 2646

		/*
B
Bruce Momjian 已提交
2647 2648 2649 2650
		 * Ignore RowMarkClauses for subqueries; they aren't real tables and
		 * can't support true locking.  Subqueries that got flattened into the
		 * main query should be ignored completely.  Any that didn't will get
		 * ROW_MARK_COPY items in the next loop.
2651 2652 2653 2654
		 */
		if (rte->rtekind != RTE_RELATION)
			continue;

2655 2656
		rels = bms_del_member(rels, rc->rti);

2657
		newrc = makeNode(PlanRowMark);
2658
		newrc->rti = newrc->prti = rc->rti;
2659
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2660
		newrc->markType = select_rowmark_type(rte, rc->strength);
2661 2662
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = rc->strength;
2663
		newrc->waitPolicy = rc->waitPolicy;
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	/*
	 * Now, add rowmarks for any non-target, non-locked base relations.
	 */
	i = 0;
	foreach(l, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
		PlanRowMark *newrc;

		i++;
		if (!bms_is_member(i, rels))
			continue;

		newrc = makeNode(PlanRowMark);
		newrc->rti = newrc->prti = i;
2684
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2685
		newrc->markType = select_rowmark_type(rte, LCS_NONE);
2686 2687
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = LCS_NONE;
2688
		newrc->waitPolicy = LockWaitBlock;		/* doesn't matter */
2689 2690 2691 2692 2693 2694 2695 2696
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	root->rowMarks = prowmarks;
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/*
 * Select RowMarkType to use for a given table
 */
RowMarkType
select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength)
{
	if (rte->rtekind != RTE_RELATION)
	{
		/* If it's not a table at all, use ROW_MARK_COPY */
		return ROW_MARK_COPY;
	}
	else if (rte->relkind == RELKIND_FOREIGN_TABLE)
	{
2710 2711 2712 2713 2714 2715
		/* Let the FDW select the rowmark type, if it wants to */
		FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid);

		if (fdwroutine->GetForeignRowMarkType != NULL)
			return fdwroutine->GetForeignRowMarkType(rte, strength);
		/* Otherwise, use ROW_MARK_COPY by default */
2716 2717 2718 2719 2720 2721 2722 2723
		return ROW_MARK_COPY;
	}
	else
	{
		/* Regular table, apply the appropriate lock type */
		switch (strength)
		{
			case LCS_NONE:
B
Bruce Momjian 已提交
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
				/*
				 * We don't need a tuple lock, only the ability to re-fetch
				 * the row.  Regular tables support ROW_MARK_REFERENCE, but if
				 * this RTE has security barrier quals, it will be turned into
				 * a subquery during planning, so use ROW_MARK_COPY.
				 *
				 * This is only necessary for LCS_NONE, since real tuple locks
				 * on an RTE with security barrier quals are supported by
				 * pushing the lock down into the subquery --- see
				 * expand_security_qual.
				 */
				if (rte->securityQuals != NIL)
					return ROW_MARK_COPY;
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
				return ROW_MARK_REFERENCE;
				break;
			case LCS_FORKEYSHARE:
				return ROW_MARK_KEYSHARE;
				break;
			case LCS_FORSHARE:
				return ROW_MARK_SHARE;
				break;
			case LCS_FORNOKEYUPDATE:
				return ROW_MARK_NOKEYEXCLUSIVE;
				break;
			case LCS_FORUPDATE:
				return ROW_MARK_EXCLUSIVE;
				break;
		}
		elog(ERROR, "unrecognized LockClauseStrength %d", (int) strength);
		return ROW_MARK_EXCLUSIVE;		/* keep compiler quiet */
	}
}

2758
/*
2759
 * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
2760
 *
2761
 * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
B
Bruce Momjian 已提交
2762
 * results back in *count_est and *offset_est.  These variables are set to
2763 2764 2765 2766 2767 2768 2769 2770
 * 0 if the corresponding clause is not present, and -1 if it's present
 * but we couldn't estimate the value for it.  (The "0" convention is OK
 * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
 * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
 * usual practice of never estimating less than one row.)  These values will
 * be passed to make_limit, which see if you change this code.
 *
 * The return value is the suitably adjusted tuple_fraction to use for
B
Bruce Momjian 已提交
2771
 * planning the query.  This adjustment is not overridable, since it reflects
2772 2773
 * plan actions that grouping_planner() will certainly take, not assumptions
 * about context.
2774 2775
 */
static double
2776
preprocess_limit(PlannerInfo *root, double tuple_fraction,
B
Bruce Momjian 已提交
2777
				 int64 *offset_est, int64 *count_est)
2778 2779
{
	Query	   *parse = root->parse;
2780 2781
	Node	   *est;
	double		limit_fraction;
2782

2783 2784
	/* Should not be called unless LIMIT or OFFSET */
	Assert(parse->limitCount || parse->limitOffset);
2785 2786

	/*
2787 2788
	 * Try to obtain the clause values.  We use estimate_expression_value
	 * primarily because it can sometimes do something useful with Params.
2789
	 */
2790
	if (parse->limitCount)
2791
	{
2792
		est = estimate_expression_value(root, parse->limitCount);
2793
		if (est && IsA(est, Const))
2794
		{
2795
			if (((Const *) est)->constisnull)
2796
			{
2797
				/* NULL indicates LIMIT ALL, ie, no limit */
B
Bruce Momjian 已提交
2798
				*count_est = 0; /* treat as not present */
2799 2800 2801
			}
			else
			{
B
Bruce Momjian 已提交
2802
				*count_est = DatumGetInt64(((Const *) est)->constvalue);
2803 2804
				if (*count_est <= 0)
					*count_est = 1;		/* force to at least 1 */
2805 2806
			}
		}
2807 2808
		else
			*count_est = -1;	/* can't estimate */
2809 2810
	}
	else
2811 2812 2813
		*count_est = 0;			/* not present */

	if (parse->limitOffset)
2814
	{
2815
		est = estimate_expression_value(root, parse->limitOffset);
2816 2817 2818 2819 2820
		if (est && IsA(est, Const))
		{
			if (((Const *) est)->constisnull)
			{
				/* Treat NULL as no offset; the executor will too */
B
Bruce Momjian 已提交
2821
				*offset_est = 0;	/* treat as not present */
2822 2823 2824
			}
			else
			{
B
Bruce Momjian 已提交
2825
				*offset_est = DatumGetInt64(((Const *) est)->constvalue);
2826
				if (*offset_est < 0)
2827
					*offset_est = 0;	/* treat as not present */
2828 2829 2830 2831
			}
		}
		else
			*offset_est = -1;	/* can't estimate */
2832
	}
2833 2834
	else
		*offset_est = 0;		/* not present */
2835

2836
	if (*count_est != 0)
2837
	{
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		/*
		 * A LIMIT clause limits the absolute number of tuples returned.
		 * However, if it's not a constant LIMIT then we have to guess; for
		 * lack of a better idea, assume 10% of the plan's result is wanted.
		 */
		if (*count_est < 0 || *offset_est < 0)
		{
			/* LIMIT or OFFSET is an expression ... punt ... */
			limit_fraction = 0.10;
		}
		else
		{
			/* LIMIT (plus OFFSET, if any) is max number of tuples needed */
			limit_fraction = (double) *count_est + (double) *offset_est;
		}

