aac.c 53.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
/*
 * AAC decoder
 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file aac.c
 * AAC decoder
 * @author Oded Shimon  ( ods15 ods15 dyndns org )
 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
 */

/*
 * supported tools
 *
 * Support?             Name
 * N (code in SoC repo) gain control
 * Y                    block switching
 * Y                    window shapes - standard
 * N                    window shapes - Low Delay
 * Y                    filterbank - standard
 * N (code in SoC repo) filterbank - Scalable Sample Rate
 * Y                    Temporal Noise Shaping
 * N (code in SoC repo) Long Term Prediction
 * Y                    intensity stereo
 * Y                    channel coupling
 * N                    frequency domain prediction
 * Y                    Perceptual Noise Substitution
 * Y                    Mid/Side stereo
 * N                    Scalable Inverse AAC Quantization
 * N                    Frequency Selective Switch
 * N                    upsampling filter
 * Y                    quantization & coding - AAC
 * N                    quantization & coding - TwinVQ
 * N                    quantization & coding - BSAC
 * N                    AAC Error Resilience tools
 * N                    Error Resilience payload syntax
 * N                    Error Protection tool
 * N                    CELP
 * N                    Silence Compression
 * N                    HVXC
 * N                    HVXC 4kbits/s VR
 * N                    Structured Audio tools
 * N                    Structured Audio Sample Bank Format
 * N                    MIDI
 * N                    Harmonic and Individual Lines plus Noise
 * N                    Text-To-Speech Interface
 * N (in progress)      Spectral Band Replication
 * Y (not in this code) Layer-1
 * Y (not in this code) Layer-2
 * Y (not in this code) Layer-3
 * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
 * N (planned)          Parametric Stereo
 * N                    Direct Stream Transfer
 *
 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
 *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
           Parametric Stereo.
 */


#include "avcodec.h"
#include "bitstream.h"
#include "dsputil.h"

#include "aac.h"
#include "aactab.h"
85
#include "aacdectab.h"
86 87 88 89 90 91 92 93 94 95 96
#include "mpeg4audio.h"

#include <assert.h>
#include <errno.h>
#include <math.h>
#include <string.h>

static VLC vlc_scalefactors;
static VLC vlc_spectral[11];


97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/**
 * Configure output channel order based on the current program configuration element.
 *
 * @param   che_pos current channel position configuration
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]) {
    AVCodecContext *avctx = ac->avccontext;
    int i, type, channels = 0;

    if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
        return 0; /* no change */

    memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));

    /* Allocate or free elements depending on if they are in the
     * current program configuration.
     *
     * Set up default 1:1 output mapping.
     *
     * For a 5.1 stream the output order will be:
121
     *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
     */

    for(i = 0; i < MAX_ELEM_ID; i++) {
        for(type = 0; type < 4; type++) {
            if(che_pos[type][i]) {
                if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
                    return AVERROR(ENOMEM);
                if(type != TYPE_CCE) {
                    ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
                    if(type == TYPE_CPE) {
                        ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
                    }
                }
            } else
                av_freep(&ac->che[type][i]);
        }
    }

    avctx->channels = channels;
    return 0;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/**
 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
 *
 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
 * @param sce_map mono (Single Channel Element) map
 * @param type speaker type/position for these channels
 */
static void decode_channel_map(enum ChannelPosition *cpe_map,
        enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
    while(n--) {
        enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
        map[get_bits(gb, 4)] = type;
    }
}

/**
 * Decode program configuration element; reference: table 4.2.
 *
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
        GetBitContext * gb) {
    int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc;

    skip_bits(gb, 2);  // object_type

    ac->m4ac.sampling_index = get_bits(gb, 4);
    if(ac->m4ac.sampling_index > 11) {
        av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
        return -1;
    }
    ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
178 179 180 181 182 183 184
    num_front       = get_bits(gb, 4);
    num_side        = get_bits(gb, 4);
    num_back        = get_bits(gb, 4);
    num_lfe         = get_bits(gb, 2);
    num_assoc_data  = get_bits(gb, 3);
    num_cc          = get_bits(gb, 4);

185 186 187 188
    if (get_bits1(gb))
        skip_bits(gb, 4); // mono_mixdown_tag
    if (get_bits1(gb))
        skip_bits(gb, 4); // stereo_mixdown_tag
189

190 191
    if (get_bits1(gb))
        skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
192

193 194 195 196
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
    decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );
197 198 199

    skip_bits_long(gb, 4 * num_assoc_data);

200
    decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );
201 202 203 204 205

    align_get_bits(gb);

    /* comment field, first byte is length */
    skip_bits_long(gb, 8 * get_bits(gb, 8));
206 207
    return 0;
}
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/**
 * Set up channel positions based on a default channel configuration
 * as specified in table 1.17.
 *
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
        int channel_config)
{
    if(channel_config < 1 || channel_config > 7) {
        av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
               channel_config);
        return -1;
    }

