speed.c 100.1 KB
Newer Older
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 3 4 5 6
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8 9 10 11 12 13
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15 16 17 18 19 20
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
21
 *
22 23 24 25 26 27 28 29 30 31 32 33 34 35
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37 38
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40 41 42 43 44 45 46 47 48 49 50
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
51
 *
52 53 54 55 56
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
B
Bodo Möller 已提交
57
/* ====================================================================
58
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
B
Bodo Möller 已提交
59
 *
60
 * Portions of the attached software ("Contribution") are developed by
B
Bodo Möller 已提交
61 62 63 64 65
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
 *
 * The Contribution is licensed pursuant to the OpenSSL open source
 * license provided above.
 *
66
 * The ECDH and ECDSA speed test software is originally written by
B
Bodo Möller 已提交
67 68 69
 * Sumit Gupta of Sun Microsystems Laboratories.
 *
 */
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#undef SECONDS
#define SECONDS                 3
#define PRIME_SECONDS   10
#define RSA_SECONDS             10
#define DSA_SECONDS             10
#define ECDSA_SECONDS   10
#define ECDH_SECONDS    10

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "apps.h"
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
89
#include <openssl/async.h>
90 91 92
#if !defined(OPENSSL_SYS_MSDOS)
# include OPENSSL_UNISTD
#endif
93

94
#if defined(_WIN32)
95 96
# include <windows.h>
#endif
97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DES
# include <openssl/des.h>
#endif
#ifndef OPENSSL_NO_AES
# include <openssl/aes.h>
#endif
#ifndef OPENSSL_NO_CAMELLIA
# include <openssl/camellia.h>
#endif
#ifndef OPENSSL_NO_MD2
# include <openssl/md2.h>
#endif
#ifndef OPENSSL_NO_MDC2
# include <openssl/mdc2.h>
#endif
#ifndef OPENSSL_NO_MD4
# include <openssl/md4.h>
#endif
#ifndef OPENSSL_NO_MD5
# include <openssl/md5.h>
#endif
120 121
#include <openssl/hmac.h>
#include <openssl/sha.h>
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#ifndef OPENSSL_NO_RMD160
# include <openssl/ripemd.h>
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
# include <openssl/whrlpool.h>
#endif
#ifndef OPENSSL_NO_RC4
# include <openssl/rc4.h>
#endif
#ifndef OPENSSL_NO_RC5
# include <openssl/rc5.h>
#endif
#ifndef OPENSSL_NO_RC2
# include <openssl/rc2.h>
#endif
#ifndef OPENSSL_NO_IDEA
# include <openssl/idea.h>
#endif
#ifndef OPENSSL_NO_SEED
# include <openssl/seed.h>
#endif
#ifndef OPENSSL_NO_BF
# include <openssl/blowfish.h>
#endif
#ifndef OPENSSL_NO_CAST
# include <openssl/cast.h>
#endif
#ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
# include "./testrsa.h"
#endif
#include <openssl/x509.h>
#ifndef OPENSSL_NO_DSA
# include <openssl/dsa.h>
# include "./testdsa.h"
#endif
158
#ifndef OPENSSL_NO_EC
D
Dr. Stephen Henson 已提交
159
# include <openssl/ec.h>
160 161
#endif
#include <openssl/modes.h>
162

163
#ifndef HAVE_FORK
R
Rich Salz 已提交
164
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS)
165
#  define HAVE_FORK 0
166
# else
167
#  define HAVE_FORK 1
168
# endif
169
#endif
170

171 172 173 174 175 176 177
#if HAVE_FORK
# undef NO_FORK
#else
# define NO_FORK
#endif

#undef BUFSIZE
178
#define BUFSIZE (1024*16+1)
179
#define MAX_MISALIGNMENT 63
180

181 182 183 184 185 186 187 188 189 190
#define ALGOR_NUM       30
#define SIZE_NUM        6
#define PRIME_NUM       3
#define RSA_NUM         7
#define DSA_NUM         3

#define EC_NUM          17
#define MAX_ECDH_SIZE   256
#define MISALIGN        64

191
static volatile int run = 0;
192

193 194
static int mr = 0;
static int usertime = 1;
195

196 197
typedef struct loopargs_st {
    ASYNC_JOB *inprogress_job;
198
    ASYNC_WAIT_CTX *wait_ctx;
199 200 201 202
    unsigned char *buf;
    unsigned char *buf2;
    unsigned char *buf_malloc;
    unsigned char *buf2_malloc;
203 204 205 206 207 208 209 210 211 212 213 214 215 216
    unsigned int *siglen;
#ifndef OPENSSL_NO_RSA
    RSA *rsa_key[RSA_NUM];
#endif
#ifndef OPENSSL_NO_DSA
    DSA *dsa_key[DSA_NUM];
#endif
#ifndef OPENSSL_NO_EC
    EC_KEY *ecdsa[EC_NUM];
    EC_KEY *ecdh_a[EC_NUM];
    EC_KEY *ecdh_b[EC_NUM];
    unsigned char *secret_a;
    unsigned char *secret_b;
#endif
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    EVP_CIPHER_CTX *ctx;
    HMAC_CTX *hctx;
    GCM128_CONTEXT *gcm_ctx;
} loopargs_t;