2854 2855
		/*
		 * If we have absolute limits from both caller and LIMIT, use the
2856 2857 2858 2859
		 * smaller value; likewise if they are both fractional.  If one is
		 * fractional and the other absolute, we can't easily determine which
		 * is smaller, but we use the heuristic that the absolute will usually
		 * be smaller.
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute */
				tuple_fraction = Min(tuple_fraction, limit_fraction);
			}
			else
			{
2870
				/* caller absolute, limit fractional; use caller's value */
2871 2872 2873 2874 2875 2876
			}
		}
		else if (tuple_fraction > 0.0)
		{
			if (limit_fraction >= 1.0)
			{
2877 2878
				/* caller fractional, limit absolute; use limit */
				tuple_fraction = limit_fraction;
2879 2880 2881 2882
			}
			else
			{
				/* both fractional */
2883
				tuple_fraction = Min(tuple_fraction, limit_fraction);
2884 2885 2886 2887 2888 2889 2890 2891
			}
		}
		else
		{
			/* no info from caller, just use limit */
			tuple_fraction = limit_fraction;
		}
	}
2892 2893 2894
	else if (*offset_est != 0 && tuple_fraction > 0.0)
	{
		/*
B
Bruce Momjian 已提交
2895
		 * We have an OFFSET but no LIMIT.  This acts entirely differently
B
Bruce Momjian 已提交
2896 2897 2898 2899
		 * from the LIMIT case: here, we need to increase rather than decrease
		 * the caller's tuple_fraction, because the OFFSET acts to cause more
		 * tuples to be fetched instead of fewer.  This only matters if we got
		 * a tuple_fraction > 0, however.
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
		 *
		 * As above, use 10% if OFFSET is present but unestimatable.
		 */
		if (*offset_est < 0)
			limit_fraction = 0.10;
		else
			limit_fraction = (double) *offset_est;

		/*
		 * If we have absolute counts from both caller and OFFSET, add them
B
Bruce Momjian 已提交
2910
		 * together; likewise if they are both fractional.  If one is
B
Bruce Momjian 已提交
2911 2912
		 * fractional and the other absolute, we want to take the larger, and
		 * we heuristically assume that's the fractional one.
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute, so add them together */
				tuple_fraction += limit_fraction;
			}
			else
			{
				/* caller absolute, limit fractional; use limit */
				tuple_fraction = limit_fraction;
			}
		}
		else
		{
			if (limit_fraction >= 1.0)
			{
				/* caller fractional, limit absolute; use caller's value */
			}
			else
			{
				/* both fractional, so add them together */
				tuple_fraction += limit_fraction;
				if (tuple_fraction >= 1.0)
B
Bruce Momjian 已提交
2938
					tuple_fraction = 0.0;		/* assume fetch all */
2939 2940 2941
			}
		}
	}
2942 2943 2944 2945

	return tuple_fraction;
}

2946 2947 2948 2949 2950
/*
 * limit_needed - do we actually need a Limit plan node?
 *
 * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding
 * a Limit node.  This is worth checking for because "OFFSET 0" is a common
B
Bruce Momjian 已提交
2951
 * locution for an optimization fence.  (Because other places in the planner
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
 * merely check whether parse->limitOffset isn't NULL, it will still work as
 * an optimization fence --- we're just suppressing unnecessary run-time
 * overhead.)
 *
 * This might look like it could be merged into preprocess_limit, but there's
 * a key distinction: here we need hard constants in OFFSET/LIMIT, whereas
 * in preprocess_limit it's good enough to consider estimated values.
 */
static bool
limit_needed(Query *parse)
{
	Node	   *node;

	node = parse->limitCount;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* NULL indicates LIMIT ALL, ie, no limit */
			if (!((Const *) node)->constisnull)
				return true;	/* LIMIT with a constant value */
		}
		else
			return true;		/* non-constant LIMIT */
	}

	node = parse->limitOffset;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* Treat NULL as no offset; the executor would too */
			if (!((Const *) node)->constisnull)
			{
B
Bruce Momjian 已提交
2986
				int64		offset = DatumGetInt64(((Const *) node)->constvalue);
2987

2988 2989
				if (offset != 0)
					return true;	/* OFFSET with a nonzero value */
2990 2991 2992 2993 2994 2995 2996 2997 2998
			}
		}
		else
			return true;		/* non-constant OFFSET */
	}

	return false;				/* don't need a Limit plan node */
}

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011

/*
 * preprocess_groupclause - do preparatory work on GROUP BY clause
 *
 * The idea here is to adjust the ordering of the GROUP BY elements
 * (which in itself is semantically insignificant) to match ORDER BY,
 * thereby allowing a single sort operation to both implement the ORDER BY
 * requirement and set up for a Unique step that implements GROUP BY.
 *
 * In principle it might be interesting to consider other orderings of the
 * GROUP BY elements, which could match the sort ordering of other
 * possible plans (eg an indexscan) and thereby reduce cost.  We don't
 * bother with that, though.  Hashed grouping will frequently win anyway.
3012 3013 3014
 *
 * Note: we need no comparable processing of the distinctClause because
 * the parser already enforced that that matches ORDER BY.
3015 3016 3017 3018 3019
 *
 * For grouping sets, the order of items is instead forced to agree with that
 * of the grouping set (and items not in the grouping set are skipped). The
 * work of sorting the order of grouping set elements to match the ORDER BY if
 * possible is done elsewhere.
3020
 */
3021 3022
static List *
preprocess_groupclause(PlannerInfo *root, List *force)
3023 3024
{
	Query	   *parse = root->parse;
3025
	List	   *new_groupclause = NIL;
3026 3027 3028 3029
	bool		partial_match;
	ListCell   *sl;
	ListCell   *gl;

3030 3031 3032 3033 3034
	/* For grouping sets, we need to force the ordering */
	if (force)
	{
		foreach(sl, force)
		{
B
Bruce Momjian 已提交
3035
			Index		ref = lfirst_int(sl);
3036 3037 3038 3039 3040 3041 3042 3043
			SortGroupClause *cl = get_sortgroupref_clause(ref, parse->groupClause);

			new_groupclause = lappend(new_groupclause, cl);
		}

		return new_groupclause;
	}

3044
	/* If no ORDER BY, nothing useful to do here */
3045
	if (parse->sortClause == NIL)
3046
		return parse->groupClause;
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

	/*
	 * Scan the ORDER BY clause and construct a list of matching GROUP BY
	 * items, but only as far as we can make a matching prefix.
	 *
	 * This code assumes that the sortClause contains no duplicate items.
	 */
	foreach(sl, parse->sortClause)
	{
		SortGroupClause *sc = (SortGroupClause *) lfirst(sl);

		foreach(gl, parse->groupClause)
		{
			SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

			if (equal(gc, sc))
			{
				new_groupclause = lappend(new_groupclause, gc);
				break;
			}
		}
		if (gl == NULL)
			break;				/* no match, so stop scanning */
	}

	/* Did we match all of the ORDER BY list, or just some of it? */
	partial_match = (sl != NULL);

	/* If no match at all, no point in reordering GROUP BY */
	if (new_groupclause == NIL)
3077
		return parse->groupClause;
3078 3079

	/*
3080 3081 3082 3083 3084 3085
	 * Add any remaining GROUP BY items to the new list, but only if we were
	 * able to make a complete match.  In other words, we only rearrange the
	 * GROUP BY list if the result is that one list is a prefix of the other
	 * --- otherwise there's no possibility of a common sort.  Also, give up
	 * if there are any non-sortable GROUP BY items, since then there's no
	 * hope anyway.
3086 3087 3088 3089 3090 3091 3092 3093
	 */
	foreach(gl, parse->groupClause)
	{
		SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

		if (list_member_ptr(new_groupclause, gc))
			continue;			/* it matched an ORDER BY item */
		if (partial_match)
3094
			return parse->groupClause;	/* give up, no common sort possible */
3095
		if (!OidIsValid(gc->sortop))
3096
			return parse->groupClause;	/* give up, GROUP BY can't be sorted */
3097 3098 3099 3100 3101
		new_groupclause = lappend(new_groupclause, gc);
	}

	/* Success --- install the rearranged GROUP BY list */
	Assert(list_length(parse->groupClause) == list_length(new_groupclause));
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	return new_groupclause;
}

