aac.c 61.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * AAC decoder
 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
24
 * @file libavcodec/aac.c
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 * AAC decoder
 * @author Oded Shimon  ( ods15 ods15 dyndns org )
 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
 */

/*
 * supported tools
 *
 * Support?             Name
 * N (code in SoC repo) gain control
 * Y                    block switching
 * Y                    window shapes - standard
 * N                    window shapes - Low Delay
 * Y                    filterbank - standard
 * N (code in SoC repo) filterbank - Scalable Sample Rate
 * Y                    Temporal Noise Shaping
 * N (code in SoC repo) Long Term Prediction
 * Y                    intensity stereo
 * Y                    channel coupling
44
 * Y                    frequency domain prediction
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
 * Y                    Perceptual Noise Substitution
 * Y                    Mid/Side stereo
 * N                    Scalable Inverse AAC Quantization
 * N                    Frequency Selective Switch
 * N                    upsampling filter
 * Y                    quantization & coding - AAC
 * N                    quantization & coding - TwinVQ
 * N                    quantization & coding - BSAC
 * N                    AAC Error Resilience tools
 * N                    Error Resilience payload syntax
 * N                    Error Protection tool
 * N                    CELP
 * N                    Silence Compression
 * N                    HVXC
 * N                    HVXC 4kbits/s VR
 * N                    Structured Audio tools
 * N                    Structured Audio Sample Bank Format
 * N                    MIDI
 * N                    Harmonic and Individual Lines plus Noise
 * N                    Text-To-Speech Interface
 * N (in progress)      Spectral Band Replication
 * Y (not in this code) Layer-1
 * Y (not in this code) Layer-2
 * Y (not in this code) Layer-3
 * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
 * N (planned)          Parametric Stereo
 * N                    Direct Stream Transfer
 *
 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
 *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
           Parametric Stereo.
 */


#include "avcodec.h"
80
#include "internal.h"
81 82
#include "bitstream.h"
#include "dsputil.h"
83
#include "lpc.h"
84 85 86

#include "aac.h"
#include "aactab.h"
87
#include "aacdectab.h"
88
#include "mpeg4audio.h"
89
#include "aac_parser.h"
90 91 92 93 94 95 96 97 98 99

#include <assert.h>
#include <errno.h>
#include <math.h>
#include <string.h>

static VLC vlc_scalefactors;
static VLC vlc_spectral[11];


100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/**
 * Configure output channel order based on the current program configuration element.
 *
 * @param   che_pos current channel position configuration
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]) {
    AVCodecContext *avctx = ac->avccontext;
    int i, type, channels = 0;

    if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
        return 0; /* no change */

    memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));

    /* Allocate or free elements depending on if they are in the
     * current program configuration.
     *
     * Set up default 1:1 output mapping.
     *
     * For a 5.1 stream the output order will be:
124
     *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
     */

    for(i = 0; i < MAX_ELEM_ID; i++) {
        for(type = 0; type < 4; type++) {
            if(che_pos[type][i]) {
                if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
                    return AVERROR(ENOMEM);
                if(type != TYPE_CCE) {
                    ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
                    if(type == TYPE_CPE) {
                        ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
                    }
                }
            } else
                av_freep(&ac->che[type][i]);
        }
    }

    avctx->channels = channels;
    return 0;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
 *
 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
 * @param sce_map mono (Single Channel Element) map
 * @param type speaker type/position for these channels
 */
static void decode_channel_map(enum ChannelPosition *cpe_map,
        enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
    while(n--) {
        enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
        map[get_bits(gb, 4)] = type;
    }
}

/**
 * Decode program configuration element; reference: table 4.2.
 *
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
        GetBitContext * gb) {
171
    int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
172 173 174

    skip_bits(gb, 2);  // object_type

175
    sampling_index = get_bits(gb, 4);
176
    if(sampling_index > 12) {
177 178 179
        av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
        return -1;
    }
180
    ac->m4ac.sampling_index = sampling_index;
181
    ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
182 183 184 185 186 187 188
    num_front       = get_bits(gb, 4);
    num_side        = get_bits(gb, 4);
    num_back        = get_bits(gb, 4);
    num_lfe         = get_bits(gb, 2);
    num_assoc_data  = get_bits(gb, 3);
    num_cc          = get_bits(gb, 4);

189 190 191 192
    if (get_bits1(gb))
        skip_bits(gb, 4); // mono_mixdown_tag
    if (get_bits1(gb))
        skip_bits(gb, 4); // stereo_mixdown_tag
193

194 195
    if (get_bits1(gb))
        skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
196

197 198 199 200
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
    decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );
201 202 203

    skip_bits_long(gb, 4 * num_assoc_data);

204
    decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );
205 206 207 208 209

    align_get_bits(gb);

    /* comment field, first byte is length */
    skip_bits_long(gb, 8 * get_bits(gb, 8));
210 211
    return 0;
}
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/**
 * Set up channel positions based on a default channel configuration
 * as specified in table 1.17.
 *
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
        int channel_config)
{
    if(channel_config < 1 || channel_config > 7) {
        av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
               channel_config);
        return -1;
    }

    /* default channel configurations:
     *
     * 1ch : front center (mono)
     * 2ch : L + R (stereo)
     * 3ch : front center + L + R
     * 4ch : front center + L + R + back center
     * 5ch : front center + L + R + back stereo
     * 6ch : front center + L + R + back stereo + LFE
     * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
     */

    if(channel_config != 2)
        new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
    if(channel_config > 1)
        new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
    if(channel_config == 4)
        new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
    if(channel_config > 4)
        new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
                                 = AAC_CHANNEL_BACK;  // back stereo
    if(channel_config > 5)
        new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
    if(channel_config == 7)
        new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right

    return 0;
}

258 259 260 261 262 263 264 265 266 267
/**
 * Decode GA "General Audio" specific configuration; reference: table 4.1.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
    enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
    int extension_flag, ret;

    if(get_bits1(gb)) {  // frameLengthFlag
268
        ff_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        return -1;
    }

    if (get_bits1(gb))       // dependsOnCoreCoder
        skip_bits(gb, 14);   // coreCoderDelay
    extension_flag = get_bits1(gb);

    if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
       ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
        skip_bits(gb, 3);     // layerNr

    memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
    if (channel_config == 0) {
        skip_bits(gb, 4);  // element_instance_tag
        if((ret = decode_pce(ac, new_che_pos, gb)))
            return ret;
    } else {
        if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
            return ret;
    }
    if((ret = output_configure(ac, ac->che_pos, new_che_pos)))
        return ret;

    if (extension_flag) {
        switch (ac->m4ac.object_type) {
            case AOT_ER_BSAC:
                skip_bits(gb, 5);    // numOfSubFrame
                skip_bits(gb, 11);   // layer_length
                break;
            case AOT_ER_AAC_LC:
            case AOT_ER_AAC_LTP:
            case AOT_ER_AAC_SCALABLE:
            case AOT_ER_AAC_LD:
                skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
                                    * aacScalefactorDataResilienceFlag
                                    * aacSpectralDataResilienceFlag
                                    */
                break;
        }
        skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
    }
    return 0;
}