    /* default channel configurations:
     *
     * 1ch : front center (mono)
     * 2ch : L + R (stereo)
     * 3ch : front center + L + R
     * 4ch : front center + L + R + back center
     * 5ch : front center + L + R + back stereo
     * 6ch : front center + L + R + back stereo + LFE
     * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
     */

    if(channel_config != 2)
        new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
    if(channel_config > 1)
        new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
    if(channel_config == 4)
        new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
    if(channel_config > 4)
        new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
                                 = AAC_CHANNEL_BACK;  // back stereo
    if(channel_config > 5)
        new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
    if(channel_config == 7)
        new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right

    return 0;
}

254 255 256 257 258 259 260 261 262 263 264
/**
 * Decode GA "General Audio" specific configuration; reference: table 4.1.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
    enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
    int extension_flag, ret;

    if(get_bits1(gb)) {  // frameLengthFlag
        av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        return -1;
    }

    if (get_bits1(gb))       // dependsOnCoreCoder
        skip_bits(gb, 14);   // coreCoderDelay
    extension_flag = get_bits1(gb);

    if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
       ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
        skip_bits(gb, 3);     // layerNr

    memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
    if (channel_config == 0) {
        skip_bits(gb, 4);  // element_instance_tag
        if((ret = decode_pce(ac, new_che_pos, gb)))
            return ret;
    } else {
        if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
            return ret;
    }
    if((ret = output_configure(ac, ac->che_pos, new_che_pos)))
        return ret;

    if (extension_flag) {
        switch (ac->m4ac.object_type) {
            case AOT_ER_BSAC:
                skip_bits(gb, 5);    // numOfSubFrame
                skip_bits(gb, 11);   // layer_length
                break;
            case AOT_ER_AAC_LC:
            case AOT_ER_AAC_LTP:
            case AOT_ER_AAC_SCALABLE:
            case AOT_ER_AAC_LD:
                skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
                                    * aacScalefactorDataResilienceFlag
                                    * aacSpectralDataResilienceFlag
                                    */
                break;
        }
        skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
    }
    return 0;
}

/**
 * Decode audio specific configuration; reference: table 1.13.
 *
 * @param   data        pointer to AVCodecContext extradata
 * @param   data_size   size of AVCCodecContext extradata
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
    GetBitContext gb;
    int i;

    init_get_bits(&gb, data, data_size * 8);

    if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
        return -1;
    if(ac->m4ac.sampling_index > 11) {
        av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
        return -1;
    }

    skip_bits_long(&gb, i);

    switch (ac->m4ac.object_type) {
    case AOT_AAC_LC:
        if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
            return -1;
        break;
    default:
        av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
               ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
        return -1;
    }
    return 0;
}

345 346 347 348 349 350 351 352 353 354 355
/**
 * linear congruential pseudorandom number generator
 *
 * @param   previous_val    pointer to the current state of the generator
 *
 * @return  Returns a 32-bit pseudorandom integer
 */
static av_always_inline int lcg_random(int previous_val) {
    return previous_val * 1664525 + 1013904223;
}

356 357 358 359 360 361
static av_cold int aac_decode_init(AVCodecContext * avccontext) {
    AACContext * ac = avccontext->priv_data;
    int i;

    ac->avccontext = avccontext;

362 363 364 365
    if (avccontext->extradata_size <= 0 ||
        decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
        return -1;

366
    avccontext->sample_fmt  = SAMPLE_FMT_S16;
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    avccontext->sample_rate = ac->m4ac.sample_rate;
    avccontext->frame_size  = 1024;

    AAC_INIT_VLC_STATIC( 0, 144);
    AAC_INIT_VLC_STATIC( 1, 114);
    AAC_INIT_VLC_STATIC( 2, 188);
    AAC_INIT_VLC_STATIC( 3, 180);
    AAC_INIT_VLC_STATIC( 4, 172);
    AAC_INIT_VLC_STATIC( 5, 140);
    AAC_INIT_VLC_STATIC( 6, 168);
    AAC_INIT_VLC_STATIC( 7, 114);
    AAC_INIT_VLC_STATIC( 8, 262);
    AAC_INIT_VLC_STATIC( 9, 248);
    AAC_INIT_VLC_STATIC(10, 384);

    dsputil_init(&ac->dsp, avccontext);

384 385
    ac->random_state = 0x1f2e3d4c;

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    // -1024 - Compensate wrong IMDCT method.
    // 32768 - Required to scale values to the correct range for the bias method
    //         for float to int16 conversion.

    if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
        ac->add_bias = 385.0f;
        ac->sf_scale = 1. / (-1024. * 32768.);
        ac->sf_offset = 0;
    } else {
        ac->add_bias = 0.0f;
        ac->sf_scale = 1. / -1024.;
        ac->sf_offset = 60;
    }

#ifndef CONFIG_HARDCODED_TABLES
401 402
    for (i = 0; i < 316; i++)
        ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
403 404 405 406 407 408 409 410 411
#endif /* CONFIG_HARDCODED_TABLES */

    INIT_VLC_STATIC(&vlc_scalefactors, 7, sizeof(ff_aac_scalefactor_code)/sizeof(ff_aac_scalefactor_code[0]),
        ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
        ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
        352);

    ff_mdct_init(&ac->mdct, 11, 1);
    ff_mdct_init(&ac->mdct_small, 8, 1);
R
Robert Swain 已提交
412 413 414 415 416 417
    // window initialization
    ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
    ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
    ff_sine_window_init(ff_sine_1024, 1024);
    ff_sine_window_init(ff_sine_128, 128);

