arm.c 26.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu.h>
20
#include <linux/cpu_pm.h>
21 22 23 24 25 26 27 28
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31 32 33 34 35 36 37
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
38
#include <asm/tlbflush.h>
39
#include <asm/cacheflush.h>
40 41 42 43
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
44
#include <asm/kvm_emulate.h>
45
#include <asm/kvm_coproc.h>
46
#include <asm/kvm_psci.h>
47 48 49 50 51

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 55
static unsigned long hyp_default_vectors;

56 57 58
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

59 60 61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
static u8 kvm_next_vmid;
static DEFINE_SPINLOCK(kvm_vmid_lock);
63

64 65 66
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
67
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 69 70 71 72 73 74 75 76
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
77
	return __this_cpu_read(kvm_arm_running_vcpu);
78 79 80 81 82
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
83
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 85 86 87
{
	return &kvm_arm_running_vcpu;
}

88
int kvm_arch_hardware_enable(void)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
{
	return 0;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


109 110 111 112
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
113 114
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
115 116
	int ret = 0;

117 118 119
	if (type)
		return -EINVAL;

120 121 122 123 124 125 126 127
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

128
	kvm_vgic_early_init(kvm);
129 130
	kvm_timer_init(kvm);

131 132 133
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

134 135 136
	/* The maximum number of VCPUs is limited by the host's GIC model */
	kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();

137 138 139 140 141
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
142 143 144 145 146 147 148 149
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


150 151 152 153
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
154 155 156 157
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

158 159
	kvm_free_stage2_pgd(kvm);

160 161 162 163 164 165
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
166 167

	kvm_vgic_destroy(kvm);
168 169
}

170
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
171 172 173
{
	int r;
	switch (ext) {
174
	case KVM_CAP_IRQCHIP:
175
	case KVM_CAP_IOEVENTFD:
176
	case KVM_CAP_DEVICE_CTRL:
177 178 179 180
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
181
	case KVM_CAP_ARM_PSCI:
182
	case KVM_CAP_ARM_PSCI_0_2:
183
	case KVM_CAP_READONLY_MEM:
184
	case KVM_CAP_MP_STATE:
185 186 187 188 189
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
190 191
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
192
		break;
193 194 195 196 197 198 199
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
200
		r = kvm_arch_dev_ioctl_check_extension(ext);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

218 219 220 221 222
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

223 224 225 226 227
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

228 229 230 231 232 233 234 235 236 237
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

238 239 240 241
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

242
	return vcpu;
243 244
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
245 246 247 248 249 250
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

251
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252
{
253
	kvm_vgic_vcpu_early_init(vcpu);
254 255 256 257
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
258
	kvm_mmu_free_memory_caches(vcpu);
259
	kvm_timer_vcpu_terminate(vcpu);
260
	kvm_vgic_vcpu_destroy(vcpu);
261
	kmem_cache_free(kvm_vcpu_cache, vcpu);
262 263 264 265 266 267 268 269 270
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
271
	return kvm_timer_should_fire(vcpu);
272 273 274 275
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
276 277
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
278
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
279

280 281 282
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

283 284
	kvm_arm_reset_debug_ptr(vcpu);

285 286 287 288 289
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
290
	vcpu->cpu = cpu;
291
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
292

293
	kvm_arm_set_running_vcpu(vcpu);
294 295 296 297
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
298 299 300 301 302 303 304
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

305
	kvm_arm_set_running_vcpu(NULL);
306 307 308 309 310
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
311 312 313 314 315 316
	if (vcpu->arch.pause)
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
317 318 319 320 321
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
322 323 324 325 326 327 328 329 330 331 332 333
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
		vcpu->arch.pause = false;
		break;
	case KVM_MP_STATE_STOPPED:
		vcpu->arch.pause = true;
		break;
	default:
		return -EINVAL;
	}

	return 0;
334 335
}

336 337 338 339 340 341 342
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
343 344
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
345
	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;