/**
 * Decode audio specific configuration; reference: table 1.13.
 *
 * @param   data        pointer to AVCodecContext extradata
 * @param   data_size   size of AVCCodecContext extradata
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
    GetBitContext gb;
    int i;

    init_get_bits(&gb, data, data_size * 8);

    if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
        return -1;
329
    if(ac->m4ac.sampling_index > 12) {
330 331 332 333 334 335 336
        av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
        return -1;
    }

    skip_bits_long(&gb, i);

    switch (ac->m4ac.object_type) {
337
    case AOT_AAC_MAIN:
338 339 340 341 342 343 344 345 346 347 348 349
    case AOT_AAC_LC:
        if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
            return -1;
        break;
    default:
        av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
               ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
        return -1;
    }
    return 0;
}

350 351 352 353 354 355 356 357 358 359 360
/**
 * linear congruential pseudorandom number generator
 *
 * @param   previous_val    pointer to the current state of the generator
 *
 * @return  Returns a 32-bit pseudorandom integer
 */
static av_always_inline int lcg_random(int previous_val) {
    return previous_val * 1664525 + 1013904223;
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static void reset_predict_state(PredictorState * ps) {
    ps->r0 = 0.0f;
    ps->r1 = 0.0f;
    ps->cor0 = 0.0f;
    ps->cor1 = 0.0f;
    ps->var0 = 1.0f;
    ps->var1 = 1.0f;
}

static void reset_all_predictors(PredictorState * ps) {
    int i;
    for (i = 0; i < MAX_PREDICTORS; i++)
        reset_predict_state(&ps[i]);
}

static void reset_predictor_group(PredictorState * ps, int group_num) {
    int i;
    for (i = group_num-1; i < MAX_PREDICTORS; i+=30)
        reset_predict_state(&ps[i]);
}

382 383 384 385 386 387
static av_cold int aac_decode_init(AVCodecContext * avccontext) {
    AACContext * ac = avccontext->priv_data;
    int i;

    ac->avccontext = avccontext;

388 389 390 391 392 393 394 395 396 397 398 399 400 401
    if (avccontext->extradata_size > 0) {
        if(decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
            return -1;
        avccontext->sample_rate = ac->m4ac.sample_rate;
    } else if (avccontext->channels > 0) {
        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
        memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
        if(set_default_channel_config(ac, new_che_pos, avccontext->channels - (avccontext->channels == 8)))
            return -1;
        if(output_configure(ac, ac->che_pos, new_che_pos))
            return -1;
        ac->m4ac.sample_rate = avccontext->sample_rate;
    } else {
        ff_log_missing_feature(ac->avccontext, "Implicit channel configuration is", 0);
402
        return -1;
403
    }
404

405
    avccontext->sample_fmt  = SAMPLE_FMT_S16;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    avccontext->frame_size  = 1024;

    AAC_INIT_VLC_STATIC( 0, 144);
    AAC_INIT_VLC_STATIC( 1, 114);
    AAC_INIT_VLC_STATIC( 2, 188);
    AAC_INIT_VLC_STATIC( 3, 180);
    AAC_INIT_VLC_STATIC( 4, 172);
    AAC_INIT_VLC_STATIC( 5, 140);
    AAC_INIT_VLC_STATIC( 6, 168);
    AAC_INIT_VLC_STATIC( 7, 114);
    AAC_INIT_VLC_STATIC( 8, 262);
    AAC_INIT_VLC_STATIC( 9, 248);
    AAC_INIT_VLC_STATIC(10, 384);

    dsputil_init(&ac->dsp, avccontext);

422 423
    ac->random_state = 0x1f2e3d4c;

424 425 426 427 428 429 430 431 432 433 434 435 436 437
    // -1024 - Compensate wrong IMDCT method.
    // 32768 - Required to scale values to the correct range for the bias method
    //         for float to int16 conversion.

    if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
        ac->add_bias = 385.0f;
        ac->sf_scale = 1. / (-1024. * 32768.);
        ac->sf_offset = 0;
    } else {
        ac->add_bias = 0.0f;
        ac->sf_scale = 1. / -1024.;
        ac->sf_offset = 60;
    }

438
#if !CONFIG_HARDCODED_TABLES
439
    for (i = 0; i < 428; i++)
440
        ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
441 442
#endif /* CONFIG_HARDCODED_TABLES */

443
    INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
444 445 446 447 448 449
        ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
        ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
        352);

    ff_mdct_init(&ac->mdct, 11, 1);
    ff_mdct_init(&ac->mdct_small, 8, 1);
R
Robert Swain 已提交
450 451 452 453 454 455
    // window initialization
    ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
    ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
    ff_sine_window_init(ff_sine_1024, 1024);
    ff_sine_window_init(ff_sine_128, 128);