418 419 420
    return 0;
}

421 422 423 424
/**
 * Skip data_stream_element; reference: table 4.10.
 */
static void skip_data_stream_element(GetBitContext * gb) {
425 426 427 428 429 430 431 432 433
    int byte_align = get_bits1(gb);
    int count = get_bits(gb, 8);
    if (count == 255)
        count += get_bits(gb, 8);
    if (byte_align)
        align_get_bits(gb);
    skip_bits_long(gb, 8 * count);
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/**
 * Decode Individual Channel Stream info; reference: table 4.6.
 *
 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 */
static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
    if (get_bits1(gb)) {
        av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
        memset(ics, 0, sizeof(IndividualChannelStream));
        return -1;
    }
    ics->window_sequence[1] = ics->window_sequence[0];
    ics->window_sequence[0] = get_bits(gb, 2);
    ics->use_kb_window[1] = ics->use_kb_window[0];
    ics->use_kb_window[0] = get_bits1(gb);
    ics->num_window_groups = 1;
    ics->group_len[0] = 1;
R
Robert Swain 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        int i;
        ics->max_sfb = get_bits(gb, 4);
        for (i = 0; i < 7; i++) {
            if (get_bits1(gb)) {
                ics->group_len[ics->num_window_groups-1]++;
            } else {
                ics->num_window_groups++;
                ics->group_len[ics->num_window_groups-1] = 1;
            }
        }
        ics->num_windows   = 8;
        ics->swb_offset    =      swb_offset_128[ac->m4ac.sampling_index];
        ics->num_swb       =  ff_aac_num_swb_128[ac->m4ac.sampling_index];
        ics->tns_max_bands =   tns_max_bands_128[ac->m4ac.sampling_index];
    } else {
        ics->max_sfb       = get_bits(gb, 6);
        ics->num_windows   = 1;
        ics->swb_offset    =     swb_offset_1024[ac->m4ac.sampling_index];
        ics->num_swb       = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
        ics->tns_max_bands =  tns_max_bands_1024[ac->m4ac.sampling_index];
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
        if (get_bits1(gb)) {
            av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
            memset(ics, 0, sizeof(IndividualChannelStream));
            return -1;
        }
    }

    if(ics->max_sfb > ics->num_swb) {
        av_log(ac->avccontext, AV_LOG_ERROR,
            "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
            ics->max_sfb, ics->num_swb);
        memset(ics, 0, sizeof(IndividualChannelStream));
        return -1;
    }

487 488 489 490 491 492 493 494 495 496 497 498
    return 0;
}

/**
 * Decode band types (section_data payload); reference: table 4.46.
 *
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_band_types(AACContext * ac, enum BandType band_type[120],
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
    int g, idx = 0;
    const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
    for (g = 0; g < ics->num_window_groups; g++) {
        int k = 0;
        while (k < ics->max_sfb) {
            uint8_t sect_len = k;
            int sect_len_incr;
            int sect_band_type = get_bits(gb, 4);
            if (sect_band_type == 12) {
                av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
                return -1;
            }
            while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
                sect_len += sect_len_incr;
            sect_len += sect_len_incr;
            if (sect_len > ics->max_sfb) {
                av_log(ac->avccontext, AV_LOG_ERROR,
                    "Number of bands (%d) exceeds limit (%d).\n",
                    sect_len, ics->max_sfb);
                return -1;
            }
R
Robert Swain 已提交
521 522 523 524
            for (; k < sect_len; k++) {
                band_type        [idx]   = sect_band_type;
                band_type_run_end[idx++] = sect_len;
            }
525 526 527 528
        }
    }
    return 0;
}
529

530 531
/**
 * Decode scalefactors; reference: table 4.47.
532 533 534 535 536 537 538 539 540
 *
 * @param   global_gain         first scalefactor value as scalefactors are differentially coded
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 * @param   sf                  array of scalefactors or intensity stereo positions
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
541
        unsigned int global_gain, IndividualChannelStream * ics,
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        enum BandType band_type[120], int band_type_run_end[120]) {
    const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
    int g, i, idx = 0;
    int offset[3] = { global_gain, global_gain - 90, 100 };
    int noise_flag = 1;
    static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            int run_end = band_type_run_end[idx];
            if (band_type[idx] == ZERO_BT) {
                for(; i < run_end; i++, idx++)
                    sf[idx] = 0.;
            }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
                for(; i < run_end; i++, idx++) {
                    offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if(offset[2] > 255U) {
                        av_log(ac->avccontext, AV_LOG_ERROR,
                            "%s (%d) out of range.\n", sf_str[2], offset[2]);
                        return -1;
                    }
                    sf[idx]  = ff_aac_pow2sf_tab[-offset[2] + 300];
                }
            }else if(band_type[idx] == NOISE_BT) {
                for(; i < run_end; i++, idx++) {
                    if(noise_flag-- > 0)
                        offset[1] += get_bits(gb, 9) - 256;
                    else
                        offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if(offset[1] > 255U) {
                        av_log(ac->avccontext, AV_LOG_ERROR,
                            "%s (%d) out of range.\n", sf_str[1], offset[1]);
                        return -1;
                    }
                    sf[idx]  = -ff_aac_pow2sf_tab[ offset[1] + sf_offset];
                }
            }else {
                for(; i < run_end; i++, idx++) {
                    offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if(offset[0] > 255U) {
                        av_log(ac->avccontext, AV_LOG_ERROR,
                            "%s (%d) out of range.\n", sf_str[0], offset[0]);
                        return -1;
                    }
                    sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
                }
            }
        }
    }
    return 0;
}