#ifndef OPENSSL_NO_MD2
static int EVP_Digest_MD2_loop(void *args);
#endif

#ifndef OPENSSL_NO_MDC2
static int EVP_Digest_MDC2_loop(void *args);
#endif
#ifndef OPENSSL_NO_MD4
static int EVP_Digest_MD4_loop(void *args);
#endif
#ifndef OPENSSL_NO_MD5
static int MD5_loop(void *args);
static int HMAC_loop(void *args);
#endif
static int SHA1_loop(void *args);
static int SHA256_loop(void *args);
static int SHA512_loop(void *args);
#ifndef OPENSSL_NO_WHIRLPOOL
static int WHIRLPOOL_loop(void *args);
#endif
#ifndef OPENSSL_NO_RMD160
static int EVP_Digest_RMD160_loop(void *args);
#endif
#ifndef OPENSSL_NO_RC4
static int RC4_loop(void *args);
#endif
#ifndef OPENSSL_NO_DES
static int DES_ncbc_encrypt_loop(void *args);
static int DES_ede3_cbc_encrypt_loop(void *args);
#endif
#ifndef OPENSSL_NO_AES
static int AES_cbc_128_encrypt_loop(void *args);
static int AES_cbc_192_encrypt_loop(void *args);
static int AES_ige_128_encrypt_loop(void *args);
static int AES_cbc_256_encrypt_loop(void *args);
static int AES_ige_192_encrypt_loop(void *args);
static int AES_ige_256_encrypt_loop(void *args);
static int CRYPTO_gcm128_aad_loop(void *args);
#endif
static int EVP_Update_loop(void *args);
static int EVP_Digest_loop(void *args);
#ifndef OPENSSL_NO_RSA
static int RSA_sign_loop(void *args);
static int RSA_verify_loop(void *args);
#endif
#ifndef OPENSSL_NO_DSA
static int DSA_sign_loop(void *args);
static int DSA_verify_loop(void *args);
#endif
#ifndef OPENSSL_NO_EC
static int ECDSA_sign_loop(void *args);
static int ECDSA_verify_loop(void *args);
static int ECDH_compute_key_loop(void *args);
#endif
static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs);

278
static double Time_F(int s);
279
static void print_message(const char *s, long num, int length);
280
static void pkey_print_message(const char *str, const char *str2,
281 282
                               long num, int bits, int sec);
static void print_result(int alg, int run_no, int count, double time_used);
283
#ifndef NO_FORK
284
static int do_multi(int multi);
285
#endif
286 287 288 289 290 291 292 293 294 295

static const char *names[ALGOR_NUM] = {
    "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
    "des cbc", "des ede3", "idea cbc", "seed cbc",
    "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
    "aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
    "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
    "evp", "sha256", "sha512", "whirlpool",
    "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
};
296

297
static double results[ALGOR_NUM][SIZE_NUM];
298
static int lengths[SIZE_NUM] = {
299
    16, 64, 256, 1024, 8 * 1024, 16 * 1024
300
};
301

302
#ifndef OPENSSL_NO_RSA
303
static double rsa_results[RSA_NUM][2];
304 305
#endif
#ifndef OPENSSL_NO_DSA
306
static double dsa_results[DSA_NUM][2];
307
#endif
308
#ifndef OPENSSL_NO_EC
B
Bodo Möller 已提交
309 310
static double ecdsa_results[EC_NUM][2];
static double ecdh_results[EC_NUM][1];
311
#endif
B
Bodo Möller 已提交
312

313
#if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_EC)
314 315
static const char rnd_seed[] =
    "string to make the random number generator think it has entropy";
316
#endif
317

318 319 320 321 322 323
#ifdef SIGALRM
# if defined(__STDC__) || defined(sgi) || defined(_AIX)
#  define SIGRETTYPE void
# else
#  define SIGRETTYPE int
# endif
D
Dr. Stephen Henson 已提交
324

325
static SIGRETTYPE sig_done(int sig);
U
Ulf Möller 已提交
326
static SIGRETTYPE sig_done(int sig)
327 328 329 330
{
    signal(SIGALRM, sig_done);
    run = 0;
}
331
#endif
332

333 334
#define START   0
#define STOP    1
335

336
#if defined(_WIN32)
R
Richard Levitte 已提交
337

338 339 340
# if !defined(SIGALRM)
#  define SIGALRM
# endif
341 342 343 344 345
static unsigned int lapse, schlock;
static void alarm_win32(unsigned int secs)
{
    lapse = secs * 1000;
}
R
Richard Levitte 已提交
346

347
# define alarm alarm_win32
348 349 350 351 352 353 354 355

static DWORD WINAPI sleepy(VOID * arg)
{
    schlock = 1;
    Sleep(lapse);
    run = 0;
    return 0;
}
356

