stream.go 7.8 KB
Newer Older
Y
Your Name 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
// Package quantile computes approximate quantiles over an unbounded data
// stream within low memory and CPU bounds.
//
// A small amount of accuracy is traded to achieve the above properties.
//
// Multiple streams can be merged before calling Query to generate a single set
// of results. This is meaningful when the streams represent the same type of
// data. See Merge and Samples.
//
// For more detailed information about the algorithm used, see:
//
// Effective Computation of Biased Quantiles over Data Streams
//
// http://www.cs.rutgers.edu/~muthu/bquant.pdf
package quantile

import (
	"math"
	"sort"
)

// Sample holds an observed value and meta information for compression. JSON
// tags have been added for convenience.
type Sample struct {
	Value float64 `json:",string"`
	Width float64 `json:",string"`
	Delta float64 `json:",string"`
}

// Samples represents a slice of samples. It implements sort.Interface.
type Samples []Sample

func (a Samples) Len() int           { return len(a) }
func (a Samples) Less(i, j int) bool { return a[i].Value < a[j].Value }
func (a Samples) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }

type invariant func(s *stream, r float64) float64

// NewLowBiased returns an initialized Stream for low-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the lower ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within (1±Epsilon)*Quantile.
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewLowBiased(epsilon float64) *Stream {
	ƒ := func(s *stream, r float64) float64 {
		return 2 * epsilon * r
	}
	return newStream(ƒ)
}

// NewHighBiased returns an initialized Stream for high-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the higher ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within 1-(1±Epsilon)*(1-Quantile).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewHighBiased(epsilon float64) *Stream {
	ƒ := func(s *stream, r float64) float64 {
		return 2 * epsilon * (s.n - r)
	}
	return newStream(ƒ)
}

// NewTargeted returns an initialized Stream concerned with a particular set of
// quantile values that are supplied a priori. Knowing these a priori reduces
// space and computation time. The targets map maps the desired quantiles to
// their absolute errors, i.e. the true quantile of a value returned by a query
// is guaranteed to be within (Quantile±Epsilon).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
func NewTargeted(targetMap map[float64]float64) *Stream {
	// Convert map to slice to avoid slow iterations on a map.
	// ƒ is called on the hot path, so converting the map to a slice
	// beforehand results in significant CPU savings.
	targets := targetMapToSlice(targetMap)

	ƒ := func(s *stream, r float64) float64 {
		var m = math.MaxFloat64
		var f float64
		for _, t := range targets {
			if t.quantile*s.n <= r {
				f = (2 * t.epsilon * r) / t.quantile
			} else {
				f = (2 * t.epsilon * (s.n - r)) / (1 - t.quantile)
			}
			if f < m {
				m = f
			}
		}
		return m
	}
	return newStream(ƒ)
}

type target struct {
	quantile float64
	epsilon  float64
}

func targetMapToSlice(targetMap map[float64]float64) []target {
	targets := make([]target, 0, len(targetMap))

	for quantile, epsilon := range targetMap {
		t := target{
			quantile: quantile,
			epsilon:  epsilon,
		}
		targets = append(targets, t)
	}

	return targets
}

// Stream computes quantiles for a stream of float64s. It is not thread-safe by
// design. Take care when using across multiple goroutines.
type Stream struct {
	*stream
	b      Samples
	sorted bool
}

func newStream(ƒ invariant) *Stream {
	x := &stream{ƒ: ƒ}
	return &Stream{x, make(Samples, 0, 500), true}
}

// Insert inserts v into the stream.
func (s *Stream) Insert(v float64) {
	s.insert(Sample{Value: v, Width: 1})
}

func (s *Stream) insert(sample Sample) {
	s.b = append(s.b, sample)
	s.sorted = false
	if len(s.b) == cap(s.b) {
		s.flush()
	}
}