/**
 * Decode pulse data; reference: table 4.7.
 */
596
static void decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset) {
597 598
    int i;
    pulse->num_pulse = get_bits(gb, 2) + 1;
599 600 601 602 603
    pulse->pos[0]    = get_bits(gb, 5) + swb_offset[get_bits(gb, 6)];
    pulse->amp[0]    = get_bits(gb, 4);
    for (i = 1; i < pulse->num_pulse; i++) {
        pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
        pulse->amp[i] = get_bits(gb, 4);
604 605 606
    }
}

R
Robert Swain 已提交
607 608 609 610 611 612 613 614 615 616 617
/**
 * Decode Temporal Noise Shaping data; reference: table 4.48.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
        GetBitContext * gb, const IndividualChannelStream * ics) {
    int w, filt, i, coef_len, coef_res, coef_compress;
    const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
    const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
    for (w = 0; w < ics->num_windows; w++) {
618
        if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
R
Robert Swain 已提交
619 620
            coef_res = get_bits1(gb);

R
Robert Swain 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634
            for (filt = 0; filt < tns->n_filt[w]; filt++) {
                int tmp2_idx;
                tns->length[w][filt] = get_bits(gb, 6 - 2*is8);

                if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
                    av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
                           tns->order[w][filt], tns_max_order);
                    tns->order[w][filt] = 0;
                    return -1;
                }
                tns->direction[w][filt] = get_bits1(gb);
                coef_compress = get_bits1(gb);
                coef_len = coef_res + 3 - coef_compress;
                tmp2_idx = 2*coef_compress + coef_res;
R
Robert Swain 已提交
635

R
Robert Swain 已提交
636 637 638
                for (i = 0; i < tns->order[w][filt]; i++)
                    tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
            }
639
        }
R
Robert Swain 已提交
640 641 642 643
    }
    return 0;
}

644 645 646 647 648 649 650 651 652
/**
 * Decode Mid/Side data; reference: table 4.54.
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
        int ms_present) {
653 654 655 656 657 658 659 660
    int idx;
    if (ms_present == 1) {
        for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
            cpe->ms_mask[idx] = get_bits1(gb);
    } else if (ms_present == 2) {
        memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
    }
}
661

R
Robert Swain 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/**
 * Decode spectral data; reference: table 4.50.
 * Dequantize and scale spectral data; reference: 4.6.3.3.
 *
 * @param   coef            array of dequantized, scaled spectral data
 * @param   sf              array of scalefactors or intensity stereo positions
 * @param   pulse_present   set if pulses are present
 * @param   pulse           pointer to pulse data struct
 * @param   band_type       array of the used band type
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
        int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
    int i, k, g, idx = 0;
    const int c = 1024/ics->num_windows;
    const uint16_t * offsets = ics->swb_offset;
    float *coef_base = coef;

    for (g = 0; g < ics->num_windows; g++)
        memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));

    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            const int cur_band_type = band_type[idx];
            const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
            const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
            int group;
            if (cur_band_type == ZERO_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
                    memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
                }
            }else if (cur_band_type == NOISE_BT) {
                const float scale = sf[idx] / ((offsets[i+1] - offsets[i]) * PNS_MEAN_ENERGY);
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        ac->random_state  = lcg_random(ac->random_state);
                        coef[group*128+k] = ac->random_state * scale;
                    }
                }
            }else if (cur_band_type != INTENSITY_BT2 && cur_band_type != INTENSITY_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k += dim) {
                        const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
                        const int coef_tmp_idx = (group << 7) + k;
                        const float *vq_ptr;
                        int j;
                        if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
                            av_log(ac->avccontext, AV_LOG_ERROR,
                                "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
                                cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
                            return -1;
                        }
                        vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
                        if (is_cb_unsigned) {
                            for (j = 0; j < dim; j++)
                                if (vq_ptr[j])
                                    coef[coef_tmp_idx + j] = 1 - 2*(int)get_bits1(gb);
                        }else {
                            for (j = 0; j < dim; j++)
                                coef[coef_tmp_idx + j] = 1.0f;
                        }
                        if (cur_band_type == ESC_BT) {
                            for (j = 0; j < 2; j++) {
                                if (vq_ptr[j] == 64.0f) {
                                    int n = 4;
                                    /* The total length of escape_sequence must be < 22 bits according
                                       to the specification (i.e. max is 11111111110xxxxxxxxxx). */
                                    while (get_bits1(gb) && n < 15) n++;
                                    if(n == 15) {
                                        av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
                                        return -1;
                                    }
                                    n = (1<<n) + get_bits(gb, n);
                                    coef[coef_tmp_idx + j] *= cbrtf(fabsf(n)) * n;
                                }else
                                    coef[coef_tmp_idx + j] *= vq_ptr[j];
                            }
                        }else
                            for (j = 0; j < dim; j++)
                                coef[coef_tmp_idx + j] *= vq_ptr[j];
                        for (j = 0; j < dim; j++)
                            coef[coef_tmp_idx + j] *= sf[idx];
                    }
                }
            }
        }
        coef += ics->group_len[g]<<7;
    }

    if (pulse_present) {
        for(i = 0; i < pulse->num_pulse; i++){
            float co  = coef_base[ pulse->pos[i] ];
            float ico = co / sqrtf(sqrtf(fabsf(co))) + pulse->amp[i];
            coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico;
        }
    }
    return 0;
}