357
static double Time_F(int s)
358 359 360 361 362 363 364 365
{
    double ret;
    static HANDLE thr;

    if (s == START) {
        schlock = 0;
        thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
        if (thr == NULL) {
366 367 368
            DWORD err = GetLastError();
            BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
            ExitProcess(err);
369 370 371 372 373 374 375 376 377 378 379 380 381
        }
        while (!schlock)
            Sleep(0);           /* scheduler spinlock */
        ret = app_tminterval(s, usertime);
    } else {
        ret = app_tminterval(s, usertime);
        if (run)
            TerminateThread(thr, 0);
        CloseHandle(thr);
    }

    return ret;
}
382
#else
383

384 385 386 387 388 389 390
static double Time_F(int s)
{
    double ret = app_tminterval(s, usertime);
    if (s == STOP)
        alarm(0);
    return ret;
}
391
#endif
392

393
#ifndef OPENSSL_NO_EC
394
static const int KDF1_SHA1_len = 20;
395 396 397 398 399
static void *KDF1_SHA1(const void *in, size_t inlen, void *out,
                       size_t *outlen)
{
    if (*outlen < SHA_DIGEST_LENGTH)
        return NULL;
R
Rich Salz 已提交
400
    *outlen = SHA_DIGEST_LENGTH;
401 402
    return SHA1(in, inlen, out);
}
403
#endif                         /* OPENSSL_NO_EC */
404

405
static void multiblock_speed(const EVP_CIPHER *evp_cipher);
406

407 408 409 410 411 412 413 414 415 416 417 418 419
static int found(const char *name, const OPT_PAIR * pairs, int *result)
{
    for (; pairs->name; pairs++)
        if (strcmp(name, pairs->name) == 0) {
            *result = pairs->retval;
            return 1;
        }
    return 0;
}

typedef enum OPTION_choice {
    OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
    OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
420
    OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS
421 422 423 424 425 426
} OPTION_CHOICE;

OPTIONS speed_options[] = {
    {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
    {OPT_HELP_STR, 1, '-', "Valid options are:\n"},
    {"help", OPT_HELP, '-', "Display this summary"},
427 428 429 430 431 432
    {"evp", OPT_EVP, 's', "Use specified EVP cipher"},
    {"decrypt", OPT_DECRYPT, '-',
     "Time decryption instead of encryption (only EVP)"},
    {"mr", OPT_MR, '-', "Produce machine readable output"},
    {"mb", OPT_MB, '-'},
    {"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"},
433 434 435 436 437
    {"elapsed", OPT_ELAPSED, '-',
     "Measure time in real time instead of CPU user time"},
#ifndef NO_FORK
    {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
#endif
438
#ifndef OPENSSL_NO_ASYNC
439 440
    {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start pnum jobs"},
#endif
441 442 443
#ifndef OPENSSL_NO_ENGINE
    {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
#endif
444
    {NULL},
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
};

#define D_MD2           0
#define D_MDC2          1
#define D_MD4           2
#define D_MD5           3
#define D_HMAC          4
#define D_SHA1          5
#define D_RMD160        6
#define D_RC4           7
#define D_CBC_DES       8
#define D_EDE3_DES      9
#define D_CBC_IDEA      10
#define D_CBC_SEED      11
#define D_CBC_RC2       12
#define D_CBC_RC5       13
#define D_CBC_BF        14
#define D_CBC_CAST      15
#define D_CBC_128_AES   16
#define D_CBC_192_AES   17
#define D_CBC_256_AES   18
#define D_CBC_128_CML   19
#define D_CBC_192_CML   20
#define D_CBC_256_CML   21
#define D_EVP           22
#define D_SHA256        23
#define D_SHA512        24
#define D_WHIRLPOOL     25
#define D_IGE_128_AES   26
#define D_IGE_192_AES   27
#define D_IGE_256_AES   28
#define D_GHASH         29
477
static OPT_PAIR doit_choices[] = {
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
#ifndef OPENSSL_NO_MD2
    {"md2", D_MD2},
#endif
#ifndef OPENSSL_NO_MDC2
    {"mdc2", D_MDC2},
#endif
#ifndef OPENSSL_NO_MD4
    {"md4", D_MD4},
#endif
#ifndef OPENSSL_NO_MD5
    {"md5", D_MD5},
#endif
#ifndef OPENSSL_NO_MD5
    {"hmac", D_HMAC},
#endif
    {"sha1", D_SHA1},
    {"sha256", D_SHA256},
    {"sha512", D_SHA512},
#ifndef OPENSSL_NO_WHIRLPOOL
    {"whirlpool", D_WHIRLPOOL},
#endif
R
Rich Salz 已提交
499
#ifndef OPENSSL_NO_RMD160
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    {"ripemd", D_RMD160},
    {"rmd160", D_RMD160},
    {"ripemd160", D_RMD160},
#endif
#ifndef OPENSSL_NO_RC4
    {"rc4", D_RC4},
#endif
#ifndef OPENSSL_NO_DES
    {"des-cbc", D_CBC_DES},
    {"des-ede3", D_EDE3_DES},
#endif
#ifndef OPENSSL_NO_AES
    {"aes-128-cbc", D_CBC_128_AES},
    {"aes-192-cbc", D_CBC_192_AES},
    {"aes-256-cbc", D_CBC_256_AES},
    {"aes-128-ige", D_IGE_128_AES},
    {"aes-192-ige", D_IGE_192_AES},
    {"aes-256-ige", D_IGE_256_AES},
#endif
#ifndef OPENSSL_NO_RC2
    {"rc2-cbc", D_CBC_RC2},
    {"rc2", D_CBC_RC2},
#endif
#ifndef OPENSSL_NO_RC5
    {"rc5-cbc", D_CBC_RC5},
    {"rc5", D_CBC_RC5},
#endif
#ifndef OPENSSL_NO_IDEA
    {"idea-cbc", D_CBC_IDEA},
    {"idea", D_CBC_IDEA},
#endif
#ifndef OPENSSL_NO_SEED
    {"seed-cbc", D_CBC_SEED},
    {"seed", D_CBC_SEED},
#endif
#ifndef OPENSSL_NO_BF
    {"bf-cbc", D_CBC_BF},
    {"blowfish", D_CBC_BF},
    {"bf", D_CBC_BF},
#endif
#ifndef OPENSSL_NO_CAST
    {"cast-cbc", D_CBC_CAST},
    {"cast", D_CBC_CAST},
    {"cast5", D_CBC_CAST},
#endif
    {"ghash", D_GHASH},
    {NULL}
};