456 457 458
    return 0;
}

459 460 461 462
/**
 * Skip data_stream_element; reference: table 4.10.
 */
static void skip_data_stream_element(GetBitContext * gb) {
463 464 465 466 467 468 469 470 471
    int byte_align = get_bits1(gb);
    int count = get_bits(gb, 8);
    if (count == 255)
        count += get_bits(gb, 8);
    if (byte_align)
        align_get_bits(gb);
    skip_bits_long(gb, 8 * count);
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) {
    int sfb;
    if (get_bits1(gb)) {
        ics->predictor_reset_group = get_bits(gb, 5);
        if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
            av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
            return -1;
        }
    }
    for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
        ics->prediction_used[sfb] = get_bits1(gb);
    }
    return 0;
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/**
 * Decode Individual Channel Stream info; reference: table 4.6.
 *
 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 */
static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
    if (get_bits1(gb)) {
        av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
        memset(ics, 0, sizeof(IndividualChannelStream));
        return -1;
    }
    ics->window_sequence[1] = ics->window_sequence[0];
    ics->window_sequence[0] = get_bits(gb, 2);
    ics->use_kb_window[1] = ics->use_kb_window[0];
    ics->use_kb_window[0] = get_bits1(gb);
    ics->num_window_groups = 1;
    ics->group_len[0] = 1;
R
Robert Swain 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        int i;
        ics->max_sfb = get_bits(gb, 4);
        for (i = 0; i < 7; i++) {
            if (get_bits1(gb)) {
                ics->group_len[ics->num_window_groups-1]++;
            } else {
                ics->num_window_groups++;
                ics->group_len[ics->num_window_groups-1] = 1;
            }
        }
        ics->num_windows   = 8;
        ics->swb_offset    =      swb_offset_128[ac->m4ac.sampling_index];
        ics->num_swb       =  ff_aac_num_swb_128[ac->m4ac.sampling_index];
        ics->tns_max_bands =   tns_max_bands_128[ac->m4ac.sampling_index];
519
        ics->predictor_present = 0;
R
Robert Swain 已提交
520 521 522 523 524 525
    } else {
        ics->max_sfb       = get_bits(gb, 6);
        ics->num_windows   = 1;
        ics->swb_offset    =     swb_offset_1024[ac->m4ac.sampling_index];
        ics->num_swb       = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
        ics->tns_max_bands =  tns_max_bands_1024[ac->m4ac.sampling_index];
526 527 528 529 530 531 532 533 534 535 536 537 538
        ics->predictor_present = get_bits1(gb);
        ics->predictor_reset_group = 0;
        if (ics->predictor_present) {
            if (ac->m4ac.object_type == AOT_AAC_MAIN) {
                if (decode_prediction(ac, ics, gb)) {
                    memset(ics, 0, sizeof(IndividualChannelStream));
                    return -1;
                }
            } else if (ac->m4ac.object_type == AOT_AAC_LC) {
                av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
                memset(ics, 0, sizeof(IndividualChannelStream));
                return -1;
            } else {
539
                ff_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
R
Robert Swain 已提交
540 541
                memset(ics, 0, sizeof(IndividualChannelStream));
                return -1;
542
            }
543 544 545 546 547 548 549 550 551 552 553
        }
    }

    if(ics->max_sfb > ics->num_swb) {
        av_log(ac->avccontext, AV_LOG_ERROR,
            "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
            ics->max_sfb, ics->num_swb);
        memset(ics, 0, sizeof(IndividualChannelStream));
        return -1;
    }

554 555 556 557 558 559 560 561 562 563 564 565
    return 0;
}

/**
 * Decode band types (section_data payload); reference: table 4.46.
 *
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_band_types(AACContext * ac, enum BandType band_type[120],
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
    int g, idx = 0;
    const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
    for (g = 0; g < ics->num_window_groups; g++) {
        int k = 0;
        while (k < ics->max_sfb) {
            uint8_t sect_len = k;
            int sect_len_incr;
            int sect_band_type = get_bits(gb, 4);
            if (sect_band_type == 12) {
                av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
                return -1;
            }
            while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
                sect_len += sect_len_incr;
            sect_len += sect_len_incr;
            if (sect_len > ics->max_sfb) {
                av_log(ac->avccontext, AV_LOG_ERROR,
                    "Number of bands (%d) exceeds limit (%d).\n",
                    sect_len, ics->max_sfb);
                return -1;
            }
R
Robert Swain 已提交
588 589 590 591
            for (; k < sect_len; k++) {
                band_type        [idx]   = sect_band_type;
                band_type_run_end[idx++] = sect_len;
            }
592 593 594 595
        }
    }
    return 0;
}
596

597 598
/**
 * Decode scalefactors; reference: table 4.47.
599 600 601 602 603 604 605 606 607
 *
 * @param   global_gain         first scalefactor value as scalefactors are differentially coded
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 * @param   sf                  array of scalefactors or intensity stereo positions
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
608
        unsigned int global_gain, IndividualChannelStream * ics,
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        enum BandType band_type[120], int band_type_run_end[120]) {
    const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
    int g, i, idx = 0;
    int offset[3] = { global_gain, global_gain - 90, 100 };
    int noise_flag = 1;
    static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            int run_end = band_type_run_end[idx];
            if (band_type[idx] == ZERO_BT) {
                for(; i < run_end; i++, idx++)
                    sf[idx] = 0.;
            }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
                for(; i < run_end; i++, idx++) {
                    offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if(offset[2] > 255U) {
                        av_log(ac->avccontext, AV_LOG_ERROR,
                            "%s (%d) out of range.\n", sf_str[2], offset[2]);
                        return -1;
                    }
                    sf[idx]  = ff_aac_pow2sf_tab[-offset[2] + 300];
                }
            }else if(band_type[idx] == NOISE_BT) {
                for(; i < run_end; i++, idx++) {
                    if(noise_flag-- > 0)
                        offset[1] += get_bits(gb, 9) - 256;
                    else
                        offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if(offset[1] > 255U) {
                        av_log(ac->avccontext, AV_LOG_ERROR,
                            "%s (%d) out of range.\n", sf_str[1], offset[1]);
                        return -1;
                    }
642
                    sf[idx]  = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100];
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
                }
            }else {
                for(; i < run_end; i++, idx++) {
                    offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if(offset[0] > 255U) {
                        av_log(ac->avccontext, AV_LOG_ERROR,
                            "%s (%d) out of range.\n", sf_str[0], offset[0]);
                        return -1;
                    }
                    sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
                }
            }
        }
    }
    return 0;
}