762
/**
763 764 765 766 767 768 769 770 771 772 773 774 775 776
 * Decode an individual_channel_stream payload; reference: table 4.44.
 *
 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
    Pulse pulse;
    TemporalNoiseShaping * tns = &sce->tns;
    IndividualChannelStream * ics = &sce->ics;
    float * out = sce->coeffs;
    int global_gain, pulse_present = 0;

777 778
    /* This assignment is to silence a GCC warning about the variable being used
     * uninitialized when in fact it always is.
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
     */
    pulse.num_pulse = 0;

    global_gain = get_bits(gb, 8);

    if (!common_window && !scale_flag) {
        if (decode_ics_info(ac, ics, gb, 0) < 0)
            return -1;
    }

    if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
        return -1;
    if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
        return -1;

    pulse_present = 0;
    if (!scale_flag) {
        if ((pulse_present = get_bits1(gb))) {
            if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
                av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
                return -1;
            }
801
            decode_pulses(&pulse, gb, ics->swb_offset);
802 803 804 805 806 807 808 809 810
        }
        if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
            return -1;
        if (get_bits1(gb)) {
            av_log_missing_feature(ac->avccontext, "SSR", 1);
            return -1;
        }
    }

811
    if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
812 813 814 815
        return -1;
    return 0;
}

R
Robert Swain 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/**
 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
 */
static void apply_mid_side_stereo(ChannelElement * cpe) {
    const IndividualChannelStream * ics = &cpe->ch[0].ics;
    float *ch0 = cpe->ch[0].coeffs;
    float *ch1 = cpe->ch[1].coeffs;
    int g, i, k, group, idx = 0;
    const uint16_t * offsets = ics->swb_offset;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            if (cpe->ms_mask[idx] &&
                cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        float tmp = ch0[group*128 + k] - ch1[group*128 + k];
                        ch0[group*128 + k] += ch1[group*128 + k];
                        ch1[group*128 + k] = tmp;
                    }
                }
            }
        }
        ch0 += ics->group_len[g]*128;
        ch1 += ics->group_len[g]*128;
    }
}

/**
 * intensity stereo decoding; reference: 4.6.8.2.3
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
    const IndividualChannelStream * ics = &cpe->ch[1].ics;
    SingleChannelElement * sce1 = &cpe->ch[1];
    float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
    const uint16_t * offsets = ics->swb_offset;
    int g, group, i, k, idx = 0;
    int c;
    float scale;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
                const int bt_run_end = sce1->band_type_run_end[idx];
                for (; i < bt_run_end; i++, idx++) {
                    c = -1 + 2 * (sce1->band_type[idx] - 14);
                    if (ms_present)
                        c *= 1 - 2 * cpe->ms_mask[idx];
                    scale = c * sce1->sf[idx];
                    for (group = 0; group < ics->group_len[g]; group++)
                        for (k = offsets[i]; k < offsets[i+1]; k++)
                            coef1[group*128 + k] = scale * coef0[group*128 + k];
                }
            } else {
                int bt_run_end = sce1->band_type_run_end[idx];
                idx += bt_run_end - i;
                i    = bt_run_end;
            }
        }
        coef0 += ics->group_len[g]*128;
        coef1 += ics->group_len[g]*128;
    }
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 * Decode a channel_pair_element; reference: table 4.4.
 *
 * @param   elem_id Identifies the instance of a syntax element.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_cpe(AACContext * ac, GetBitContext * gb, int elem_id) {
    int i, ret, common_window, ms_present = 0;
    ChannelElement * cpe;

    cpe = ac->che[TYPE_CPE][elem_id];
    common_window = get_bits1(gb);
    if (common_window) {
        if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
            return -1;
        i = cpe->ch[1].ics.use_kb_window[0];
        cpe->ch[1].ics = cpe->ch[0].ics;
        cpe->ch[1].ics.use_kb_window[1] = i;
        ms_present = get_bits(gb, 2);
        if(ms_present == 3) {
            av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
            return -1;
        } else if(ms_present)
            decode_mid_side_stereo(cpe, gb, ms_present);
    }
    if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
        return ret;
    if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
        return ret;

    if (common_window && ms_present)
        apply_mid_side_stereo(cpe);

916
    apply_intensity_stereo(cpe, ms_present);
917 918 919
    return 0;
}

R
Robert Swain 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/**
 * Decode coupling_channel_element; reference: table 4.8.
 *
 * @param   elem_id Identifies the instance of a syntax element.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
    int num_gain = 0;
    int c, g, sfb, ret, idx = 0;
    int sign;
    float scale;
    SingleChannelElement * sce = &che->ch[0];
    ChannelCoupling * coup     = &che->coup;