M
Matt Caswell 已提交
549 550 551 552
#ifndef OPENSSL_NO_DSA
# define R_DSA_512       0
# define R_DSA_1024      1
# define R_DSA_2048      2
553 554 555 556 557 558
static OPT_PAIR dsa_choices[] = {
    {"dsa512", R_DSA_512},
    {"dsa1024", R_DSA_1024},
    {"dsa2048", R_DSA_2048},
    {NULL},
};
M
Matt Caswell 已提交
559
#endif
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
#define R_RSA_512       0
#define R_RSA_1024      1
#define R_RSA_2048      2
#define R_RSA_3072      3
#define R_RSA_4096      4
#define R_RSA_7680      5
#define R_RSA_15360     6
static OPT_PAIR rsa_choices[] = {
    {"rsa512", R_RSA_512},
    {"rsa1024", R_RSA_1024},
    {"rsa2048", R_RSA_2048},
    {"rsa3072", R_RSA_3072},
    {"rsa4096", R_RSA_4096},
    {"rsa7680", R_RSA_7680},
    {"rsa15360", R_RSA_15360},
    {NULL}
};

#define R_EC_P160    0
#define R_EC_P192    1
#define R_EC_P224    2
#define R_EC_P256    3
#define R_EC_P384    4
#define R_EC_P521    5
#define R_EC_K163    6
#define R_EC_K233    7
#define R_EC_K283    8
#define R_EC_K409    9
#define R_EC_K571    10
#define R_EC_B163    11
#define R_EC_B233    12
#define R_EC_B283    13
#define R_EC_B409    14
#define R_EC_B571    15
595
#define R_EC_X25519  16
R
Richard Levitte 已提交
596
#ifndef OPENSSL_NO_EC
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
static OPT_PAIR ecdsa_choices[] = {
    {"ecdsap160", R_EC_P160},
    {"ecdsap192", R_EC_P192},
    {"ecdsap224", R_EC_P224},
    {"ecdsap256", R_EC_P256},
    {"ecdsap384", R_EC_P384},
    {"ecdsap521", R_EC_P521},
    {"ecdsak163", R_EC_K163},
    {"ecdsak233", R_EC_K233},
    {"ecdsak283", R_EC_K283},
    {"ecdsak409", R_EC_K409},
    {"ecdsak571", R_EC_K571},
    {"ecdsab163", R_EC_B163},
    {"ecdsab233", R_EC_B233},
    {"ecdsab283", R_EC_B283},
    {"ecdsab409", R_EC_B409},
    {"ecdsab571", R_EC_B571},
    {NULL}
};
static OPT_PAIR ecdh_choices[] = {
    {"ecdhp160", R_EC_P160},
    {"ecdhp192", R_EC_P192},
    {"ecdhp224", R_EC_P224},
    {"ecdhp256", R_EC_P256},
    {"ecdhp384", R_EC_P384},
    {"ecdhp521", R_EC_P521},
    {"ecdhk163", R_EC_K163},
    {"ecdhk233", R_EC_K233},
    {"ecdhk283", R_EC_K283},
    {"ecdhk409", R_EC_K409},
    {"ecdhk571", R_EC_K571},
    {"ecdhb163", R_EC_B163},
    {"ecdhb233", R_EC_B233},
    {"ecdhb283", R_EC_B283},
    {"ecdhb409", R_EC_B409},
    {"ecdhb571", R_EC_B571},
633
    {"ecdhx25519", R_EC_X25519},
634 635 636 637
    {NULL}
};
#endif