/*
 * Extract lists of grouping sets that can be implemented using a single
 * rollup-type aggregate pass each. Returns a list of lists of grouping sets.
 *
 * Input must be sorted with smallest sets first. Result has each sublist
 * sorted with smallest sets first.
 *
 * We want to produce the absolute minimum possible number of lists here to
 * avoid excess sorts. Fortunately, there is an algorithm for this; the problem
 * of finding the minimal partition of a partially-ordered set into chains
 * (which is what we need, taking the list of grouping sets as a poset ordered
 * by set inclusion) can be mapped to the problem of finding the maximum
 * cardinality matching on a bipartite graph, which is solvable in polynomial
 * time with a worst case of no worse than O(n^2.5) and usually much
 * better. Since our N is at most 4096, we don't need to consider fallbacks to
 * heuristic or approximate methods.  (Planning time for a 12-d cube is under
 * half a second on my modest system even with optimization off and assertions
 * on.)
 */
static List *
extract_rollup_sets(List *groupingSets)
{
	int			num_sets_raw = list_length(groupingSets);
	int			num_empty = 0;
B
Bruce Momjian 已提交
3129
	int			num_sets = 0;	/* distinct sets */
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	int			num_chains = 0;
	List	   *result = NIL;
	List	  **results;
	List	  **orig_sets;
	Bitmapset **set_masks;
	int		   *chains;
	short	  **adjacency;
	short	   *adjacency_buf;
	BipartiteMatchState *state;
	int			i;
	int			j;
	int			j_size;
	ListCell   *lc1 = list_head(groupingSets);
	ListCell   *lc;

	/*
	 * Start by stripping out empty sets.  The algorithm doesn't require this,
	 * but the planner currently needs all empty sets to be returned in the
	 * first list, so we strip them here and add them back after.
	 */
	while (lc1 && lfirst(lc1) == NIL)
	{
		++num_empty;
		lc1 = lnext(lc1);
	}

	/* bail out now if it turns out that all we had were empty sets. */
	if (!lc1)
		return list_make1(groupingSets);

T
Tom Lane 已提交
3160
	/*----------
B
Bruce Momjian 已提交
3161 3162
	 * We don't strictly need to remove duplicate sets here, but if we don't,
	 * they tend to become scattered through the result, which is a bit
T
Tom Lane 已提交
3163 3164
	 * confusing (and irritating if we ever decide to optimize them out).
	 * So we remove them here and add them back after.
3165 3166 3167
	 *
	 * For each non-duplicate set, we fill in the following:
	 *
T
Tom Lane 已提交
3168 3169 3170
	 * orig_sets[i] = list of the original set lists
	 * set_masks[i] = bitmapset for testing inclusion
	 * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices
3171 3172 3173
	 *
	 * chains[i] will be the result group this set is assigned to.
	 *
T
Tom Lane 已提交
3174 3175 3176
	 * We index all of these from 1 rather than 0 because it is convenient
	 * to leave 0 free for the NIL node in the graph algorithm.
	 *----------
3177
	 */
B
Bruce Momjian 已提交
3178
	orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *));
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *));
	adjacency = palloc0((num_sets_raw + 1) * sizeof(short *));
	adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short));

	j_size = 0;
	j = 0;
	i = 1;

	for_each_cell(lc, lc1)
	{
		List	   *candidate = lfirst(lc);
		Bitmapset  *candidate_set = NULL;
		ListCell   *lc2;
		int			dup_of = 0;

		foreach(lc2, candidate)
		{
			candidate_set = bms_add_member(candidate_set, lfirst_int(lc2));
		}

		/* we can only be a dup if we're the same length as a previous set */
		if (j_size == list_length(candidate))
		{
B
Bruce Momjian 已提交
3202 3203
			int			k;

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
			for (k = j; k < i; ++k)
			{
				if (bms_equal(set_masks[k], candidate_set))
				{
					dup_of = k;
					break;
				}
			}
		}
		else if (j_size < list_length(candidate))
		{
			j_size = list_length(candidate);
			j = i;
		}

		if (dup_of > 0)
		{
			orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate);
			bms_free(candidate_set);
		}
		else
		{
B
Bruce Momjian 已提交
3226 3227
			int			k;
			int			n_adj = 0;
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269

			orig_sets[i] = list_make1(candidate);
			set_masks[i] = candidate_set;

			/* fill in adjacency list; no need to compare equal-size sets */

			for (k = j - 1; k > 0; --k)
			{
				if (bms_is_subset(set_masks[k], candidate_set))
					adjacency_buf[++n_adj] = k;
			}

			if (n_adj > 0)
			{
				adjacency_buf[0] = n_adj;
				adjacency[i] = palloc((n_adj + 1) * sizeof(short));
				memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short));
			}
			else
				adjacency[i] = NULL;

			++i;
		}
	}

	num_sets = i - 1;

	/*
	 * Apply the graph matching algorithm to do the work.
	 */
	state = BipartiteMatch(num_sets, num_sets, adjacency);

	/*
	 * Now, the state->pair* fields have the info we need to assign sets to
	 * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or
	 * pair_vu[v] = u (both will be true, but we check both so that we can do
	 * it in one pass)
	 */
	chains = palloc0((num_sets + 1) * sizeof(int));

	for (i = 1; i <= num_sets; ++i)
	{
B
Bruce Momjian 已提交
3270 3271
		int			u = state->pair_vu[i];
		int			v = state->pair_uv[i];
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

		if (u > 0 && u < i)
			chains[i] = chains[u];
		else if (v > 0 && v < i)
			chains[i] = chains[v];
		else
			chains[i] = ++num_chains;
	}

	/* build result lists. */
B
Bruce Momjian 已提交
3282
	results = palloc0((num_chains + 1) * sizeof(List *));
3283 3284 3285

	for (i = 1; i <= num_sets; ++i)
	{
B
Bruce Momjian 已提交
3286
		int			c = chains[i];
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

		Assert(c > 0);

		results[c] = list_concat(results[c], orig_sets[i]);
	}

	/* push any empty sets back on the first list. */
	while (num_empty-- > 0)
		results[1] = lcons(NIL, results[1]);

	/* make result list */
	for (i = 1; i <= num_chains; ++i)
		result = lappend(result, results[i]);

	/*
	 * Free all the things.
	 *
	 * (This is over-fussy for small sets but for large sets we could have
	 * tied up a nontrivial amount of memory.)
	 */
	BipartiteMatchFree(state);
	pfree(results);
	pfree(chains);
	for (i = 1; i <= num_sets; ++i)
		if (adjacency[i])
			pfree(adjacency[i]);
	pfree(adjacency);
	pfree(adjacency_buf);
	pfree(orig_sets);
	for (i = 1; i <= num_sets; ++i)
		bms_free(set_masks[i]);
	pfree(set_masks);

	return result;
}

/*
 * Reorder the elements of a list of grouping sets such that they have correct
 * prefix relationships.
 *
 * The input must be ordered with smallest sets first; the result is returned
 * with largest sets first.
 *
 * If we're passed in a sortclause, we follow its order of columns to the
 * extent possible, to minimize the chance that we add unnecessary sorts.
 * (We're trying here to ensure that GROUPING SETS ((a,b,c),(c)) ORDER BY c,b,a
 * gets implemented in one pass.)
 */
static List *
reorder_grouping_sets(List *groupingsets, List *sortclause)
{
	ListCell   *lc;
	ListCell   *lc2;
	List	   *previous = NIL;
	List	   *result = NIL;

	foreach(lc, groupingsets)
	{
B
Bruce Momjian 已提交
3345 3346
		List	   *candidate = lfirst(lc);
		List	   *new_elems = list_difference_int(candidate, previous);
3347 3348 3349 3350 3351 3352

		if (list_length(new_elems) > 0)
		{
			while (list_length(sortclause) > list_length(previous))
			{
				SortGroupClause *sc = list_nth(sortclause, list_length(previous));
B
Bruce Momjian 已提交
3353 3354
				int			ref = sc->tleSortGroupRef;

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
				if (list_member_int(new_elems, ref))
				{
					previous = lappend_int(previous, ref);
					new_elems = list_delete_int(new_elems, ref);
				}
				else
				{
					/* diverged from the sortclause; give up on it */
					sortclause = NIL;
					break;
				}
			}

			foreach(lc2, new_elems)
			{
				previous = lappend_int(previous, lfirst_int(lc2));
			}
		}

		result = lcons(list_copy(previous), result);
		list_free(new_elems);
	}

	list_free(previous);

	return result;
3381 3382
}

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
/*
 * Compute query_pathkeys and other pathkeys during plan generation
 */
static void
standard_qp_callback(PlannerInfo *root, void *extra)
{
	Query	   *parse = root->parse;
	standard_qp_extra *qp_extra = (standard_qp_extra *) extra;
	List	   *tlist = qp_extra->tlist;
	List	   *activeWindows = qp_extra->activeWindows;