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    coup->coupling_point = 2*get_bits1(gb);
    coup->num_coupled = get_bits(gb, 3);
    for (c = 0; c <= coup->num_coupled; c++) {
        num_gain++;
        coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
        coup->id_select[c] = get_bits(gb, 4);
        if (coup->type[c] == TYPE_CPE) {
            coup->ch_select[c] = get_bits(gb, 2);
            if (coup->ch_select[c] == 3)
                num_gain++;
        } else
            coup->ch_select[c] = 1;
    }
    coup->coupling_point += get_bits1(gb);

    if (coup->coupling_point == 2) {
        av_log(ac->avccontext, AV_LOG_ERROR,
            "Independently switched CCE with 'invalid' domain signalled.\n");
        memset(coup, 0, sizeof(ChannelCoupling));
        return -1;
    }

    sign = get_bits(gb, 1);
    scale = pow(2., pow(2., get_bits(gb, 2) - 3));

    if ((ret = decode_ics(ac, sce, gb, 0, 0)))
        return ret;

    for (c = 0; c < num_gain; c++) {
        int cge = 1;
        int gain = 0;
        float gain_cache = 1.;
        if (c) {
            cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
            gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
            gain_cache = pow(scale, gain);
        }
        for (g = 0; g < sce->ics.num_window_groups; g++)
            for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++)
                if (sce->band_type[idx] != ZERO_BT) {
                    if (!cge) {
                        int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                        if (t) {
                            int s = 1;
                            if (sign) {
                                s  -= 2 * (t & 0x1);
                                t >>= 1;
                            }
                            gain += t;
                            gain_cache = pow(scale, gain) * s;
                        }
                    }
                    coup->gain[c][idx] = gain_cache;
                }
    }
    return 0;
}

993 994
/**
 * Decode Spectral Band Replication extension data; reference: table 4.55.
995 996 997
 *
 * @param   crc flag indicating the presence of CRC checksum
 * @param   cnt length of TYPE_FIL syntactic element in bytes
998
 *
999 1000 1001 1002
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
 */
static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
    // TODO : sbr_extension implementation
1003
    av_log_missing_feature(ac->avccontext, "SBR", 0);
1004 1005 1006 1007
    skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
    return cnt;
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/**
 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
 *
 * @return  Returns number of bytes consumed.
 */
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
    int i;
    int num_excl_chan = 0;

    do {
        for (i = 0; i < 7; i++)
            che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
    } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));

    return num_excl_chan / 7;
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/**
 * Decode dynamic range information; reference: table 4.52.
 *
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return  Returns number of bytes consumed.
 */
static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
    int n = 1;
    int drc_num_bands = 1;
    int i;

    /* pce_tag_present? */
    if(get_bits1(gb)) {
        che_drc->pce_instance_tag  = get_bits(gb, 4);
        skip_bits(gb, 4); // tag_reserved_bits
        n++;
    }

    /* excluded_chns_present? */
    if(get_bits1(gb)) {
        n += decode_drc_channel_exclusions(che_drc, gb);
    }

    /* drc_bands_present? */
    if (get_bits1(gb)) {
        che_drc->band_incr            = get_bits(gb, 4);
        che_drc->interpolation_scheme = get_bits(gb, 4);
        n++;
        drc_num_bands += che_drc->band_incr;
        for (i = 0; i < drc_num_bands; i++) {
            che_drc->band_top[i] = get_bits(gb, 8);
            n++;
        }
    }

    /* prog_ref_level_present? */
    if (get_bits1(gb)) {
        che_drc->prog_ref_level = get_bits(gb, 7);
        skip_bits1(gb); // prog_ref_level_reserved_bits
        n++;
    }

    for (i = 0; i < drc_num_bands; i++) {
        che_drc->dyn_rng_sgn[i] = get_bits1(gb);
        che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
        n++;
    }

    return n;
}

/**
 * Decode extension data (incomplete); reference: table 4.51.
 *
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return Returns number of bytes consumed
 */
static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    int crc_flag = 0;
    int res = cnt;
    switch (get_bits(gb, 4)) { // extension type
        case EXT_SBR_DATA_CRC:
            crc_flag++;
        case EXT_SBR_DATA:
            res = decode_sbr_extension(ac, gb, crc_flag, cnt);
            break;
        case EXT_DYNAMIC_RANGE:
            res = decode_dynamic_range(&ac->che_drc, gb, cnt);
            break;
        case EXT_FILL:
        case EXT_FILL_DATA:
        case EXT_DATA_ELEMENT:
        default:
            skip_bits_long(gb, 8*cnt - 4);
            break;
    };
    return res;
}

1106 1107 1108 1109 1110 1111 1112 1113
/**
 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
 *
 * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
 * @param   coef    spectral coefficients
 */
static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
    const int mmm = FFMIN(ics->tns_max_bands,  ics->max_sfb);
R
Robert Swain 已提交
1114
    int w, filt, m, i;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    int bottom, top, order, start, end, size, inc;
    float lpc[TNS_MAX_ORDER];

    for (w = 0; w < ics->num_windows; w++) {
        bottom = ics->num_swb;
        for (filt = 0; filt < tns->n_filt[w]; filt++) {
            top    = bottom;
            bottom = FFMAX(0, top - tns->length[w][filt]);
            order  = tns->order[w][filt];
            if (order == 0)
                continue;