638 639 640 641 642 643 644 645 646 647 648 649
#ifndef SIGALRM
# define COND(d) (count < (d))
# define COUNT(d) (d)
#else
# define COND(c) (run && count<0x7fffffff)
# define COUNT(d) (count)
#endif                         /* SIGALRM */

static int testnum;
static char *engine_id = NULL;


650
#ifndef OPENSSL_NO_MD2
651 652 653 654
static int EVP_Digest_MD2_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
655
    unsigned char md2[MD2_DIGEST_LENGTH];
656 657 658 659 660 661
    int count;
    for (count = 0; COND(c[D_MD2][testnum]); count++)
        EVP_Digest(buf, (unsigned long)lengths[testnum], &(md2[0]), NULL,
                EVP_md2(), NULL);
    return count;
}
662
#endif
663

664
#ifndef OPENSSL_NO_MDC2
665 666 667 668
static int EVP_Digest_MDC2_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
669
    unsigned char mdc2[MDC2_DIGEST_LENGTH];
670 671 672 673 674 675
    int count;
    for (count = 0; COND(c[D_MDC2][testnum]); count++)
        EVP_Digest(buf, (unsigned long)lengths[testnum], &(mdc2[0]), NULL,
                EVP_mdc2(), NULL);
    return count;
}
676
#endif
677

678
#ifndef OPENSSL_NO_MD4
679 680 681 682
static int EVP_Digest_MD4_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
683
    unsigned char md4[MD4_DIGEST_LENGTH];
684 685 686 687 688 689
    int count;
    for (count = 0; COND(c[D_MD4][testnum]); count++)
        EVP_Digest(&(buf[0]), (unsigned long)lengths[testnum], &(md4[0]),
                NULL, EVP_md4(), NULL);
    return count;
}
690
#endif
691

692
#ifndef OPENSSL_NO_MD5
693 694 695 696
static int MD5_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
697
    unsigned char md5[MD5_DIGEST_LENGTH];
698 699 700 701 702 703 704 705 706 707 708
    int count;
    for (count = 0; COND(c[D_MD5][testnum]); count++)
        MD5(buf, lengths[testnum], md5);
    return count;
}

static int HMAC_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    HMAC_CTX *hctx = tempargs->hctx;
709
    unsigned char hmac[MD5_DIGEST_LENGTH];
710 711 712 713 714 715 716 717
    int count;
    for (count = 0; COND(c[D_HMAC][testnum]); count++) {
        HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
        HMAC_Update(hctx, buf, lengths[testnum]);
        HMAC_Final(hctx, &(hmac[0]), NULL);
    }
    return count;
}
718
#endif
719 720 721 722 723

static int SHA1_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
724
    unsigned char sha[SHA_DIGEST_LENGTH];
725 726 727 728 729 730 731 732 733 734
    int count;
    for (count = 0; COND(c[D_SHA1][testnum]); count++)
        SHA1(buf, lengths[testnum], sha);
    return count;
}

static int SHA256_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
735
    unsigned char sha256[SHA256_DIGEST_LENGTH];
736 737 738 739 740 741 742 743 744 745
    int count;
    for (count = 0; COND(c[D_SHA256][testnum]); count++)
        SHA256(buf, lengths[testnum], sha256);
    return count;
}

static int SHA512_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
746
    unsigned char sha512[SHA512_DIGEST_LENGTH];
747 748 749 750 751 752
    int count;
    for (count = 0; COND(c[D_SHA512][testnum]); count++)
        SHA512(buf, lengths[testnum], sha512);
    return count;
}

753
#ifndef OPENSSL_NO_WHIRLPOOL
754 755 756 757
static int WHIRLPOOL_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
758
    unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
759 760 761 762 763
    int count;
    for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
        WHIRLPOOL(buf, lengths[testnum], whirlpool);
    return count;
}
764
#endif
765

R
Rich Salz 已提交
766
#ifndef OPENSSL_NO_RMD160
767 768 769 770
static int EVP_Digest_RMD160_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
771
    unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
772 773 774 775 776 777
    int count;
    for (count = 0; COND(c[D_RMD160][testnum]); count++)
        EVP_Digest(buf, (unsigned long)lengths[testnum], &(rmd160[0]), NULL,
                EVP_ripemd160(), NULL);
    return count;
}
778
#endif
779

780
#ifndef OPENSSL_NO_RC4
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static RC4_KEY rc4_ks;
static int RC4_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_RC4][testnum]); count++)
        RC4(&rc4_ks, (unsigned int)lengths[testnum], buf, buf);
    return count;
}
#endif