	/*
	 * Calculate pathkeys that represent grouping/ordering requirements.  The
	 * sortClause is certainly sort-able, but GROUP BY and DISTINCT might not
	 * be, in which case we just leave their pathkeys empty.
	 */
3399 3400
	if (qp_extra->groupClause &&
		grouping_is_sortable(qp_extra->groupClause))
3401 3402
		root->group_pathkeys =
			make_pathkeys_for_sortclauses(root,
3403
										  qp_extra->groupClause,
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
										  tlist);
	else
		root->group_pathkeys = NIL;

	/* We consider only the first (bottom) window in pathkeys logic */
	if (activeWindows != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(activeWindows);

		root->window_pathkeys = make_pathkeys_for_window(root,
														 wc,
														 tlist);
	}
	else
		root->window_pathkeys = NIL;

	if (parse->distinctClause &&
		grouping_is_sortable(parse->distinctClause))
		root->distinct_pathkeys =
			make_pathkeys_for_sortclauses(root,
										  parse->distinctClause,
										  tlist);
	else
		root->distinct_pathkeys = NIL;

	root->sort_pathkeys =
		make_pathkeys_for_sortclauses(root,
									  parse->sortClause,
									  tlist);

	/*
	 * Figure out whether we want a sorted result from query_planner.
	 *
	 * If we have a sortable GROUP BY clause, then we want a result sorted
	 * properly for grouping.  Otherwise, if we have window functions to
	 * evaluate, we try to sort for the first window.  Otherwise, if there's a
	 * sortable DISTINCT clause that's more rigorous than the ORDER BY clause,
	 * we try to produce output that's sufficiently well sorted for the
	 * DISTINCT.  Otherwise, if there is an ORDER BY clause, we want to sort
	 * by the ORDER BY clause.
	 *
	 * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset
	 * of GROUP BY, it would be tempting to request sort by ORDER BY --- but
	 * that might just leave us failing to exploit an available sort order at
	 * all.  Needs more thought.  The choice for DISTINCT versus ORDER BY is
	 * much easier, since we know that the parser ensured that one is a
	 * superset of the other.
	 */
	if (root->group_pathkeys)
		root->query_pathkeys = root->group_pathkeys;
	else if (root->window_pathkeys)
		root->query_pathkeys = root->window_pathkeys;
	else if (list_length(root->distinct_pathkeys) >
			 list_length(root->sort_pathkeys))
		root->query_pathkeys = root->distinct_pathkeys;
	else if (root->sort_pathkeys)
		root->query_pathkeys = root->sort_pathkeys;
	else
		root->query_pathkeys = NIL;
}

3465 3466
/*
 * choose_hashed_grouping - should we use hashed grouping?
3467
 *
3468
 * Returns TRUE to select hashing, FALSE to select sorting.
3469 3470
 */
static bool
3471 3472
choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
3473
					   double path_rows, int path_width,
3474
					   Path *cheapest_path, Path *sorted_path,
3475
					   double dNumGroups, AggClauseCosts *agg_costs)
3476
{
3477 3478 3479 3480
	Query	   *parse = root->parse;
	int			numGroupCols = list_length(parse->groupClause);
	bool		can_hash;
	bool		can_sort;
3481
	Size		hashentrysize;
3482
	List	   *target_pathkeys;
3483 3484 3485 3486
	List	   *current_pathkeys;
	Path		hashed_p;
	Path		sorted_p;

3487 3488
	/*
	 * Executor doesn't support hashed aggregation with DISTINCT or ORDER BY
B
Bruce Momjian 已提交
3489
	 * aggregates.  (Doing so would imply storing *all* the input values in
3490
	 * the hash table, and/or running many sorts in parallel, either of which
3491 3492 3493
	 * seems like a certain loser.)  We similarly don't support ordered-set
	 * aggregates in hashed aggregation, but that case is included in the
	 * numOrderedAggs count.
3494
	 */
3495
	can_hash = (agg_costs->numOrderedAggs == 0 &&
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
				grouping_is_hashable(parse->groupClause));
	can_sort = grouping_is_sortable(parse->groupClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement GROUP BY"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

3513
	/* Prefer sorting when enable_hashagg is off */
3514 3515 3516 3517 3518 3519 3520 3521 3522
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */

	/* Estimate per-hash-entry space at tuple width... */
3523
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
3524
	/* plus space for pass-by-ref transition values... */
3525
	hashentrysize += agg_costs->transitionSpace;
3526
	/* plus the per-hash-entry overhead */
3527
	hashentrysize += hash_agg_entry_size(agg_costs->numAggs);
3528 3529 3530 3531

	if (hashentrysize * dNumGroups > work_mem * 1024L)
		return false;

3532 3533
	/*
	 * When we have both GROUP BY and DISTINCT, use the more-rigorous of
3534 3535 3536 3537
	 * DISTINCT and ORDER BY as the assumed required output sort order. This
	 * is an oversimplification because the DISTINCT might get implemented via
	 * hashing, but it's not clear that the case is common enough (or that our
	 * estimates are good enough) to justify trying to solve it exactly.
3538 3539 3540 3541 3542 3543 3544
	 */
	if (list_length(root->distinct_pathkeys) >
		list_length(root->sort_pathkeys))
		target_pathkeys = root->distinct_pathkeys;
	else
		target_pathkeys = root->sort_pathkeys;

3545
	/*
B
Bruce Momjian 已提交
3546 3547 3548 3549
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
3550
	 *
3551 3552 3553
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * either cheapest_path [+ sort] + group or agg [+ final sort] or
	 * presorted_path + group or agg [+ final sort] where brackets indicate a
3554 3555
	 * step that may not be needed.  We assume grouping_planner() will have
	 * passed us a presorted path only if it's a winner compared to
3556
	 * cheapest_path for this purpose.
3557
	 *
3558 3559
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
3560
	 */
3561
	cost_agg(&hashed_p, root, AGG_HASHED, agg_costs,
3562 3563
			 numGroupCols, dNumGroups,
			 cheapest_path->startup_cost, cheapest_path->total_cost,
3564
			 path_rows);
3565
	/* Result of hashed agg is always unsorted */
3566 3567
	if (target_pathkeys)
		cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
3568 3569
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582

	if (sorted_path)
	{
		sorted_p.startup_cost = sorted_path->startup_cost;
		sorted_p.total_cost = sorted_path->total_cost;
		current_pathkeys = sorted_path->pathkeys;
	}
	else
	{
		sorted_p.startup_cost = cheapest_path->startup_cost;
		sorted_p.total_cost = cheapest_path->total_cost;
		current_pathkeys = cheapest_path->pathkeys;
	}
3583
	if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
3584
	{
3585
		cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
3586 3587
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
3588
		current_pathkeys = root->group_pathkeys;
3589 3590
	}

3591
	if (parse->hasAggs)
3592
		cost_agg(&sorted_p, root, AGG_SORTED, agg_costs,
3593 3594
				 numGroupCols, dNumGroups,
				 sorted_p.startup_cost, sorted_p.total_cost,
3595
				 path_rows);
3596
	else
3597
		cost_group(&sorted_p, root, numGroupCols, dNumGroups,
3598
				   sorted_p.startup_cost, sorted_p.total_cost,
3599
				   path_rows);
3600
	/* The Agg or Group node will preserve ordering */
3601 3602 3603
	if (target_pathkeys &&
		!pathkeys_contained_in(target_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
3604 3605
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
3606 3607

	/*
3608
	 * Now make the decision using the top-level tuple fraction.
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