            /* tns_decode_coef
             * FIXME: This duplicates the functionality of some double code in lpc.c.
             */
            for (m = 0; m < order; m++) {
R
Robert Swain 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139
                float tmp;
                lpc[m] = tns->coef[w][filt][m];
                for (i = 0; i < m/2; i++) {
                    tmp = lpc[i];
                    lpc[i]     += lpc[m] * lpc[m-1-i];
                    lpc[m-1-i] += lpc[m] * tmp;
                }
                if(m & 1)
                    lpc[i]     += lpc[m] * lpc[i];
1140 1141
            }

R
Robert Swain 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            start = ics->swb_offset[FFMIN(bottom, mmm)];
            end   = ics->swb_offset[FFMIN(   top, mmm)];
            if ((size = end - start) <= 0)
                continue;
            if (tns->direction[w][filt]) {
                inc = -1; start = end - 1;
            } else {
                inc = 1;
            }
            start += w * 128;

            // ar filter
            for (m = 0; m < size; m++, start += inc)
                for (i = 1; i <= FFMIN(m, order); i++)
1156
                    coef[start] -= coef[start - i*inc] * lpc[i-1];
R
Robert Swain 已提交
1157 1158 1159 1160
        }
    }
}

1161 1162 1163 1164 1165 1166 1167 1168
/**
 * Conduct IMDCT and windowing.
 */
static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
    IndividualChannelStream * ics = &sce->ics;
    float * in = sce->coeffs;
    float * out = sce->ret;
    float * saved = sce->saved;
1169 1170 1171
    const float * swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
    const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1172
    float * buf = ac->buf_mdct;
1173
    DECLARE_ALIGNED(16, float, temp[128]);
1174 1175
    int i;

1176
    // imdct
1177 1178 1179 1180 1181
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
            av_log(ac->avccontext, AV_LOG_WARNING,
                   "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
                   "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1182 1183
        for (i = 0; i < 1024; i += 128)
            ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1184
    } else
1185
        ff_imdct_half(&ac->mdct, buf, in);
1186 1187 1188 1189 1190 1191 1192 1193 1194

    /* window overlapping
     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
     * and long to short transitions are considered to be short to short
     * transitions. This leaves just two cases (long to long and short to short)
     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
     */
    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
        (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1195
        ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, ac->add_bias, 512);
1196
    } else {
1197 1198
        for (i = 0; i < 448; i++)
            out[i] = saved[i] + ac->add_bias;
1199

1200
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1201 1202 1203 1204 1205 1206
            ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, ac->add_bias, 64);
            ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      ac->add_bias, 64);
            ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      ac->add_bias, 64);
            ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      ac->add_bias, 64);
            ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      ac->add_bias, 64);
            memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
1207
        } else {
1208
            ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, ac->add_bias, 64);
1209
            for (i = 576; i < 1024; i++)
1210
                out[i] = buf[i-512] + ac->add_bias;
1211 1212
        }
    }
1213

1214 1215
    // buffer update
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1216 1217 1218 1219 1220 1221
        for (i = 0; i < 64; i++)
            saved[i] = temp[64 + i] - ac->add_bias;
        ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
        ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
        ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
1222
    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1223 1224
        memcpy(                    saved,       buf + 512,        448 * sizeof(float));
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
1225
    } else { // LONG_STOP or ONLY_LONG
1226
        memcpy(                    saved,       buf + 512,        512 * sizeof(float));
1227 1228 1229
    }
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/**
 * Apply dependent channel coupling (applied before IMDCT).
 *
 * @param   index   index into coupling gain array
 */
static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
    IndividualChannelStream * ics = &cc->ch[0].ics;
    const uint16_t * offsets = ics->swb_offset;
    float * dest = sce->coeffs;
    const float * src = cc->ch[0].coeffs;
    int g, i, group, k, idx = 0;
    if(ac->m4ac.object_type == AOT_AAC_LTP) {
        av_log(ac->avccontext, AV_LOG_ERROR,
               "Dependent coupling is not supported together with LTP\n");
        return;
    }
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            if (cc->ch[0].band_type[idx] != ZERO_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        // XXX dsputil-ize
1252
                        dest[group*128+k] += cc->coup.gain[index][idx] * src[group*128+k];
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
                    }
                }
            }
        }
        dest += ics->group_len[g]*128;
        src  += ics->group_len[g]*128;
    }
}

/**
 * Apply independent channel coupling (applied after IMDCT).
 *
 * @param   index   index into coupling gain array
 */
static void apply_independent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
    int i;
    for (i = 0; i < 1024; i++)
1270
        sce->ret[i] += cc->coup.gain[index][0] * (cc->ch[0].ret[i] - ac->add_bias);
1271 1272
}