#ifndef OPENSSL_NO_DES
static unsigned char DES_iv[8];
static DES_key_schedule sch;
static DES_key_schedule sch2;
static DES_key_schedule sch3;
static int DES_ncbc_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
        DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
                &DES_iv, DES_ENCRYPT);
    return count;
}

static int DES_ede3_cbc_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
        DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
                &sch, &sch2, &sch3,
                &DES_iv, DES_ENCRYPT);
    return count;
}
#endif

#ifndef OPENSSL_NO_AES
# define MAX_BLOCK_SIZE 128
#else
# define MAX_BLOCK_SIZE 64
#endif

static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
#ifndef OPENSSL_NO_AES
static AES_KEY aes_ks1, aes_ks2, aes_ks3;
static int AES_cbc_128_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
        AES_cbc_encrypt(buf, buf,
                (unsigned long)lengths[testnum], &aes_ks1,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_cbc_192_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
        AES_cbc_encrypt(buf, buf,
                (unsigned long)lengths[testnum], &aes_ks2,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_cbc_256_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
        AES_cbc_encrypt(buf, buf,
                (unsigned long)lengths[testnum], &aes_ks3,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_ige_128_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
    int count;
    for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
        AES_ige_encrypt(buf, buf2,
                (unsigned long)lengths[testnum], &aes_ks1,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_ige_192_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
    int count;
    for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
        AES_ige_encrypt(buf, buf2,
                (unsigned long)lengths[testnum], &aes_ks2,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_ige_256_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
    int count;
    for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
        AES_ige_encrypt(buf, buf2,
                (unsigned long)lengths[testnum], &aes_ks3,
                iv, AES_ENCRYPT);
    return count;
}

static int CRYPTO_gcm128_aad_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
    int count;
    for (count = 0; COND(c[D_GHASH][testnum]); count++)
        CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
    return count;
}

#endif

static int decrypt = 0;
static int EVP_Update_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    EVP_CIPHER_CTX *ctx = tempargs->ctx;
    int outl, count;
    if (decrypt)
        for (count = 0;
                COND(save_count * 4 * lengths[0] / lengths[testnum]);
                count++)
            EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
    else
        for (count = 0;
                COND(save_count * 4 * lengths[0] / lengths[testnum]);
                count++)
            EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
    if (decrypt)
        EVP_DecryptFinal_ex(ctx, buf, &outl);
    else
        EVP_EncryptFinal_ex(ctx, buf, &outl);
    return count;
}

static const EVP_MD *evp_md = NULL;
static int EVP_Digest_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char md[EVP_MAX_MD_SIZE];
    int count;
    for (count = 0;
            COND(save_count * 4 * lengths[0] / lengths[testnum]); count++)
        EVP_Digest(buf, lengths[testnum], &(md[0]), NULL, evp_md, NULL);

    return count;
}

#ifndef OPENSSL_NO_RSA
static long rsa_c[RSA_NUM][2];

static int RSA_sign_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
965 966
    unsigned int *rsa_num = tempargs->siglen;
    RSA **rsa_key = tempargs->rsa_key;
967 968
    int ret, count;
    for (count = 0; COND(rsa_c[testnum][0]); count++) {
969
        ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
        if (ret == 0) {
            BIO_printf(bio_err, "RSA sign failure\n");
            ERR_print_errors(bio_err);
            count = -1;
            break;
        }
    }
    return count;
}

static int RSA_verify_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
985 986
    unsigned int rsa_num = *(tempargs->siglen);
    RSA **rsa_key = tempargs->rsa_key;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    int ret, count;
    for (count = 0; COND(rsa_c[testnum][1]); count++) {
        ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
        if (ret <= 0) {
            BIO_printf(bio_err, "RSA verify failure\n");
            ERR_print_errors(bio_err);
            count = -1;
            break;
        }
    }
    return count;
}
#endif

#ifndef OPENSSL_NO_DSA
static long dsa_c[DSA_NUM][2];
static int DSA_sign_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
1008 1009
    DSA **dsa_key = tempargs->dsa_key;
    unsigned int *siglen = tempargs->siglen;
1010 1011 1012 1013 1014 1015
    int ret, count;
    for (count = 0; COND(dsa_c[testnum][0]); count++) {
        ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
        if (ret == 0) {
            BIO_printf(bio_err, "DSA sign failure\n");
            ERR_print_errors(bio_err);
1016
            count = -1;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            break;
        }
    }
    return count;
}

static int DSA_verify_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
1028 1029
    DSA **dsa_key = tempargs->dsa_key;
    unsigned int siglen = *(tempargs->siglen);
1030 1031 1032 1033 1034 1035
    int ret, count;
    for (count = 0; COND(dsa_c[testnum][1]); count++) {
        ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
        if (ret <= 0) {
            BIO_printf(bio_err, "DSA verify failure\n");
            ERR_print_errors(bio_err);
1036
            count = -1;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
            break;
        }
    }
    return count;
}
#endif