/**
 * Decode pulse data; reference: table 4.7.
 */
663 664
static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
    int i, pulse_swb;
665
    pulse->num_pulse = get_bits(gb, 2) + 1;
666 667 668 669
    pulse_swb        = get_bits(gb, 6);
    if (pulse_swb >= num_swb)
        return -1;
    pulse->pos[0]    = swb_offset[pulse_swb];
670
    pulse->pos[0]   += get_bits(gb, 5);
671 672
    if (pulse->pos[0] > 1023)
        return -1;
673 674 675
    pulse->amp[0]    = get_bits(gb, 4);
    for (i = 1; i < pulse->num_pulse; i++) {
        pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
676 677
        if (pulse->pos[i] > 1023)
            return -1;
678
        pulse->amp[i] = get_bits(gb, 4);
679
    }
680
    return 0;
681 682
}

R
Robert Swain 已提交
683 684 685 686 687 688 689 690 691 692 693
/**
 * Decode Temporal Noise Shaping data; reference: table 4.48.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
        GetBitContext * gb, const IndividualChannelStream * ics) {
    int w, filt, i, coef_len, coef_res, coef_compress;
    const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
    const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
    for (w = 0; w < ics->num_windows; w++) {
694
        if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
R
Robert Swain 已提交
695 696
            coef_res = get_bits1(gb);

R
Robert Swain 已提交
697 698 699 700 701 702 703 704 705 706
            for (filt = 0; filt < tns->n_filt[w]; filt++) {
                int tmp2_idx;
                tns->length[w][filt] = get_bits(gb, 6 - 2*is8);

                if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
                    av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
                           tns->order[w][filt], tns_max_order);
                    tns->order[w][filt] = 0;
                    return -1;
                }
707
                if (tns->order[w][filt]) {
R
Robert Swain 已提交
708 709 710 711
                    tns->direction[w][filt] = get_bits1(gb);
                    coef_compress = get_bits1(gb);
                    coef_len = coef_res + 3 - coef_compress;
                    tmp2_idx = 2*coef_compress + coef_res;
R
Robert Swain 已提交
712

R
Robert Swain 已提交
713 714
                    for (i = 0; i < tns->order[w][filt]; i++)
                        tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
715
                }
R
Robert Swain 已提交
716
            }
717
        }
R
Robert Swain 已提交
718 719 720 721
    }
    return 0;
}

722 723 724 725 726 727 728 729 730
/**
 * Decode Mid/Side data; reference: table 4.54.
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
        int ms_present) {
731 732 733 734 735 736 737 738
    int idx;
    if (ms_present == 1) {
        for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
            cpe->ms_mask[idx] = get_bits1(gb);
    } else if (ms_present == 2) {
        memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
    }
}
739

R
Robert Swain 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/**
 * Decode spectral data; reference: table 4.50.
 * Dequantize and scale spectral data; reference: 4.6.3.3.
 *
 * @param   coef            array of dequantized, scaled spectral data
 * @param   sf              array of scalefactors or intensity stereo positions
 * @param   pulse_present   set if pulses are present
 * @param   pulse           pointer to pulse data struct
 * @param   band_type       array of the used band type
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
        int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
    int i, k, g, idx = 0;
    const int c = 1024/ics->num_windows;
    const uint16_t * offsets = ics->swb_offset;
    float *coef_base = coef;
758
    static const float sign_lookup[] = { 1.0f, -1.0f };
R
Robert Swain 已提交
759 760 761 762 763 764 765 766 767 768

    for (g = 0; g < ics->num_windows; g++)
        memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));

    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            const int cur_band_type = band_type[idx];
            const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
            const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
            int group;
769
            if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
R
Robert Swain 已提交
770 771 772 773 774
                for (group = 0; group < ics->group_len[g]; group++) {
                    memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
                }
            }else if (cur_band_type == NOISE_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
775 776
                    float scale;
                    float band_energy = 0;
R
Robert Swain 已提交
777 778
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        ac->random_state  = lcg_random(ac->random_state);
779 780 781 782 783 784
                        coef[group*128+k] = ac->random_state;
                        band_energy += coef[group*128+k]*coef[group*128+k];
                    }
                    scale = sf[idx] / sqrtf(band_energy);
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        coef[group*128+k] *= scale;
R
Robert Swain 已提交
785 786
                    }
                }
787
            }else {
R
Robert Swain 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k += dim) {
                        const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
                        const int coef_tmp_idx = (group << 7) + k;
                        const float *vq_ptr;
                        int j;
                        if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
                            av_log(ac->avccontext, AV_LOG_ERROR,
                                "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
                                cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
                            return -1;
                        }
                        vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
                        if (is_cb_unsigned) {
802 803
                            if (vq_ptr[0]) coef[coef_tmp_idx    ] = sign_lookup[get_bits1(gb)];
                            if (vq_ptr[1]) coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)];
804
                            if (dim == 4) {
805 806
                                if (vq_ptr[2]) coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)];
                                if (vq_ptr[3]) coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)];
807
                            }
R
Robert Swain 已提交
808
                        }else {
809 810 811 812 813 814
                            coef[coef_tmp_idx    ] = 1.0f;
                            coef[coef_tmp_idx + 1] = 1.0f;
                            if (dim == 4) {
                                coef[coef_tmp_idx + 2] = 1.0f;
                                coef[coef_tmp_idx + 3] = 1.0f;
                            }
R
Robert Swain 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827
                        }
                        if (cur_band_type == ESC_BT) {
                            for (j = 0; j < 2; j++) {
                                if (vq_ptr[j] == 64.0f) {
                                    int n = 4;
                                    /* The total length of escape_sequence must be < 22 bits according
                                       to the specification (i.e. max is 11111111110xxxxxxxxxx). */
                                    while (get_bits1(gb) && n < 15) n++;
                                    if(n == 15) {
                                        av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
                                        return -1;
                                    }
                                    n = (1<<n) + get_bits(gb, n);
A
Alex Converse 已提交
828
                                    coef[coef_tmp_idx + j] *= cbrtf(n) * n;
R
Robert Swain 已提交
829 830 831 832
                                }else
                                    coef[coef_tmp_idx + j] *= vq_ptr[j];
                            }
                        }else
833 834 835 836 837 838 839 840 841 842 843 844 845 846
                        {
                            coef[coef_tmp_idx    ] *= vq_ptr[0];
                            coef[coef_tmp_idx + 1] *= vq_ptr[1];
                            if (dim == 4) {
                                coef[coef_tmp_idx + 2] *= vq_ptr[2];
                                coef[coef_tmp_idx + 3] *= vq_ptr[3];
                            }
                        }
                        coef[coef_tmp_idx    ] *= sf[idx];
                        coef[coef_tmp_idx + 1] *= sf[idx];
                        if (dim == 4) {
                            coef[coef_tmp_idx + 2] *= sf[idx];
                            coef[coef_tmp_idx + 3] *= sf[idx];
                        }
R
Robert Swain 已提交
847 848 849 850 851 852 853 854
                    }
                }
            }
        }
        coef += ics->group_len[g]<<7;
    }