3619 3620 3621 3622 3623
/*
 * choose_hashed_distinct - should we use hashing for DISTINCT?
 *
 * This is fairly similar to choose_hashed_grouping, but there are enough
 * differences that it doesn't seem worth trying to unify the two functions.
3624 3625 3626
 * (One difference is that we sometimes apply this after forming a Plan,
 * so the input alternatives can't be represented as Paths --- instead we
 * pass in the costs as individual variables.)
3627 3628
 *
 * But note that making the two choices independently is a bit bogus in
B
Bruce Momjian 已提交
3629
 * itself.  If the two could be combined into a single choice operation
3630 3631 3632 3633 3634 3635
 * it'd probably be better, but that seems far too unwieldy to be practical,
 * especially considering that the combination of GROUP BY and DISTINCT
 * isn't very common in real queries.  By separating them, we are giving
 * extra preference to using a sorting implementation when a common sort key
 * is available ... and that's not necessarily wrong anyway.
 *
3636
 * Returns TRUE to select hashing, FALSE to select sorting.
3637 3638 3639 3640
 */
static bool
choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
3641 3642 3643 3644
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
3645 3646
					   double dNumDistinctRows)
{
3647 3648 3649 3650
	Query	   *parse = root->parse;
	int			numDistinctCols = list_length(parse->distinctClause);
	bool		can_sort;
	bool		can_hash;
3651 3652
	Size		hashentrysize;
	List	   *current_pathkeys;
3653
	List	   *needed_pathkeys;
3654 3655 3656
	Path		hashed_p;
	Path		sorted_p;

3657
	/*
B
Bruce Momjian 已提交
3658 3659
	 * If we have a sortable DISTINCT ON clause, we always use sorting. This
	 * enforces the expected behavior of DISTINCT ON.
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
	 */
	can_sort = grouping_is_sortable(parse->distinctClause);
	if (can_sort && parse->hasDistinctOn)
		return false;

	can_hash = grouping_is_hashable(parse->distinctClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement DISTINCT"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

3681 3682 3683 3684 3685 3686 3687 3688
	/* Prefer sorting when enable_hashagg is off */
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */
3689 3690

	/* Estimate per-hash-entry space at tuple width... */
3691
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
3692 3693
	/* plus the per-hash-entry overhead */
	hashentrysize += hash_agg_entry_size(0);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703

	if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
		return false;

	/*
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
	 *
3704 3705
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * sorted_path [+ sort] + group [+ final sort] where brackets indicate a
3706
	 * step that may not be needed.
3707 3708 3709 3710
	 *
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
	 */
3711
	cost_agg(&hashed_p, root, AGG_HASHED, NULL,
3712
			 numDistinctCols, dNumDistinctRows,
3713 3714
			 cheapest_startup_cost, cheapest_total_cost,
			 path_rows);
3715

3716
	/*
3717 3718
	 * Result of hashed agg is always unsorted, so if ORDER BY is present we
	 * need to charge for the final sort.
3719
	 */
3720
	if (parse->sortClause)
3721
		cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
3722 3723
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3724

3725
	/*
B
Bruce Momjian 已提交
3726
	 * Now for the GROUP case.  See comments in grouping_planner about the
3727 3728
	 * sorting choices here --- this code should match that code.
	 */
3729 3730 3731 3732
	sorted_p.startup_cost = sorted_startup_cost;
	sorted_p.total_cost = sorted_total_cost;
	current_pathkeys = sorted_pathkeys;
	if (parse->hasDistinctOn &&
3733 3734 3735 3736 3737 3738
		list_length(root->distinct_pathkeys) <
		list_length(root->sort_pathkeys))
		needed_pathkeys = root->sort_pathkeys;
	else
		needed_pathkeys = root->distinct_pathkeys;
	if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
3739 3740 3741 3742 3743 3744 3745
	{
		if (list_length(root->distinct_pathkeys) >=
			list_length(root->sort_pathkeys))
			current_pathkeys = root->distinct_pathkeys;
		else
			current_pathkeys = root->sort_pathkeys;
		cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
3746 3747
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
3748 3749 3750
	}
	cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
			   sorted_p.startup_cost, sorted_p.total_cost,
3751 3752
			   path_rows);
	if (parse->sortClause &&
3753 3754
		!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
3755 3756
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3757 3758

	/*
3759
	 * Now make the decision using the top-level tuple fraction.
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

3770
/*
3771
 * make_subplanTargetList
3772
 *	  Generate appropriate target list when grouping is required.
3773
 *
3774 3775 3776 3777 3778
 * When grouping_planner inserts grouping or aggregation plan nodes
 * above the scan/join plan constructed by query_planner+create_plan,
 * we typically want the scan/join plan to emit a different target list
 * than the outer plan nodes should have.  This routine generates the
 * correct target list for the scan/join subplan.
3779 3780 3781 3782
 *
 * The initial target list passed from the parser already contains entries
 * for all ORDER BY and GROUP BY expressions, but it will not have entries
 * for variables used only in HAVING clauses; so we need to add those
3783 3784 3785 3786
 * variables to the subplan target list.  Also, we flatten all expressions
 * except GROUP BY items into their component variables; the other expressions
 * will be computed by the inserted nodes rather than by the subplan.
 * For example, given a query like
3787 3788
 *		SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
 * we want to pass this targetlist to the subplan:
3789
 *		a+b,c,d
3790
 * where the a+b target will be used by the Sort/Group steps, and the
3791
 * other targets will be used for computing the final results.
3792
 *
3793 3794 3795
 * If we are grouping or aggregating, *and* there are no non-Var grouping
 * expressions, then the returned tlist is effectively dummy; we do not
 * need to force it to be evaluated, because all the Vars it contains
3796 3797 3798 3799
 * should be present in the "flat" tlist generated by create_plan, though
 * possibly in a different order.  In that case we'll use create_plan's tlist,
 * and the tlist made here is only needed as input to query_planner to tell
 * it which Vars are needed in the output of the scan/join plan.
3800
 *
3801
 * 'tlist' is the query's target list.
3802
 * 'groupColIdx' receives an array of column numbers for the GROUP BY
3803
 *			expressions (if there are any) in the returned target list.
3804
 * 'need_tlist_eval' is set true if we really need to evaluate the
3805 3806
 *			returned tlist as-is.  (Note: locate_grouping_columns assumes
 *			that if this is FALSE, all grouping columns are simple Vars.)
3807
 *
3808
 * The result is the targetlist to be passed to query_planner.
3809 3810
 */
static List *
3811
make_subplanTargetList(PlannerInfo *root,
3812
					   List *tlist,
3813 3814
					   AttrNumber **groupColIdx,
					   bool *need_tlist_eval)
3815
{
3816
	Query	   *parse = root->parse;
3817
	List	   *sub_tlist;
3818 3819
	List	   *non_group_cols;
	List	   *non_group_vars;
3820 3821 3822 3823
	int			numCols;

	*groupColIdx = NULL;

B
Bruce Momjian 已提交
3824
	/*
3825
	 * If we're not grouping or aggregating, there's nothing to do here;
3826 3827
	 * query_planner should receive the unmodified target list.
	 */
3828
	if (!parse->hasAggs && !parse->groupClause && !parse->groupingSets && !root->hasHavingQual &&
T
Tom Lane 已提交
3829
		!parse->hasWindowFuncs)
3830 3831
	{
		*need_tlist_eval = true;
3832
		return tlist;
3833
	}
3834

B
Bruce Momjian 已提交
3835
	/*
3836 3837
	 * Otherwise, we must build a tlist containing all grouping columns, plus
	 * any other Vars mentioned in the targetlist and HAVING qual.
3838
	 */
3839 3840
	sub_tlist = NIL;
	non_group_cols = NIL;
3841
	*need_tlist_eval = false;	/* only eval if not flat tlist */
3842

3843
	numCols = list_length(parse->groupClause);
3844
	if (numCols > 0)
3845
	{
3846 3847 3848 3849 3850 3851 3852
		/*
		 * If grouping, create sub_tlist entries for all GROUP BY columns, and
		 * make an array showing where the group columns are in the sub_tlist.
		 *
		 * Note: with this implementation, the array entries will always be
		 * 1..N, but we don't want callers to assume that.
		 */
3853
		AttrNumber *grpColIdx;
3854
		ListCell   *tl;
3855