#ifndef OPENSSL_NO_EC
static long ecdsa_c[EC_NUM][2];
static int ECDSA_sign_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
1050 1051 1052
    EC_KEY **ecdsa = tempargs->ecdsa;
    unsigned char *ecdsasig = tempargs->buf2;
    unsigned int *ecdsasiglen = tempargs->siglen;
1053 1054 1055 1056 1057 1058 1059
    int ret, count;
    for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
        ret = ECDSA_sign(0, buf, 20,
                ecdsasig, ecdsasiglen, ecdsa[testnum]);
        if (ret == 0) {
            BIO_printf(bio_err, "ECDSA sign failure\n");
            ERR_print_errors(bio_err);
1060
            count = -1;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
            break;
        }
    }
    return count;
}

static int ECDSA_verify_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
1071 1072 1073
    EC_KEY **ecdsa = tempargs->ecdsa;
    unsigned char *ecdsasig = tempargs->buf2;
    unsigned int ecdsasiglen = *(tempargs->siglen);
1074 1075 1076 1077 1078 1079 1080
    int ret, count;
    for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
        ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
                ecdsa[testnum]);
        if (ret != 1) {
            BIO_printf(bio_err, "ECDSA verify failure\n");
            ERR_print_errors(bio_err);
1081
            count = -1;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
            break;
        }
    }
    return count;
}

static int outlen;
static void *(*kdf) (const void *in, size_t inlen, void *out,
        size_t *xoutlen);

static int ECDH_compute_key_loop(void *args)
{
1094 1095 1096 1097
    loopargs_t *tempargs = (loopargs_t *)args;
    EC_KEY **ecdh_a = tempargs->ecdh_a;
    EC_KEY **ecdh_b = tempargs->ecdh_b;
    unsigned char *secret_a = tempargs->secret_a;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    int count;
    for (count = 0; COND(ecdh_c[testnum][0]); count++) {
        ECDH_compute_key(secret_a, outlen,
                EC_KEY_get0_public_key(ecdh_b[testnum]),
                ecdh_a[testnum], kdf);
    }
    return count;
}
#endif


static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs)
{
    int job_op_count = 0;
    int total_op_count = 0;
    int num_inprogress = 0;
    int error = 0;
    int i = 0;
1116 1117
    OSSL_ASYNC_FD job_fd = 0;
    size_t num_job_fds = 0;
1118 1119 1120

    run = 1;

1121
    if (async_jobs == 0) {
1122 1123 1124
        return loop_function((void *)loopargs);
    }

1125

1126
    for (i = 0; i < async_jobs && !error; i++) {
1127 1128 1129
        switch (ASYNC_start_job(&(loopargs[i].inprogress_job), loopargs[i].wait_ctx,
                                &job_op_count, loop_function,
                                (void *)(loopargs + i), sizeof(loopargs_t))) {
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
            case ASYNC_PAUSE:
                ++num_inprogress;
                break;
            case ASYNC_FINISH:
                if (job_op_count == -1) {
                    error = 1;
                } else {
                    total_op_count += job_op_count;
                }
                break;
            case ASYNC_NO_JOBS:
            case ASYNC_ERR:
                BIO_printf(bio_err, "Failure in the job\n");
                ERR_print_errors(bio_err);
                error = 1;
                break;
        }
    }

    while (num_inprogress > 0) {
1150
#if defined(OPENSSL_SYS_WINDOWS)
1151
        DWORD avail = 0;
1152
#elif defined(OPENSSL_SYS_UNIX)
1153
        int select_result = 0;
1154 1155
        OSSL_ASYNC_FD max_fd = 0;
        fd_set waitfdset;
1156

1157
        FD_ZERO(&waitfdset);
1158

1159 1160 1161
        for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
            if (loopargs[i].inprogress_job == NULL)
                continue;
1162

1163 1164 1165 1166 1167 1168
            if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
                    || num_job_fds > 1) {
                BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
                ERR_print_errors(bio_err);
                error = 1;
                break;
1169
            }
1170 1171 1172 1173
            ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
            FD_SET(job_fd, &waitfdset);
            if (job_fd > max_fd)
                max_fd = job_fd;
1174 1175
        }

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        if (max_fd >= FD_SETSIZE) {
            BIO_printf(bio_err,
                    "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
                    "Decrease the value of async_jobs\n",
                    max_fd, FD_SETSIZE);
            ERR_print_errors(bio_err);
            error = 1;
            break;
        }

1186
        select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
1187 1188 1189 1190
        if (select_result == -1 && errno == EINTR)
            continue;

        if (select_result == -1) {
1191 1192 1193 1194
            BIO_printf(bio_err, "Failure in the select\n");
            ERR_print_errors(bio_err);
            error = 1;
            break;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        }

        if (select_result == 0)
            continue;
#endif

        for (i = 0; i < async_jobs; i++) {
            if (loopargs[i].inprogress_job == NULL)
                continue;

1205 1206 1207 1208 1209 1210 1211 1212
            if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
                    || num_job_fds > 1) {
                BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
                ERR_print_errors(bio_err);
                error = 1;
                break;
            }
            ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
1213