    if (pulse_present) {
855
        idx = 0;
R
Robert Swain 已提交
856 857
        for(i = 0; i < pulse->num_pulse; i++){
            float co  = coef_base[ pulse->pos[i] ];
858 859 860
            while(offsets[idx + 1] <= pulse->pos[i])
                idx++;
            if (band_type[idx] != NOISE_BT && sf[idx]) {
R
Robert Swain 已提交
861 862 863 864 865 866
                float ico = -pulse->amp[i];
                if (co) {
                    co /= sf[idx];
                    ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
                }
                coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
867
            }
R
Robert Swain 已提交
868 869 870 871 872
        }
    }
    return 0;
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static av_always_inline float flt16_round(float pf) {
    int exp;
    pf = frexpf(pf, &exp);
    pf = ldexpf(roundf(ldexpf(pf, 8)), exp-8);
    return pf;
}

static av_always_inline float flt16_even(float pf) {
    int exp;
    pf = frexpf(pf, &exp);
    pf = ldexpf(rintf(ldexpf(pf, 8)), exp-8);
    return pf;
}

static av_always_inline float flt16_trunc(float pf) {
    int exp;
    pf = frexpf(pf, &exp);
    pf = ldexpf(truncf(ldexpf(pf, 8)), exp-8);
    return pf;
}

static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) {
    const float a     = 0.953125; // 61.0/64
    const float alpha = 0.90625;  // 29.0/32
    float e0, e1;
    float pv;
    float k1, k2;

    k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
    k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;

    pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
    if (output_enable)
        *coef += pv * ac->sf_scale;

    e0 = *coef / ac->sf_scale;
    e1 = e0 - k1 * ps->r0;

    ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
    ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
    ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
    ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));

    ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
    ps->r0 = flt16_trunc(a * e0);
}

/**
 * Apply AAC-Main style frequency domain prediction.
 */
static void apply_prediction(AACContext * ac, SingleChannelElement * sce) {
    int sfb, k;

    if (!sce->ics.predictor_initialized) {
927
        reset_all_predictors(sce->predictor_state);
928 929 930 931 932 933
        sce->ics.predictor_initialized = 1;
    }

    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
        for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
            for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
934
                predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
935 936 937 938
                    sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
            }
        }
        if (sce->ics.predictor_reset_group)
939
            reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
940
    } else
941
        reset_all_predictors(sce->predictor_state);
942 943
}

944
/**
945 946 947 948 949 950 951 952 953 954 955 956 957 958
 * Decode an individual_channel_stream payload; reference: table 4.44.
 *
 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
    Pulse pulse;
    TemporalNoiseShaping * tns = &sce->tns;
    IndividualChannelStream * ics = &sce->ics;
    float * out = sce->coeffs;
    int global_gain, pulse_present = 0;

959 960
    /* This assignment is to silence a GCC warning about the variable being used
     * uninitialized when in fact it always is.
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
     */
    pulse.num_pulse = 0;

    global_gain = get_bits(gb, 8);

    if (!common_window && !scale_flag) {
        if (decode_ics_info(ac, ics, gb, 0) < 0)
            return -1;
    }

    if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
        return -1;
    if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
        return -1;

    pulse_present = 0;
    if (!scale_flag) {
        if ((pulse_present = get_bits1(gb))) {
            if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
                av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
                return -1;
            }
983 984 985 986
            if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
                av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
                return -1;
            }
987 988 989 990
        }
        if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
            return -1;
        if (get_bits1(gb)) {
991
            ff_log_missing_feature(ac->avccontext, "SSR", 1);
992 993 994 995
            return -1;
        }
    }

996
    if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
997
        return -1;
998

999
    if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
1000 1001
        apply_prediction(ac, sce);

1002 1003 1004
    return 0;
}

R
Robert Swain 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/**
 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
 */
static void apply_mid_side_stereo(ChannelElement * cpe) {
    const IndividualChannelStream * ics = &cpe->ch[0].ics;
    float *ch0 = cpe->ch[0].coeffs;
    float *ch1 = cpe->ch[1].coeffs;
    int g, i, k, group, idx = 0;
    const uint16_t * offsets = ics->swb_offset;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            if (cpe->ms_mask[idx] &&
                cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        float tmp = ch0[group*128 + k] - ch1[group*128 + k];
                        ch0[group*128 + k] += ch1[group*128 + k];
                        ch1[group*128 + k] = tmp;
                    }
                }
            }
        }
        ch0 += ics->group_len[g]*128;
        ch1 += ics->group_len[g]*128;
    }
}

/**
 * intensity stereo decoding; reference: 4.6.8.2.3
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
    const IndividualChannelStream * ics = &cpe->ch[1].ics;
    SingleChannelElement * sce1 = &cpe->ch[1];
    float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
    const uint16_t * offsets = ics->swb_offset;
    int g, group, i, k, idx = 0;
    int c;
    float scale;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
                const int bt_run_end = sce1->band_type_run_end[idx];
                for (; i < bt_run_end; i++, idx++) {
                    c = -1 + 2 * (sce1->band_type[idx] - 14);
                    if (ms_present)
                        c *= 1 - 2 * cpe->ms_mask[idx];
                    scale = c * sce1->sf[idx];
                    for (group = 0; group < ics->group_len[g]; group++)
                        for (k = offsets[i]; k < offsets[i+1]; k++)
                            coef1[group*128 + k] = scale * coef0[group*128 + k];
                }
            } else {
                int bt_run_end = sce1->band_type_run_end[idx];
                idx += bt_run_end - i;
                i    = bt_run_end;
            }
        }
        coef0 += ics->group_len[g]*128;
        coef1 += ics->group_len[g]*128;
    }
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
/**
 * Decode a channel_pair_element; reference: table 4.4.
 *
 * @param   elem_id Identifies the instance of a syntax element.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_cpe(AACContext * ac, GetBitContext * gb, int elem_id) {
    int i, ret, common_window, ms_present = 0;
    ChannelElement * cpe;

    cpe = ac->che[TYPE_CPE][elem_id];
    common_window = get_bits1(gb);
    if (common_window) {
        if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
            return -1;
        i = cpe->ch[1].ics.use_kb_window[0];
        cpe->ch[1].ics = cpe->ch[0].ics;
        cpe->ch[1].ics.use_kb_window[1] = i;
        ms_present = get_bits(gb, 2);
        if(ms_present == 3) {
            av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
            return -1;
        } else if(ms_present)
            decode_mid_side_stereo(cpe, gb, ms_present);
    }
    if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
        return ret;
    if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
        return ret;