	/* update vttbr to be used with the new vmid */
427
	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
428
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
429
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
430
	kvm->arch.vttbr = pgd_phys | vmid;
431 432 433 434 435 436

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
437
	struct kvm *kvm = vcpu->kvm;
438 439
	int ret;

440 441 442 443
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
444

445
	/*
446 447
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
448
	 */
449
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
450
		ret = kvm_vgic_map_resources(kvm);
451 452 453 454
		if (ret)
			return ret;
	}

455 456 457 458 459 460 461 462
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		kvm_timer_enable(kvm);

463 464 465
	return 0;
}

466 467 468 469 470
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

471 472 473 474 475 476 477
static void vcpu_pause(struct kvm_vcpu *vcpu)
{
	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

	wait_event_interruptible(*wq, !vcpu->arch.pause);
}

478 479 480 481 482
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

483 484 485 486 487 488 489 490 491 492 493
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
494 495
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
496 497 498
	int ret;
	sigset_t sigsaved;

499
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
500 501 502 503 504 505
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
506 507 508 509 510 511
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

512 513 514 515 516 517 518 519 520 521 522 523 524
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

525 526 527
		if (vcpu->arch.pause)
			vcpu_pause(vcpu);

528 529 530 531
		/*
		 * Disarming the background timer must be done in a
		 * preemptible context, as this call may sleep.
		 */
532
		kvm_timer_flush_hwstate(vcpu);
533

534 535 536 537 538
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
539
		preempt_disable();
540 541
		kvm_vgic_flush_hwstate(vcpu);

542 543 544 545 546 547 548 549 550 551 552 553
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
			local_irq_enable();
554
			kvm_vgic_sync_hwstate(vcpu);
555
			preempt_enable();
556
			kvm_timer_sync_hwstate(vcpu);
557 558 559
			continue;
		}

560 561
		kvm_arm_setup_debug(vcpu);

562 563 564 565
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
566
		__kvm_guest_enter();
567 568 569 570 571
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
572 573 574 575
		/*
		 * Back from guest
		 *************************************************************/

576 577
		kvm_arm_clear_debug(vcpu);

578 579 580 581 582 583 584 585 586 587 588 589 590
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
591 592 593 594 595 596 597 598 599 600
		 * We do local_irq_enable() before calling kvm_guest_exit() so
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
		 * preemption after calling kvm_guest_exit() so that if we get
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
		kvm_guest_exit();
		trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));

601
		kvm_vgic_sync_hwstate(vcpu);
602 603 604

		preempt_enable();

605
		kvm_timer_sync_hwstate(vcpu);
606

607 608 609 610 611 612
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
613 614
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

648 649
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
650 651 652 653 654 655 656 657 658 659 660 661 662
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

663 664 665 666
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
667

668 669
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
670

671 672 673
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
674

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
692

693 694 695 696 697
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

698
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
699 700 701 702 703 704
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
705 706
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


749 750 751 752 753 754 755 756 757
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

758 759 760 761 762 763 764
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

765 766
	vcpu_reset_hcr(vcpu);

767 768 769
	/*
	 * Handle the "start in power-off" case by marking the VCPU as paused.
	 */
770
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
771
		vcpu->arch.pause = true;
772 773
	else
		vcpu->arch.pause = false;
774 775 776 777

	return 0;
}

778 779 780 781 782 783 784 785 786 787 788 789 790
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

791
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
792 793 794 795
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
796 797 798 799

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

800 801 802 803 804 805 806 807 808 809 810 811
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

812 813 814
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
	default:
		return -EINVAL;
	}
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
849 850
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
851 852 853 854 855 856 857 858 859 860 861 862
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
863 864
}

865 866 867
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
868 869 870 871 872 873 874 875 876
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
877
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
878 879 880
	default:
		return -ENODEV;
	}
881 882
}