// Query returns the computed qth percentiles value. If s was created with
// NewTargeted, and q is not in the set of quantiles provided a priori, Query
// will return an unspecified result.
func (s *Stream) Query(q float64) float64 {
	if !s.flushed() {
		// Fast path when there hasn't been enough data for a flush;
		// this also yields better accuracy for small sets of data.
		l := len(s.b)
		if l == 0 {
			return 0
		}
		i := int(math.Ceil(float64(l) * q))
		if i > 0 {
			i -= 1
		}
		s.maybeSort()
		return s.b[i].Value
	}
	s.flush()
	return s.stream.query(q)
}

// Merge merges samples into the underlying streams samples. This is handy when
// merging multiple streams from separate threads, database shards, etc.
//
// ATTENTION: This method is broken and does not yield correct results. The
// underlying algorithm is not capable of merging streams correctly.
func (s *Stream) Merge(samples Samples) {
	sort.Sort(samples)
	s.stream.merge(samples)
}

// Reset reinitializes and clears the list reusing the samples buffer memory.
func (s *Stream) Reset() {
	s.stream.reset()
	s.b = s.b[:0]
}

// Samples returns stream samples held by s.
func (s *Stream) Samples() Samples {
	if !s.flushed() {
		return s.b
	}
	s.flush()
	return s.stream.samples()
}

// Count returns the total number of samples observed in the stream
// since initialization.
func (s *Stream) Count() int {
	return len(s.b) + s.stream.count()
}

func (s *Stream) flush() {
	s.maybeSort()
	s.stream.merge(s.b)
	s.b = s.b[:0]
}

func (s *Stream) maybeSort() {
	if !s.sorted {
		s.sorted = true
		sort.Sort(s.b)
	}
}

func (s *Stream) flushed() bool {
	return len(s.stream.l) > 0
}

type stream struct {
	n float64
	l []Sample
	ƒ invariant
}

func (s *stream) reset() {
	s.l = s.l[:0]
	s.n = 0
}

func (s *stream) insert(v float64) {
	s.merge(Samples{{v, 1, 0}})
}

func (s *stream) merge(samples Samples) {
	// TODO(beorn7): This tries to merge not only individual samples, but
	// whole summaries. The paper doesn't mention merging summaries at
	// all. Unittests show that the merging is inaccurate. Find out how to
	// do merges properly.
	var r float64
	i := 0
	for _, sample := range samples {
		for ; i < len(s.l); i++ {
			c := s.l[i]
			if c.Value > sample.Value {
				// Insert at position i.
				s.l = append(s.l, Sample{})
				copy(s.l[i+1:], s.l[i:])
				s.l[i] = Sample{
					sample.Value,
					sample.Width,
					math.Max(sample.Delta, math.Floor(s.ƒ(s, r))-1),
					// TODO(beorn7): How to calculate delta correctly?
				}
				i++
				goto inserted
			}
			r += c.Width
		}
		s.l = append(s.l, Sample{sample.Value, sample.Width, 0})
		i++
	inserted:
		s.n += sample.Width
		r += sample.Width
	}
	s.compress()
}

func (s *stream) count() int {
	return int(s.n)
}

func (s *stream) query(q float64) float64 {
	t := math.Ceil(q * s.n)
	t += math.Ceil(s.ƒ(s, t) / 2)
	p := s.l[0]
	var r float64
	for _, c := range s.l[1:] {
		r += p.Width
		if r+c.Width+c.Delta > t {
			return p.Value
		}
		p = c
	}
	return p.Value
}

func (s *stream) compress() {
	if len(s.l) < 2 {
		return
	}
	x := s.l[len(s.l)-1]
	xi := len(s.l) - 1
	r := s.n - 1 - x.Width

	for i := len(s.l) - 2; i >= 0; i-- {
		c := s.l[i]
		if c.Width+x.Width+x.Delta <= s.ƒ(s, r) {
			x.Width += c.Width
			s.l[xi] = x
			// Remove element at i.
			copy(s.l[i:], s.l[i+1:])
			s.l = s.l[:len(s.l)-1]
			xi -= 1
		} else {
			x = c
			xi = i
		}
		r -= c.Width
	}
}

func (s *stream) samples() Samples {
	samples := make(Samples, len(s.l))
	copy(samples, s.l)
	return samples
}