3856
		grpColIdx = (AttrNumber *) palloc0(sizeof(AttrNumber) * numCols);
3857
		*groupColIdx = grpColIdx;
3858

3859
		foreach(tl, tlist)
3860
		{
3861 3862
			TargetEntry *tle = (TargetEntry *) lfirst(tl);
			int			colno;
3863

3864 3865 3866 3867 3868 3869 3870 3871
			colno = get_grouping_column_index(parse, tle);
			if (colno >= 0)
			{
				/*
				 * It's a grouping column, so add it to the result tlist and
				 * remember its resno in grpColIdx[].
				 */
				TargetEntry *newtle;
3872

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
				newtle = makeTargetEntry(tle->expr,
										 list_length(sub_tlist) + 1,
										 NULL,
										 false);
				sub_tlist = lappend(sub_tlist, newtle);

				Assert(grpColIdx[colno] == 0);	/* no dups expected */
				grpColIdx[colno] = newtle->resno;

				if (!(newtle->expr && IsA(newtle->expr, Var)))
					*need_tlist_eval = true;	/* tlist contains non Vars */
			}
			else
3886
			{
3887
				/*
3888 3889
				 * Non-grouping column, so just remember the expression for
				 * later call to pull_var_clause.  There's no need for
3890 3891 3892
				 * pull_var_clause to examine the TargetEntry node itself.
				 */
				non_group_cols = lappend(non_group_cols, tle->expr);
3893 3894 3895
			}
		}
	}
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	else
	{
		/*
		 * With no grouping columns, just pass whole tlist to pull_var_clause.
		 * Need (shallow) copy to avoid damaging input tlist below.
		 */
		non_group_cols = list_copy(tlist);
	}

	/*
	 * If there's a HAVING clause, we'll need the Vars it uses, too.
	 */
	if (parse->havingQual)
		non_group_cols = lappend(non_group_cols, parse->havingQual);

	/*
	 * Pull out all the Vars mentioned in non-group cols (plus HAVING), and
	 * add them to the result tlist if not already present.  (A Var used
	 * directly as a GROUP BY item will be present already.)  Note this
	 * includes Vars used in resjunk items, so we are covering the needs of
B
Bruce Momjian 已提交
3916
	 * ORDER BY and window specifications.  Vars used within Aggrefs will be
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	 * pulled out here, too.
	 */
	non_group_vars = pull_var_clause((Node *) non_group_cols,
									 PVC_RECURSE_AGGREGATES,
									 PVC_INCLUDE_PLACEHOLDERS);
	sub_tlist = add_to_flat_tlist(sub_tlist, non_group_vars);

	/* clean up cruft */
	list_free(non_group_vars);
	list_free(non_group_cols);
3927 3928 3929 3930

	return sub_tlist;
}

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
/*
 * get_grouping_column_index
 *		Get the GROUP BY column position, if any, of a targetlist entry.
 *
 * Returns the index (counting from 0) of the TLE in the GROUP BY list, or -1
 * if it's not a grouping column.  Note: the result is unique because the
 * parser won't make multiple groupClause entries for the same TLE.
 */
static int
get_grouping_column_index(Query *parse, TargetEntry *tle)
{
	int			colno = 0;
	Index		ressortgroupref = tle->ressortgroupref;
	ListCell   *gl;

	/* No need to search groupClause if TLE hasn't got a sortgroupref */
	if (ressortgroupref == 0)
		return -1;

	foreach(gl, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);

		if (grpcl->tleSortGroupRef == ressortgroupref)
			return colno;
		colno++;
	}

	return -1;
}

3962 3963
/*
 * locate_grouping_columns
3964
 *		Locate grouping columns in the tlist chosen by create_plan.
3965 3966
 *
 * This is only needed if we don't use the sub_tlist chosen by
B
Bruce Momjian 已提交
3967
 * make_subplanTargetList.  We have to forget the column indexes found
T
Tom Lane 已提交
3968
 * by that routine and re-locate the grouping exprs in the real sub_tlist.
3969
 * We assume the grouping exprs are just Vars (see make_subplanTargetList).
3970 3971
 */
static void
3972
locate_grouping_columns(PlannerInfo *root,
3973 3974 3975 3976 3977
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx)
{
	int			keyno = 0;
3978
	ListCell   *gl;
3979 3980 3981 3982

	/*
	 * No work unless grouping.
	 */
3983
	if (!root->parse->groupClause)
3984 3985 3986 3987 3988 3989
	{
		Assert(groupColIdx == NULL);
		return;
	}
	Assert(groupColIdx != NULL);

3990
	foreach(gl, root->parse->groupClause)
3991
	{
3992
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
3993 3994
		Var		   *groupexpr = (Var *) get_sortgroupclause_expr(grpcl, tlist);
		TargetEntry *te;
3995

3996 3997
		/*
		 * The grouping column returned by create_plan might not have the same
B
Bruce Momjian 已提交
3998
		 * typmod as the original Var.  (This can happen in cases where a
3999 4000 4001
		 * set-returning function has been inlined, so that we now have more
		 * knowledge about what it returns than we did when the original Var
		 * was created.)  So we can't use tlist_member() to search the tlist;
B
Bruce Momjian 已提交
4002
		 * instead use tlist_member_match_var.  For safety, still check that
4003 4004 4005 4006 4007
		 * the vartype matches.
		 */
		if (!(groupexpr && IsA(groupexpr, Var)))
			elog(ERROR, "grouping column is not a Var as expected");
		te = tlist_member_match_var(groupexpr, sub_tlist);
T
Tom Lane 已提交
4008
		if (!te)
4009
			elog(ERROR, "failed to locate grouping columns");
4010
		Assert(((Var *) te->expr)->vartype == groupexpr->vartype);
4011
		groupColIdx[keyno++] = te->resno;
4012 4013 4014
	}
}

4015 4016 4017 4018 4019 4020 4021
/*
 * postprocess_setop_tlist
 *	  Fix up targetlist returned by plan_set_operations().
 *
 * We need to transpose sort key info from the orig_tlist into new_tlist.
 * NOTE: this would not be good enough if we supported resjunk sort keys
 * for results of set operations --- then, we'd need to project a whole
4022
 * new tlist to evaluate the resjunk columns.  For now, just ereport if we
4023 4024 4025 4026 4027
 * find any resjunk columns in orig_tlist.
 */
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
4028 4029
	ListCell   *l;
	ListCell   *orig_tlist_item = list_head(orig_tlist);
4030 4031 4032 4033 4034 4035 4036

	foreach(l, new_tlist)
	{
		TargetEntry *new_tle = (TargetEntry *) lfirst(l);
		TargetEntry *orig_tle;

		/* ignore resjunk columns in setop result */
4037
		if (new_tle->resjunk)
4038 4039
			continue;

4040 4041 4042
		Assert(orig_tlist_item != NULL);
		orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
		orig_tlist_item = lnext(orig_tlist_item);
B
Bruce Momjian 已提交
4043
		if (orig_tle->resjunk)	/* should not happen */
4044
			elog(ERROR, "resjunk output columns are not implemented");
4045 4046
		Assert(new_tle->resno == orig_tle->resno);
		new_tle->ressortgroupref = orig_tle->ressortgroupref;
4047
	}
4048
	if (orig_tlist_item != NULL)
4049
		elog(ERROR, "resjunk output columns are not implemented");
4050 4051
	return new_tlist;
}
T
Tom Lane 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083

/*
 * select_active_windows
 *		Create a list of the "active" window clauses (ie, those referenced
 *		by non-deleted WindowFuncs) in the order they are to be executed.
 */
static List *
select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
{
	List	   *result;
	List	   *actives;
	ListCell   *lc;

	/* First, make a list of the active windows */
	actives = NIL;
	foreach(lc, root->parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);

		/* It's only active if wflists shows some related WindowFuncs */
		Assert(wc->winref <= wflists->maxWinRef);
		if (wflists->windowFuncs[wc->winref] != NIL)
			actives = lappend(actives, wc);
	}

