inmem.go 8.8 KB
Newer Older
Y
Your Name 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
package metrics

import (
	"bytes"
	"fmt"
	"math"
	"net/url"
	"strings"
	"sync"
	"time"
)

// InmemSink provides a MetricSink that does in-memory aggregation
// without sending metrics over a network. It can be embedded within
// an application to provide profiling information.
type InmemSink struct {
	// How long is each aggregation interval
	interval time.Duration

	// Retain controls how many metrics interval we keep
	retain time.Duration

	// maxIntervals is the maximum length of intervals.
	// It is retain / interval.
	maxIntervals int

	// intervals is a slice of the retained intervals
	intervals    []*IntervalMetrics
	intervalLock sync.RWMutex

	rateDenom float64
}

// IntervalMetrics stores the aggregated metrics
// for a specific interval
type IntervalMetrics struct {
	sync.RWMutex

	// The start time of the interval
	Interval time.Time

	// Gauges maps the key to the last set value
	Gauges map[string]GaugeValue

	// Points maps the string to the list of emitted values
	// from EmitKey
	Points map[string][]float32

	// Counters maps the string key to a sum of the counter
	// values
	Counters map[string]SampledValue

	// Samples maps the key to an AggregateSample,
	// which has the rolled up view of a sample
	Samples map[string]SampledValue
}

// NewIntervalMetrics creates a new IntervalMetrics for a given interval
func NewIntervalMetrics(intv time.Time) *IntervalMetrics {
	return &IntervalMetrics{
		Interval: intv,
		Gauges:   make(map[string]GaugeValue),
		Points:   make(map[string][]float32),
		Counters: make(map[string]SampledValue),
		Samples:  make(map[string]SampledValue),
	}
}

// AggregateSample is used to hold aggregate metrics
// about a sample
type AggregateSample struct {
	Count       int       // The count of emitted pairs
	Rate        float64   // The values rate per time unit (usually 1 second)
	Sum         float64   // The sum of values
	SumSq       float64   `json:"-"` // The sum of squared values
	Min         float64   // Minimum value
	Max         float64   // Maximum value
	LastUpdated time.Time `json:"-"` // When value was last updated
}

// Computes a Stddev of the values
func (a *AggregateSample) Stddev() float64 {
	num := (float64(a.Count) * a.SumSq) - math.Pow(a.Sum, 2)
	div := float64(a.Count * (a.Count - 1))
	if div == 0 {
		return 0
	}
	return math.Sqrt(num / div)
}

// Computes a mean of the values
func (a *AggregateSample) Mean() float64 {
	if a.Count == 0 {
		return 0
	}
	return a.Sum / float64(a.Count)
}

// Ingest is used to update a sample
func (a *AggregateSample) Ingest(v float64, rateDenom float64) {
	a.Count++
	a.Sum += v
	a.SumSq += (v * v)
	if v < a.Min || a.Count == 1 {
		a.Min = v
	}
	if v > a.Max || a.Count == 1 {
		a.Max = v
	}
	a.Rate = float64(a.Sum) / rateDenom
	a.LastUpdated = time.Now()
}

func (a *AggregateSample) String() string {
	if a.Count == 0 {
		return "Count: 0"
	} else if a.Stddev() == 0 {
		return fmt.Sprintf("Count: %d Sum: %0.3f LastUpdated: %s", a.Count, a.Sum, a.LastUpdated)
	} else {
		return fmt.Sprintf("Count: %d Min: %0.3f Mean: %0.3f Max: %0.3f Stddev: %0.3f Sum: %0.3f LastUpdated: %s",
			a.Count, a.Min, a.Mean(), a.Max, a.Stddev(), a.Sum, a.LastUpdated)
	}
}

// NewInmemSinkFromURL creates an InmemSink from a URL. It is used
// (and tested) from NewMetricSinkFromURL.
func NewInmemSinkFromURL(u *url.URL) (MetricSink, error) {
	params := u.Query()

	interval, err := time.ParseDuration(params.Get("interval"))
	if err != nil {
		return nil, fmt.Errorf("Bad 'interval' param: %s", err)
	}

	retain, err := time.ParseDuration(params.Get("retain"))
	if err != nil {
		return nil, fmt.Errorf("Bad 'retain' param: %s", err)
	}

	return NewInmemSink(interval, retain), nil
}

// NewInmemSink is used to construct a new in-memory sink.
// Uses an aggregation interval and maximum retention period.
func NewInmemSink(interval, retain time.Duration) *InmemSink {
	rateTimeUnit := time.Second
	i := &InmemSink{
		interval:     interval,
		retain:       retain,
		maxIntervals: int(retain / interval),
		rateDenom:    float64(interval.Nanoseconds()) / float64(rateTimeUnit.Nanoseconds()),
	}
	i.intervals = make([]*IntervalMetrics, 0, i.maxIntervals)
	return i
}

func (i *InmemSink) SetGauge(key []string, val float32) {
	i.SetGaugeWithLabels(key, val, nil)
}

func (i *InmemSink) SetGaugeWithLabels(key []string, val float32, labels []Label) {
	k, name := i.flattenKeyLabels(key, labels)
	intv := i.getInterval()

	intv.Lock()
	defer intv.Unlock()
	intv.Gauges[k] = GaugeValue{Name: name, Value: val, Labels: labels}
}