883 884 885
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
886 887 888 889
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
890
	case KVM_CREATE_IRQCHIP: {
891
		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
892
	}
893 894 895 896 897 898 899
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
900 901 902 903 904 905 906 907 908 909 910 911 912
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
913 914 915
	default:
		return -EINVAL;
	}
916 917
}

918
static void cpu_init_hyp_mode(void *dummy)
919
{
920 921
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
922 923 924 925 926
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
927
	__hyp_set_vectors(kvm_get_idmap_vector());
928

929 930
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
931
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
932 933 934
	hyp_stack_ptr = stack_page + PAGE_SIZE;
	vector_ptr = (unsigned long)__kvm_hyp_vector;

935
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
936 937

	kvm_arm_init_debug();
938 939
}

940 941 942 943 944 945
static int hyp_init_cpu_notify(struct notifier_block *self,
			       unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
V
Vladimir Murzin 已提交
946 947
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
948 949 950 951
		break;
	}

	return NOTIFY_OK;
952 953
}

954 955 956 957
static struct notifier_block hyp_init_cpu_nb = {
	.notifier_call = hyp_init_cpu_notify,
};

958 959 960 961 962
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
963 964
	if (cmd == CPU_PM_EXIT &&
	    __hyp_get_vectors() == hyp_default_vectors) {
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
		cpu_init_hyp_mode(NULL);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
#else
static inline void hyp_cpu_pm_init(void)
{
}
#endif

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
			goto out_free_stack_pages;
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
	if (err) {
		kvm_err("Cannot map world-switch code\n");
		goto out_free_mappings;
	}

	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
			goto out_free_mappings;
		}
	}

	/*
1045
	 * Map the host CPU structures
1046
	 */
1047 1048
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
1049
		err = -ENOMEM;
1050
		kvm_err("Cannot allocate host CPU state\n");
1051 1052 1053 1054
		goto out_free_mappings;
	}

	for_each_possible_cpu(cpu) {
1055
		kvm_cpu_context_t *cpu_ctxt;
1056

1057 1058
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1059 1060

		if (err) {
1061 1062
			kvm_err("Cannot map host CPU state: %d\n", err);
			goto out_free_context;
1063 1064 1065
		}
	}

1066 1067 1068 1069 1070
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_hyp_mode, NULL, 1);

1071 1072 1073 1074 1075
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	if (err)
1076
		goto out_free_context;
1077

1078 1079 1080 1081 1082
	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1083
		goto out_free_context;
1084

1085 1086 1087 1088
#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

1089 1090
	kvm_perf_init();

1091
	kvm_info("Hyp mode initialized successfully\n");
1092

1093
	return 0;
1094 1095
out_free_context:
	free_percpu(kvm_host_cpu_state);
1096
out_free_mappings:
1097
	free_hyp_pgds();
1098 1099 1100 1101 1102 1103 1104 1105
out_free_stack_pages:
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
out_err:
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1106 1107 1108 1109 1110
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1124 1125 1126
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1127 1128
int kvm_arch_init(void *opaque)
{
1129
	int err;
1130
	int ret, cpu;
1131 1132 1133 1134 1135 1136

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1137 1138 1139 1140 1141 1142
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1143 1144
	}

1145 1146
	cpu_notifier_register_begin();

1147 1148 1149 1150
	err = init_hyp_mode();
	if (err)
		goto out_err;

1151
	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1152 1153 1154 1155 1156
	if (err) {
		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
		goto out_err;
	}

1157 1158
	cpu_notifier_register_done();

1159 1160
	hyp_cpu_pm_init();

1161
	kvm_coproc_table_init();
1162
	return 0;
1163
out_err:
1164
	cpu_notifier_register_done();
1165
	return err;
1166 1167 1168 1169 1170
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1171
	kvm_perf_teardown();
1172 1173 1174 1175 1176 1177 1178 1179 1180
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);