	/*
	 * Now, ensure that windows with identical partitioning/ordering clauses
	 * are adjacent in the list.  This is required by the SQL standard, which
	 * says that only one sort is to be used for such windows, even if they
	 * are otherwise distinct (eg, different names or framing clauses).
	 *
	 * There is room to be much smarter here, for example detecting whether
4084 4085 4086 4087
	 * one window's sort keys are a prefix of another's (so that sorting for
	 * the latter would do for the former), or putting windows first that
	 * match a sort order available for the underlying query.  For the moment
	 * we are content with meeting the spec.
T
Tom Lane 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	 */
	result = NIL;
	while (actives != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(actives);
		ListCell   *prev;
		ListCell   *next;

		/* Move wc from actives to result */
		actives = list_delete_first(actives);
		result = lappend(result, wc);

		/* Now move any matching windows from actives to result */
		prev = NULL;
		for (lc = list_head(actives); lc; lc = next)
		{
			WindowClause *wc2 = (WindowClause *) lfirst(lc);

			next = lnext(lc);
4107
			/* framing options are NOT to be compared here! */
T
Tom Lane 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
			if (equal(wc->partitionClause, wc2->partitionClause) &&
				equal(wc->orderClause, wc2->orderClause))
			{
				actives = list_delete_cell(actives, lc, prev);
				result = lappend(result, wc2);
			}
			else
				prev = lc;
		}
	}

	return result;
}

4122
/*
4123 4124 4125 4126 4127
 * make_windowInputTargetList
 *	  Generate appropriate target list for initial input to WindowAgg nodes.
 *
 * When grouping_planner inserts one or more WindowAgg nodes into the plan,
 * this function computes the initial target list to be computed by the node
B
Bruce Momjian 已提交
4128
 * just below the first WindowAgg.  This list must contain all values needed
4129 4130 4131 4132 4133 4134 4135
 * to evaluate the window functions, compute the final target list, and
 * perform any required final sort step.  If multiple WindowAggs are needed,
 * each intermediate one adds its window function results onto this tlist;
 * only the topmost WindowAgg computes the actual desired target list.
 *
 * This function is much like make_subplanTargetList, though not quite enough
 * like it to share code.  As in that function, we flatten most expressions
B
Bruce Momjian 已提交
4136
 * into their component variables.  But we do not want to flatten window
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
 * PARTITION BY/ORDER BY clauses, since that might result in multiple
 * evaluations of them, which would be bad (possibly even resulting in
 * inconsistent answers, if they contain volatile functions).  Also, we must
 * not flatten GROUP BY clauses that were left unflattened by
 * make_subplanTargetList, because we may no longer have access to the
 * individual Vars in them.
 *
 * Another key difference from make_subplanTargetList is that we don't flatten
 * Aggref expressions, since those are to be computed below the window
 * functions and just referenced like Vars above that.
 *
 * 'tlist' is the query's final target list.
 * 'activeWindows' is the list of active windows previously identified by
 *			select_active_windows.
 *
 * The result is the targetlist to be computed by the plan node immediately
 * below the first WindowAgg node.
4154 4155
 */
static List *
4156 4157 4158
make_windowInputTargetList(PlannerInfo *root,
						   List *tlist,
						   List *activeWindows)
4159
{
4160 4161 4162 4163 4164
	Query	   *parse = root->parse;
	Bitmapset  *sgrefs;
	List	   *new_tlist;
	List	   *flattenable_cols;
	List	   *flattenable_vars;
4165 4166
	ListCell   *lc;

4167 4168 4169 4170 4171 4172 4173
	Assert(parse->hasWindowFuncs);

	/*
	 * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses
	 * into a bitmapset for convenient reference below.
	 */
	sgrefs = NULL;
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
	foreach(lc, activeWindows)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);
		ListCell   *lc2;

		foreach(lc2, wc->partitionClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
		foreach(lc2, wc->orderClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
	}

4193 4194 4195 4196 4197 4198 4199 4200
	/* Add in sortgroupref numbers of GROUP BY clauses, too */
	foreach(lc, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(lc);

		sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef);
	}

4201
	/*
4202 4203
	 * Construct a tlist containing all the non-flattenable tlist items, and
	 * save aside the others for a moment.
4204
	 */
4205 4206 4207
	new_tlist = NIL;
	flattenable_cols = NIL;

4208 4209 4210 4211
	foreach(lc, tlist)
	{
		TargetEntry *tle = (TargetEntry *) lfirst(lc);

4212 4213 4214 4215 4216
		/*
		 * Don't want to deconstruct window clauses or GROUP BY items.  (Note
		 * that such items can't contain window functions, so it's okay to
		 * compute them below the WindowAgg nodes.)
		 */
4217
		if (tle->ressortgroupref != 0 &&
4218
			bms_is_member(tle->ressortgroupref, sgrefs))
4219
		{
4220
			/* Don't want to deconstruct this value, so add to new_tlist */
4221 4222 4223
			TargetEntry *newtle;

			newtle = makeTargetEntry(tle->expr,
4224
									 list_length(new_tlist) + 1,
4225 4226
									 NULL,
									 false);
4227
			/* Preserve its sortgroupref marking, in case it's volatile */
4228
			newtle->ressortgroupref = tle->ressortgroupref;
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
			new_tlist = lappend(new_tlist, newtle);
		}
		else
		{
			/*
			 * Column is to be flattened, so just remember the expression for
			 * later call to pull_var_clause.  There's no need for
			 * pull_var_clause to examine the TargetEntry node itself.
			 */
			flattenable_cols = lappend(flattenable_cols, tle->expr);
4239 4240 4241
		}
	}

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	/*
	 * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and
	 * add them to the result tlist if not already present.  (Some might be
	 * there already because they're used directly as window/group clauses.)
	 *
	 * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that the
	 * Aggrefs are placed in the Agg node's tlist and not left to be computed
	 * at higher levels.
	 */
	flattenable_vars = pull_var_clause((Node *) flattenable_cols,
									   PVC_INCLUDE_AGGREGATES,
									   PVC_INCLUDE_PLACEHOLDERS);
	new_tlist = add_to_flat_tlist(new_tlist, flattenable_vars);

	/* clean up cruft */
	list_free(flattenable_vars);
	list_free(flattenable_cols);

	return new_tlist;
4261 4262
}

T
Tom Lane 已提交
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
/*
 * make_pathkeys_for_window
 *		Create a pathkeys list describing the required input ordering
 *		for the given WindowClause.
 *
 * The required ordering is first the PARTITION keys, then the ORDER keys.
 * In the future we might try to implement windowing using hashing, in which
 * case the ordering could be relaxed, but for now we always sort.
 */
static List *
make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
4274
						 List *tlist)
T
Tom Lane 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
{
	List	   *window_pathkeys;
	List	   *window_sortclauses;

	/* Throw error if can't sort */
	if (!grouping_is_sortable(wc->partitionClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window PARTITION BY"),
				 errdetail("Window partitioning columns must be of sortable datatypes.")));
	if (!grouping_is_sortable(wc->orderClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window ORDER BY"),
4289
		errdetail("Window ordering columns must be of sortable datatypes.")));
T
Tom Lane 已提交
4290 4291 4292 4293 4294 4295

	/* Okay, make the combined pathkeys */
	window_sortclauses = list_concat(list_copy(wc->partitionClause),
									 list_copy(wc->orderClause));
	window_pathkeys = make_pathkeys_for_sortclauses(root,
													window_sortclauses,
4296
													tlist);
T
Tom Lane 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
	list_free(window_sortclauses);
	return window_pathkeys;
}