func (i *InmemSink) EmitKey(key []string, val float32) {
	k := i.flattenKey(key)
	intv := i.getInterval()

	intv.Lock()
	defer intv.Unlock()
	vals := intv.Points[k]
	intv.Points[k] = append(vals, val)
}

func (i *InmemSink) IncrCounter(key []string, val float32) {
	i.IncrCounterWithLabels(key, val, nil)
}

func (i *InmemSink) IncrCounterWithLabels(key []string, val float32, labels []Label) {
	k, name := i.flattenKeyLabels(key, labels)
	intv := i.getInterval()

	intv.Lock()
	defer intv.Unlock()

	agg, ok := intv.Counters[k]
	if !ok {
		agg = SampledValue{
			Name:            name,
			AggregateSample: &AggregateSample{},
			Labels:          labels,
		}
		intv.Counters[k] = agg
	}
	agg.Ingest(float64(val), i.rateDenom)
}

func (i *InmemSink) AddSample(key []string, val float32) {
	i.AddSampleWithLabels(key, val, nil)
}

func (i *InmemSink) AddSampleWithLabels(key []string, val float32, labels []Label) {
	k, name := i.flattenKeyLabels(key, labels)
	intv := i.getInterval()

	intv.Lock()
	defer intv.Unlock()

	agg, ok := intv.Samples[k]
	if !ok {
		agg = SampledValue{
			Name:            name,
			AggregateSample: &AggregateSample{},
			Labels:          labels,
		}
		intv.Samples[k] = agg
	}
	agg.Ingest(float64(val), i.rateDenom)
}

// Data is used to retrieve all the aggregated metrics
// Intervals may be in use, and a read lock should be acquired
func (i *InmemSink) Data() []*IntervalMetrics {
	// Get the current interval, forces creation
	i.getInterval()

	i.intervalLock.RLock()
	defer i.intervalLock.RUnlock()

	n := len(i.intervals)
	intervals := make([]*IntervalMetrics, n)

	copy(intervals[:n-1], i.intervals[:n-1])
	current := i.intervals[n-1]

	// make its own copy for current interval
	intervals[n-1] = &IntervalMetrics{}
	copyCurrent := intervals[n-1]
	current.RLock()
	*copyCurrent = *current

	copyCurrent.Gauges = make(map[string]GaugeValue, len(current.Gauges))
	for k, v := range current.Gauges {
		copyCurrent.Gauges[k] = v
	}
	// saved values will be not change, just copy its link
	copyCurrent.Points = make(map[string][]float32, len(current.Points))
	for k, v := range current.Points {
		copyCurrent.Points[k] = v
	}
	copyCurrent.Counters = make(map[string]SampledValue, len(current.Counters))
	for k, v := range current.Counters {
		copyCurrent.Counters[k] = v
	}
	copyCurrent.Samples = make(map[string]SampledValue, len(current.Samples))
	for k, v := range current.Samples {
		copyCurrent.Samples[k] = v
	}
	current.RUnlock()

	return intervals
}

func (i *InmemSink) getExistingInterval(intv time.Time) *IntervalMetrics {
	i.intervalLock.RLock()
	defer i.intervalLock.RUnlock()

	n := len(i.intervals)
	if n > 0 && i.intervals[n-1].Interval == intv {
		return i.intervals[n-1]
	}
	return nil
}

func (i *InmemSink) createInterval(intv time.Time) *IntervalMetrics {
	i.intervalLock.Lock()
	defer i.intervalLock.Unlock()

	// Check for an existing interval
	n := len(i.intervals)
	if n > 0 && i.intervals[n-1].Interval == intv {
		return i.intervals[n-1]
	}

	// Add the current interval
	current := NewIntervalMetrics(intv)
	i.intervals = append(i.intervals, current)
	n++

	// Truncate the intervals if they are too long
	if n >= i.maxIntervals {
		copy(i.intervals[0:], i.intervals[n-i.maxIntervals:])
		i.intervals = i.intervals[:i.maxIntervals]
	}
	return current
}

// getInterval returns the current interval to write to
func (i *InmemSink) getInterval() *IntervalMetrics {
	intv := time.Now().Truncate(i.interval)
	if m := i.getExistingInterval(intv); m != nil {
		return m
	}
	return i.createInterval(intv)
}

// Flattens the key for formatting, removes spaces
func (i *InmemSink) flattenKey(parts []string) string {
	buf := &bytes.Buffer{}
	replacer := strings.NewReplacer(" ", "_")

	if len(parts) > 0 {
		replacer.WriteString(buf, parts[0])
	}
	for _, part := range parts[1:] {
		replacer.WriteString(buf, ".")
		replacer.WriteString(buf, part)
	}

	return buf.String()
}

// Flattens the key for formatting along with its labels, removes spaces
func (i *InmemSink) flattenKeyLabels(parts []string, labels []Label) (string, string) {
	buf := &bytes.Buffer{}
	replacer := strings.NewReplacer(" ", "_")

	if len(parts) > 0 {
		replacer.WriteString(buf, parts[0])
	}
	for _, part := range parts[1:] {
		replacer.WriteString(buf, ".")
		replacer.WriteString(buf, part)
	}

	key := buf.String()

	for _, label := range labels {
		replacer.WriteString(buf, fmt.Sprintf(";%s=%s", label.Name, label.Value))
	}

	return buf.String(), key
}