1102 1103
    if (common_window) {
        if (ms_present)
R
Robert Swain 已提交
1104
            apply_mid_side_stereo(cpe);
1105 1106 1107 1108 1109
        if (ac->m4ac.object_type == AOT_AAC_MAIN) {
            apply_prediction(ac, &cpe->ch[0]);
            apply_prediction(ac, &cpe->ch[1]);
        }
    }
1110

1111
    apply_intensity_stereo(cpe, ms_present);
1112 1113 1114
    return 0;
}

R
Robert Swain 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123
/**
 * Decode coupling_channel_element; reference: table 4.8.
 *
 * @param   elem_id Identifies the instance of a syntax element.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
    int num_gain = 0;
1124
    int c, g, sfb, ret;
R
Robert Swain 已提交
1125 1126 1127 1128 1129
    int sign;
    float scale;
    SingleChannelElement * sce = &che->ch[0];
    ChannelCoupling * coup     = &che->coup;

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    coup->coupling_point = 2*get_bits1(gb);
    coup->num_coupled = get_bits(gb, 3);
    for (c = 0; c <= coup->num_coupled; c++) {
        num_gain++;
        coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
        coup->id_select[c] = get_bits(gb, 4);
        if (coup->type[c] == TYPE_CPE) {
            coup->ch_select[c] = get_bits(gb, 2);
            if (coup->ch_select[c] == 3)
                num_gain++;
        } else
1141
            coup->ch_select[c] = 2;
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    }
    coup->coupling_point += get_bits1(gb);

    if (coup->coupling_point == 2) {
        av_log(ac->avccontext, AV_LOG_ERROR,
            "Independently switched CCE with 'invalid' domain signalled.\n");
        memset(coup, 0, sizeof(ChannelCoupling));
        return -1;
    }

    sign = get_bits(gb, 1);
1153
    scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
1154 1155 1156 1157 1158

    if ((ret = decode_ics(ac, sce, gb, 0, 0)))
        return ret;

    for (c = 0; c < num_gain; c++) {
1159
        int idx = 0;
1160 1161 1162 1163 1164 1165
        int cge = 1;
        int gain = 0;
        float gain_cache = 1.;
        if (c) {
            cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
            gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
1166
            gain_cache = pow(scale, -gain);
1167
        }
R
Robert Swain 已提交
1168 1169
        for (g = 0; g < sce->ics.num_window_groups; g++) {
            for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1170 1171 1172 1173 1174
                if (sce->band_type[idx] != ZERO_BT) {
                    if (!cge) {
                        int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                        if (t) {
                            int s = 1;
1175
                            t = gain += t;
1176 1177 1178 1179
                            if (sign) {
                                s  -= 2 * (t & 0x1);
                                t >>= 1;
                            }
1180
                            gain_cache = pow(scale, -t) * s;
1181 1182 1183 1184
                        }
                    }
                    coup->gain[c][idx] = gain_cache;
                }
R
Robert Swain 已提交
1185 1186
            }
        }
1187 1188 1189 1190
    }
    return 0;
}

1191 1192
/**
 * Decode Spectral Band Replication extension data; reference: table 4.55.
1193 1194 1195
 *
 * @param   crc flag indicating the presence of CRC checksum
 * @param   cnt length of TYPE_FIL syntactic element in bytes
1196
 *
1197 1198 1199 1200
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
 */
static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
    // TODO : sbr_extension implementation
1201
    ff_log_missing_feature(ac->avccontext, "SBR", 0);
1202 1203 1204 1205
    skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
    return cnt;
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/**
 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
 *
 * @return  Returns number of bytes consumed.
 */
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
    int i;
    int num_excl_chan = 0;

    do {
        for (i = 0; i < 7; i++)
            che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
    } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));

    return num_excl_chan / 7;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/**
 * Decode dynamic range information; reference: table 4.52.
 *
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return  Returns number of bytes consumed.
 */
static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
    int n = 1;
    int drc_num_bands = 1;
    int i;

    /* pce_tag_present? */
    if(get_bits1(gb)) {
        che_drc->pce_instance_tag  = get_bits(gb, 4);
        skip_bits(gb, 4); // tag_reserved_bits
        n++;
    }

    /* excluded_chns_present? */
    if(get_bits1(gb)) {
        n += decode_drc_channel_exclusions(che_drc, gb);
    }

    /* drc_bands_present? */
    if (get_bits1(gb)) {
        che_drc->band_incr            = get_bits(gb, 4);
        che_drc->interpolation_scheme = get_bits(gb, 4);
        n++;
        drc_num_bands += che_drc->band_incr;
        for (i = 0; i < drc_num_bands; i++) {
            che_drc->band_top[i] = get_bits(gb, 8);
            n++;
        }
    }

    /* prog_ref_level_present? */
    if (get_bits1(gb)) {
        che_drc->prog_ref_level = get_bits(gb, 7);
        skip_bits1(gb); // prog_ref_level_reserved_bits
        n++;
    }

    for (i = 0; i < drc_num_bands; i++) {
        che_drc->dyn_rng_sgn[i] = get_bits1(gb);
        che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
        n++;
    }

    return n;
}

/**
 * Decode extension data (incomplete); reference: table 4.51.
 *
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return Returns number of bytes consumed
 */
static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    int crc_flag = 0;
    int res = cnt;
    switch (get_bits(gb, 4)) { // extension type
        case EXT_SBR_DATA_CRC:
            crc_flag++;
        case EXT_SBR_DATA:
            res = decode_sbr_extension(ac, gb, crc_flag, cnt);
            break;
        case EXT_DYNAMIC_RANGE:
            res = decode_dynamic_range(&ac->che_drc, gb, cnt);
            break;
        case EXT_FILL:
        case EXT_FILL_DATA:
        case EXT_DATA_ELEMENT:
        default:
            skip_bits_long(gb, 8*cnt - 4);
            break;
    };
    return res;
}