R
Robert Swain 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/**
 * channel coupling transformation interface
 *
 * @param   index   index into coupling gain array
 * @param   apply_coupling_method   pointer to (in)dependent coupling function
 */
static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
        void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index))
{
    int c;
    int index = 0;
    ChannelCoupling * coup = &cc->coup;
    for (c = 0; c <= coup->num_coupled; c++) {
        if (ac->che[coup->type[c]][coup->id_select[c]]) {
            if (coup->ch_select[c] != 2) {
                apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[0], cc, index);
                if (coup->ch_select[c] != 0)
                    index++;
            }
            if (coup->ch_select[c] != 1)
                apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[1], cc, index++);
        } else {
            av_log(ac->avccontext, AV_LOG_ERROR,
                   "coupling target %sE[%d] not available\n",
                   coup->type[c] == TYPE_CPE ? "CP" : "SC", coup->id_select[c]);
            break;
        }
    }
}

/**
 * Convert spectral data to float samples, applying all supported tools as appropriate.
 */
static void spectral_to_sample(AACContext * ac) {
    int i, type;
    for (i = 0; i < MAX_ELEM_ID; i++) {
        for(type = 0; type < 4; type++) {
            ChannelElement *che = ac->che[type][i];
            if(che) {
                if(che->coup.coupling_point == BEFORE_TNS)
                    apply_channel_coupling(ac, che, apply_dependent_coupling);
                if(che->ch[0].tns.present)
                    apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
                if(che->ch[1].tns.present)
                    apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
                if(che->coup.coupling_point == BETWEEN_TNS_AND_IMDCT)
                    apply_channel_coupling(ac, che, apply_dependent_coupling);
                imdct_and_windowing(ac, &che->ch[0]);
                if(type == TYPE_CPE)
                    imdct_and_windowing(ac, &che->ch[1]);
                if(che->coup.coupling_point == AFTER_IMDCT)
                    apply_channel_coupling(ac, che, apply_independent_coupling);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
            }
        }
    }
}

static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
    AACContext * ac = avccontext->priv_data;
    GetBitContext gb;
    enum RawDataBlockType elem_type;
    int err, elem_id, data_size_tmp;

    init_get_bits(&gb, buf, buf_size*8);

    // parse
    while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
        elem_id = get_bits(&gb, 4);
        err = -1;

        if(elem_type == TYPE_SCE && elem_id == 1 &&
                !ac->che[TYPE_SCE][elem_id] && ac->che[TYPE_LFE][0]) {
            /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
               instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
               encountered such a stream, transfer the LFE[0] element to SCE[1] */
            ac->che[TYPE_SCE][elem_id] = ac->che[TYPE_LFE][0];
            ac->che[TYPE_LFE][0] = NULL;
        }
1351
        if(elem_type < TYPE_DSE) {
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
            if(!ac->che[elem_type][elem_id])
                return -1;
            if(elem_type != TYPE_CCE)
                ac->che[elem_type][elem_id]->coup.coupling_point = 4;
        }

        switch (elem_type) {

        case TYPE_SCE:
            err = decode_ics(ac, &ac->che[TYPE_SCE][elem_id]->ch[0], &gb, 0, 0);
            break;

        case TYPE_CPE:
            err = decode_cpe(ac, &gb, elem_id);
            break;

        case TYPE_CCE:
R
Robert Swain 已提交
1369
            err = decode_cce(ac, &gb, ac->che[TYPE_CCE][elem_id]);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
            break;

        case TYPE_LFE:
            err = decode_ics(ac, &ac->che[TYPE_LFE][elem_id]->ch[0], &gb, 0, 0);
            break;

        case TYPE_DSE:
            skip_data_stream_element(&gb);
            err = 0;
            break;

        case TYPE_PCE:
        {
            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
            memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
            if((err = decode_pce(ac, new_che_pos, &gb)))
                break;
            err = output_configure(ac, ac->che_pos, new_che_pos);
            break;
        }

        case TYPE_FIL:
            if (elem_id == 15)
                elem_id += get_bits(&gb, 8) - 1;
            while (elem_id > 0)
                elem_id -= decode_extension_payload(ac, &gb, elem_id);
            err = 0; /* FIXME */
            break;

        default:
            err = -1; /* should not happen, but keeps compiler happy */
            break;
        }

        if(err)
            return err;
    }

    spectral_to_sample(ac);

1410 1411 1412
    if (!ac->is_saved) {
        ac->is_saved = 1;
        *data_size = 0;
1413
        return buf_size;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    }

    data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
    if(*data_size < data_size_tmp) {
        av_log(avccontext, AV_LOG_ERROR,
               "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
               *data_size, data_size_tmp);
        return -1;
    }
    *data_size = data_size_tmp;

    ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);

    return buf_size;
}

1430 1431
static av_cold int aac_decode_close(AVCodecContext * avccontext) {
    AACContext * ac = avccontext->priv_data;
1432
    int i, type;
1433

1434
    for (i = 0; i < MAX_ELEM_ID; i++) {
1435 1436
        for(type = 0; type < 4; type++)
            av_freep(&ac->che[type][i]);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    }

    ff_mdct_end(&ac->mdct);
    ff_mdct_end(&ac->mdct_small);
    return 0 ;
}

AVCodec aac_decoder = {
    "aac",
    CODEC_TYPE_AUDIO,
    CODEC_ID_AAC,
    sizeof(AACContext),
    aac_decode_init,
    NULL,
    aac_decode_close,
    aac_decode_frame,
    .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
1454
    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
1455
};