/*----------
 * get_column_info_for_window
 *		Get the partitioning/ordering column numbers and equality operators
 *		for a WindowAgg node.
 *
 * This depends on the behavior of make_pathkeys_for_window()!
 *
 * We are given the target WindowClause and an array of the input column
B
Bruce Momjian 已提交
4309
 * numbers associated with the resulting pathkeys.  In the easy case, there
T
Tom Lane 已提交
4310 4311 4312 4313 4314 4315 4316
 * are the same number of pathkey columns as partitioning + ordering columns
 * and we just have to copy some data around.  However, it's possible that
 * some of the original partitioning + ordering columns were eliminated as
 * redundant during the transformation to pathkeys.  (This can happen even
 * though the parser gets rid of obvious duplicates.  A typical scenario is a
 * window specification "PARTITION BY x ORDER BY y" coupled with a clause
 * "WHERE x = y" that causes the two sort columns to be recognized as
4317
 * redundant.)	In that unusual case, we have to work a lot harder to
T
Tom Lane 已提交
4318 4319 4320
 * determine which keys are significant.
 *
 * The method used here is a bit brute-force: add the sort columns to a list
B
Bruce Momjian 已提交
4321
 * one at a time and note when the resulting pathkey list gets longer.  But
T
Tom Lane 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
 * it's a sufficiently uncommon case that a faster way doesn't seem worth
 * the amount of code refactoring that'd be needed.
 *----------
 */
static void
get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators)
{
	int			numPart = list_length(wc->partitionClause);
	int			numOrder = list_length(wc->orderClause);

	if (numSortCols == numPart + numOrder)
	{
		/* easy case */
		*partNumCols = numPart;
		*partColIdx = sortColIdx;
		*partOperators = extract_grouping_ops(wc->partitionClause);
		*ordNumCols = numOrder;
		*ordColIdx = sortColIdx + numPart;
		*ordOperators = extract_grouping_ops(wc->orderClause);
	}
	else
	{
		List	   *sortclauses;
		List	   *pathkeys;
		int			scidx;
		ListCell   *lc;

		/* first, allocate what's certainly enough space for the arrays */
		*partNumCols = 0;
		*partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
		*partOperators = (Oid *) palloc(numPart * sizeof(Oid));
		*ordNumCols = 0;
		*ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
		*ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
		sortclauses = NIL;
		pathkeys = NIL;
		scidx = 0;
		foreach(lc, wc->partitionClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
4374
														 tlist);
T
Tom Lane 已提交
4375 4376 4377
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
4378 4379
				(*partColIdx)[*partNumCols] = sortColIdx[scidx++];
				(*partOperators)[*partNumCols] = sgc->eqop;
T
Tom Lane 已提交
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
				(*partNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		foreach(lc, wc->orderClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
4392
														 tlist);
T
Tom Lane 已提交
4393 4394 4395
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
4396 4397
				(*ordColIdx)[*ordNumCols] = sortColIdx[scidx++];
				(*ordOperators)[*ordNumCols] = sgc->eqop;
T
Tom Lane 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406
				(*ordNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		/* complain if we didn't eat exactly the right number of sort cols */
		if (scidx != numSortCols)
			elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
	}
}
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420


/*
 * expression_planner
 *		Perform planner's transformations on a standalone expression.
 *
 * Various utility commands need to evaluate expressions that are not part
 * of a plannable query.  They can do so using the executor's regular
 * expression-execution machinery, but first the expression has to be fed
 * through here to transform it from parser output to something executable.
 *
 * Currently, we disallow sublinks in standalone expressions, so there's no
 * real "planning" involved here.  (That might not always be true though.)
 * What we must do is run eval_const_expressions to ensure that any function
4421 4422 4423 4424
 * calls are converted to positional notation and function default arguments
 * get inserted.  The fact that constant subexpressions get simplified is a
 * side-effect that is useful when the expression will get evaluated more than
 * once.  Also, we must fix operator function IDs.
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
 *
 * Note: this must not make any damaging changes to the passed-in expression
 * tree.  (It would actually be okay to apply fix_opfuncids to it, but since
 * we first do an expression_tree_mutator-based walk, what is returned will
 * be a new node tree.)
 */
Expr *
expression_planner(Expr *expr)
{
	Node	   *result;

4436 4437 4438 4439
	/*
	 * Convert named-argument function calls, insert default arguments and
	 * simplify constant subexprs
	 */
4440 4441 4442 4443 4444 4445 4446
	result = eval_const_expressions(NULL, (Node *) expr);

	/* Fill in opfuncid values if missing */
	fix_opfuncids(result);

	return (Expr *) result;
}
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492


/*
 * plan_cluster_use_sort
 *		Use the planner to decide how CLUSTER should implement sorting
 *
 * tableOid is the OID of a table to be clustered on its index indexOid
 * (which is already known to be a btree index).  Decide whether it's
 * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER.
 * Return TRUE to use sorting, FALSE to use an indexscan.
 *
 * Note: caller had better already hold some type of lock on the table.
 */
bool
plan_cluster_use_sort(Oid tableOid, Oid indexOid)
{
	PlannerInfo *root;
	Query	   *query;
	PlannerGlobal *glob;
	RangeTblEntry *rte;
	RelOptInfo *rel;
	IndexOptInfo *indexInfo;
	QualCost	indexExprCost;
	Cost		comparisonCost;
	Path	   *seqScanPath;
	Path		seqScanAndSortPath;
	IndexPath  *indexScanPath;
	ListCell   *lc;

	/* Set up mostly-dummy planner state */
	query = makeNode(Query);
	query->commandType = CMD_SELECT;

	glob = makeNode(PlannerGlobal);

	root = makeNode(PlannerInfo);
	root->parse = query;
	root->glob = glob;
	root->query_level = 1;
	root->planner_cxt = CurrentMemoryContext;
	root->wt_param_id = -1;

	/* Build a minimal RTE for the rel */
	rte = makeNode(RangeTblEntry);
	rte->rtekind = RTE_RELATION;
	rte->relid = tableOid;
B
Bruce Momjian 已提交
4493
	rte->relkind = RELKIND_RELATION;	/* Don't be too picky. */
4494
	rte->lateral = false;
4495 4496 4497 4498
	rte->inh = false;
	rte->inFromCl = true;
	query->rtable = list_make1(rte);

4499 4500
	/* Set up RTE/RelOptInfo arrays */
	setup_simple_rel_arrays(root);
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512

	/* Build RelOptInfo */
	rel = build_simple_rel(root, 1, RELOPT_BASEREL);

	/* Locate IndexOptInfo for the target index */
	indexInfo = NULL;
	foreach(lc, rel->indexlist)
	{
		indexInfo = (IndexOptInfo *) lfirst(lc);
		if (indexInfo->indexoid == indexOid)
			break;
	}
4513 4514 4515 4516 4517 4518 4519 4520

	/*
	 * It's possible that get_relation_info did not generate an IndexOptInfo
	 * for the desired index; this could happen if it's not yet reached its
	 * indcheckxmin usability horizon, or if it's a system index and we're
	 * ignoring system indexes.  In such cases we should tell CLUSTER to not
	 * trust the index contents but use seqscan-and-sort.
	 */
4521
	if (lc == NULL)				/* not in the list? */
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
		return true;			/* use sort */

	/*
	 * Rather than doing all the pushups that would be needed to use
	 * set_baserel_size_estimates, just do a quick hack for rows and width.
	 */
	rel->rows = rel->tuples;
	rel->width = get_relation_data_width(tableOid, NULL);

	root->total_table_pages = rel->pages;
4532 4533 4534

	/*
	 * Determine eval cost of the index expressions, if any.  We need to
4535 4536 4537
	 * charge twice that amount for each tuple comparison that happens during
	 * the sort, since tuplesort.c will have to re-evaluate the index
	 * expressions each time.  (XXX that's pretty inefficient...)
4538 4539 4540 4541 4542
	 */
	cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
	comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);

	/* Estimate the cost of seq scan + sort */
4543
	seqScanPath = create_seqscan_path(root, rel, NULL);
4544 4545 4546 4547 4548 4549
	cost_sort(&seqScanAndSortPath, root, NIL,
			  seqScanPath->total_cost, rel->tuples, rel->width,
			  comparisonCost, maintenance_work_mem, -1.0);

	/* Estimate the cost of index scan */
	indexScanPath = create_index_path(root, indexInfo,
4550
									  NIL, NIL, NIL, NIL, NIL,
4551 4552
									  ForwardScanDirection, false,
									  NULL, 1.0);
4553 4554 4555

	return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
}