1304 1305 1306 1307 1308 1309 1310 1311
/**
 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
 *
 * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
 * @param   coef    spectral coefficients
 */
static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
    const int mmm = FFMIN(ics->tns_max_bands,  ics->max_sfb);
R
Robert Swain 已提交
1312
    int w, filt, m, i;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    int bottom, top, order, start, end, size, inc;
    float lpc[TNS_MAX_ORDER];

    for (w = 0; w < ics->num_windows; w++) {
        bottom = ics->num_swb;
        for (filt = 0; filt < tns->n_filt[w]; filt++) {
            top    = bottom;
            bottom = FFMAX(0, top - tns->length[w][filt]);
            order  = tns->order[w][filt];
            if (order == 0)
                continue;

1325 1326
            // tns_decode_coef
            compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
1327

R
Robert Swain 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
            start = ics->swb_offset[FFMIN(bottom, mmm)];
            end   = ics->swb_offset[FFMIN(   top, mmm)];
            if ((size = end - start) <= 0)
                continue;
            if (tns->direction[w][filt]) {
                inc = -1; start = end - 1;
            } else {
                inc = 1;
            }
            start += w * 128;

            // ar filter
            for (m = 0; m < size; m++, start += inc)
                for (i = 1; i <= FFMIN(m, order); i++)
1342
                    coef[start] -= coef[start - i*inc] * lpc[i-1];
R
Robert Swain 已提交
1343 1344 1345 1346
        }
    }
}

1347 1348 1349 1350 1351 1352 1353 1354
/**
 * Conduct IMDCT and windowing.
 */
static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
    IndividualChannelStream * ics = &sce->ics;
    float * in = sce->coeffs;
    float * out = sce->ret;
    float * saved = sce->saved;
1355 1356 1357
    const float * swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
    const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1358
    float * buf = ac->buf_mdct;
1359
    float * temp = ac->temp;
1360 1361
    int i;

1362
    // imdct
1363 1364 1365 1366 1367
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
            av_log(ac->avccontext, AV_LOG_WARNING,
                   "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
                   "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1368 1369
        for (i = 0; i < 1024; i += 128)
            ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1370
    } else
1371
        ff_imdct_half(&ac->mdct, buf, in);
1372 1373 1374 1375 1376 1377 1378 1379 1380

    /* window overlapping
     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
     * and long to short transitions are considered to be short to short
     * transitions. This leaves just two cases (long to long and short to short)
     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
     */
    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
        (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1381
        ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, ac->add_bias, 512);
1382
    } else {
1383 1384
        for (i = 0; i < 448; i++)
            out[i] = saved[i] + ac->add_bias;
1385

1386
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1387 1388 1389 1390 1391 1392
            ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, ac->add_bias, 64);
            ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      ac->add_bias, 64);
            ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      ac->add_bias, 64);
            ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      ac->add_bias, 64);
            ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      ac->add_bias, 64);
            memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
1393
        } else {
1394
            ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, ac->add_bias, 64);
1395
            for (i = 576; i < 1024; i++)
1396
                out[i] = buf[i-512] + ac->add_bias;
1397 1398
        }
    }
1399

1400 1401
    // buffer update
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1402 1403 1404 1405 1406 1407
        for (i = 0; i < 64; i++)
            saved[i] = temp[64 + i] - ac->add_bias;
        ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
        ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
        ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
1408
    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1409 1410
        memcpy(                    saved,       buf + 512,        448 * sizeof(float));
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
1411
    } else { // LONG_STOP or ONLY_LONG
1412
        memcpy(                    saved,       buf + 512,        512 * sizeof(float));
1413 1414 1415
    }
}

1416 1417 1418 1419 1420
/**
 * Apply dependent channel coupling (applied before IMDCT).
 *
 * @param   index   index into coupling gain array
 */
1421 1422
static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
    IndividualChannelStream * ics = &cce->ch[0].ics;
1423
    const uint16_t * offsets = ics->swb_offset;
1424 1425
    float * dest = target->coeffs;
    const float * src = cce->ch[0].coeffs;
1426 1427 1428 1429 1430 1431 1432 1433
    int g, i, group, k, idx = 0;
    if(ac->m4ac.object_type == AOT_AAC_LTP) {
        av_log(ac->avccontext, AV_LOG_ERROR,
               "Dependent coupling is not supported together with LTP\n");
        return;
    }
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
1434
            if (cce->ch[0].band_type[idx] != ZERO_BT) {
1435 1436 1437
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        // XXX dsputil-ize
1438
                        dest[group*128+k] += cce->coup.gain[index][idx] * src[group*128+k];
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
                    }
                }
            }
        }
        dest += ics->group_len[g]*128;
        src  += ics->group_len[g]*128;
    }
}

/**
 * Apply independent channel coupling (applied after IMDCT).
 *
 * @param   index   index into coupling gain array
 */
1453
static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
1454 1455
    int i;
    for (i = 0; i < 1024; i++)
1456
        target->ret[i] += cce->coup.gain[index][0] * (cce->ch[0].ret[i] - ac->add_bias);
1457 1458
}

R
Robert Swain 已提交
1459 1460 1461 1462 1463 1464 1465
/**
 * channel coupling transformation interface
 *
 * @param   index   index into coupling gain array
 * @param   apply_coupling_method   pointer to (in)dependent coupling function
 */
static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
1466
        enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
1467
        void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
R
Robert Swain 已提交
1468
{
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    int i, c;

    for (i = 0; i < MAX_ELEM_ID; i++) {
        ChannelElement *cce = ac->che[TYPE_CCE][i];
        int index = 0;

        if (cce && cce->coup.coupling_point == coupling_point) {
            ChannelCoupling * coup = &cce->coup;

            for (c = 0; c <= coup->num_coupled; c++) {
                if (coup->type[c] == type && coup->id_select[c] == elem_id) {
                    if (coup->ch_select[c] != 1) {
                        apply_coupling_method(ac, &cc->ch[0], cce, index);
                        if (coup->ch_select[c] != 0)
                            index++;
                    }
                    if (coup->ch_select[c] != 2)
                        apply_coupling_method(ac, &cc->ch[1], cce, index++);
                } else
                    index += 1 + (coup->ch_select[c] == 3);
R
Robert Swain 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497
            }
        }
    }
}

/**
 * Convert spectral data to float samples, applying all supported tools as appropriate.
 */
static void spectral_to_sample(AACContext * ac) {
1498
    int i, type;
1499 1500
    for(type = 3; type >= 0; type--) {
        for (i = 0; i < MAX_ELEM_ID; i++) {
R
Robert Swain 已提交
1501 1502
            ChannelElement *che = ac->che[type][i];
            if(che) {
1503 1504
                if(type <= TYPE_CPE)
                    apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
R
Robert Swain 已提交
1505 1506 1507 1508
                if(che->ch[0].tns.present)
                    apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
                if(che->ch[1].tns.present)
                    apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
1509 1510 1511 1512
                if(type <= TYPE_CPE)
                    apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
                if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
                    imdct_and_windowing(ac, &che->ch[0]);
R
Robert Swain 已提交
1513 1514
                if(type == TYPE_CPE)
                    imdct_and_windowing(ac, &che->ch[1]);
1515 1516
                if(type <= TYPE_CCE)
                    apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
1517 1518 1519 1520 1521
            }
        }
    }
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) {

    int size;
    AACADTSHeaderInfo hdr_info;

    size = ff_aac_parse_header(gb, &hdr_info);
    if (size > 0) {
        if (hdr_info.chan_config)
            ac->m4ac.chan_config = hdr_info.chan_config;
        ac->m4ac.sample_rate     = hdr_info.sample_rate;
        ac->m4ac.sampling_index  = hdr_info.sampling_index;
        ac->m4ac.object_type     = hdr_info.object_type;
    }
    if (hdr_info.num_aac_frames == 1) {
        if (!hdr_info.crc_absent)
            skip_bits(gb, 16);
    } else {
        ff_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
        return -1;
    }
    return size;
}

1545 1546 1547 1548 1549 1550 1551 1552
static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
    AACContext * ac = avccontext->priv_data;
    GetBitContext gb;
    enum RawDataBlockType elem_type;
    int err, elem_id, data_size_tmp;

    init_get_bits(&gb, buf, buf_size*8);

1553 1554 1555 1556 1557
    if (show_bits(&gb, 12) == 0xfff) {
        if ((err = parse_adts_frame_header(ac, &gb)) < 0) {
            av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
            return -1;
        }
1558
        if (ac->m4ac.sampling_index > 12) {
1559 1560 1561
            av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
            return -1;
        }
1562 1563
    }

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    // parse
    while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
        elem_id = get_bits(&gb, 4);
        err = -1;

        if(elem_type == TYPE_SCE && elem_id == 1 &&
                !ac->che[TYPE_SCE][elem_id] && ac->che[TYPE_LFE][0]) {
            /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
               instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
               encountered such a stream, transfer the LFE[0] element to SCE[1] */
            ac->che[TYPE_SCE][elem_id] = ac->che[TYPE_LFE][0];
            ac->che[TYPE_LFE][0] = NULL;
        }
1577
        if(elem_type < TYPE_DSE) {
1578
            if(!ac->che[elem_type][elem_id])
1579 1580
            {
                av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
1581
                return -1;
1582
            }
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        }

        switch (elem_type) {

        case TYPE_SCE:
            err = decode_ics(ac, &ac->che[TYPE_SCE][elem_id]->ch[0], &gb, 0, 0);
            break;

        case TYPE_CPE:
            err = decode_cpe(ac, &gb, elem_id);
            break;

        case TYPE_CCE:
R
Robert Swain 已提交
1596
            err = decode_cce(ac, &gb, ac->che[TYPE_CCE][elem_id]);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
            break;

        case TYPE_LFE:
            err = decode_ics(ac, &ac->che[TYPE_LFE][elem_id]->ch[0], &gb, 0, 0);
            break;

        case TYPE_DSE:
            skip_data_stream_element(&gb);
            err = 0;
            break;

        case TYPE_PCE:
        {
            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
            memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
            if((err = decode_pce(ac, new_che_pos, &gb)))
                break;
            err = output_configure(ac, ac->che_pos, new_che_pos);
            break;
        }

        case TYPE_FIL:
            if (elem_id == 15)
                elem_id += get_bits(&gb, 8) - 1;
            while (elem_id > 0)
                elem_id -= decode_extension_payload(ac, &gb, elem_id);
            err = 0; /* FIXME */
            break;

        default:
            err = -1; /* should not happen, but keeps compiler happy */
            break;
        }

        if(err)
            return err;
    }

    spectral_to_sample(ac);

1637 1638 1639
    if (!ac->is_saved) {
        ac->is_saved = 1;
        *data_size = 0;
1640
        return buf_size;
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    }

    data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
    if(*data_size < data_size_tmp) {
        av_log(avccontext, AV_LOG_ERROR,
               "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
               *data_size, data_size_tmp);
        return -1;
    }
    *data_size = data_size_tmp;

    ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);

    return buf_size;
}

1657 1658
static av_cold int aac_decode_close(AVCodecContext * avccontext) {
    AACContext * ac = avccontext->priv_data;
1659
    int i, type;
1660

1661
    for (i = 0; i < MAX_ELEM_ID; i++) {
1662 1663
        for(type = 0; type < 4; type++)
            av_freep(&ac->che[type][i]);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
    }

    ff_mdct_end(&ac->mdct);
    ff_mdct_end(&ac->mdct_small);
    return 0 ;
}

AVCodec aac_decoder = {
    "aac",
    CODEC_TYPE_AUDIO,
    CODEC_ID_AAC,
    sizeof(AACContext),
    aac_decode_init,
    NULL,
    aac_decode_close,
    aac_decode_frame,
    .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
1681
    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
1682
};