1214
#if defined(OPENSSL_SYS_UNIX)
1215
            if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
1216
                continue;
1217
#elif defined(OPENSSL_SYS_WINDOWS)
1218 1219
            if (num_job_fds == 1 &&
                    !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0)
1220 1221 1222
                continue;
#endif

1223
            switch (ASYNC_start_job(&(loopargs[i].inprogress_job), loopargs[i].wait_ctx,
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
                        &job_op_count, loop_function, (void *)(loopargs + i),
                        sizeof(loopargs_t))) {
                case ASYNC_PAUSE:
                    break;
                case ASYNC_FINISH:
                    if (job_op_count == -1) {
                        error = 1;
                    } else {
                        total_op_count += job_op_count;
                    }
                    --num_inprogress;
                    loopargs[i].inprogress_job = NULL;
                    break;
                case ASYNC_NO_JOBS:
                case ASYNC_ERR:
                    --num_inprogress;
                    loopargs[i].inprogress_job = NULL;
                    BIO_printf(bio_err, "Failure in the job\n");
                    ERR_print_errors(bio_err);
                    error = 1;
                    break;
            }
        }
    }

    return error ? -1 : total_op_count;
}

int speed_main(int argc, char **argv)
{
    loopargs_t *loopargs = NULL;
    int loopargs_len = 0;
    char *prog;
    const EVP_CIPHER *evp_cipher = NULL;
    double d = 0.0;
    OPTION_CHOICE o;
    int multiblock = 0, doit[ALGOR_NUM], pr_header = 0;
M
Matt Caswell 已提交
1261 1262 1263 1264
#ifndef OPENSSL_NO_DSA
    int dsa_doit[DSA_NUM];
#endif
    int rsa_doit[RSA_NUM];
1265 1266 1267 1268 1269 1270 1271 1272
    int ret = 1, i, k, misalign = 0;
    long c[ALGOR_NUM][SIZE_NUM], count = 0, save_count = 0;
#ifndef NO_FORK
    int multi = 0;
#endif
    int async_jobs = 0;
    /* What follows are the buffers and key material. */
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
1273
    long rsa_count = 1;
1274 1275
#endif
#ifndef OPENSSL_NO_RC5
1276
    RC5_32_KEY rc5_ks;
1277 1278
#endif
#ifndef OPENSSL_NO_RC2
1279
    RC2_KEY rc2_ks;
1280 1281
#endif
#ifndef OPENSSL_NO_IDEA
1282
    IDEA_KEY_SCHEDULE idea_ks;
1283 1284
#endif
#ifndef OPENSSL_NO_SEED
1285
    SEED_KEY_SCHEDULE seed_ks;
1286 1287
#endif
#ifndef OPENSSL_NO_BF
1288
    BF_KEY bf_ks;
1289 1290
#endif
#ifndef OPENSSL_NO_CAST
1291
    CAST_KEY cast_ks;
1292
#endif
1293 1294 1295 1296
    static const unsigned char key16[16] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
    };
1297
#ifndef OPENSSL_NO_AES
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
    static const unsigned char key24[24] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
    };
    static const unsigned char key32[32] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
        0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
    };
1309 1310
#endif
#ifndef OPENSSL_NO_CAMELLIA
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    static const unsigned char ckey24[24] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
    };
    static const unsigned char ckey32[32] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
        0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
    };
1322
    CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
1323 1324
#endif
#ifndef OPENSSL_NO_DES
1325 1326 1327 1328 1329 1330 1331 1332 1333
    static DES_cblock key = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
    };
    static DES_cblock key2 = {
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
    };
    static DES_cblock key3 = {
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
    };
1334 1335
#endif
#ifndef OPENSSL_NO_RSA
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    static unsigned int rsa_bits[RSA_NUM] = {
        512, 1024, 2048, 3072, 4096, 7680, 15360
    };
    static unsigned char *rsa_data[RSA_NUM] = {
        test512, test1024, test2048, test3072, test4096, test7680, test15360
    };
    static int rsa_data_length[RSA_NUM] = {
        sizeof(test512), sizeof(test1024),
        sizeof(test2048), sizeof(test3072),
        sizeof(test4096), sizeof(test7680),
        sizeof(test15360)
    };
1348 1349
#endif
#ifndef OPENSSL_NO_DSA
1350
    static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
1351 1352
#endif
#ifndef OPENSSL_NO_EC
1353 1354 1355 1356 1357 1358 1359
    /*
     * We only test over the following curves as they are representative, To
     * add tests over more curves, simply add the curve NID and curve name to
     * the following arrays and increase the EC_NUM value accordingly.
     */
    static unsigned int test_curves[EC_NUM] = {
        /* Prime Curves */
1360 1361
        NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1,
        NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1,
1362
        /* Binary Curves */
1363 1364 1365
        NID_sect163k1, NID_sect233k1, NID_sect283k1,
        NID_sect409k1, NID_sect571k1, NID_sect163r2,
        NID_sect233r1, NID_sect283r1, NID_sect409r1,
1366 1367 1368
        NID_sect571r1,
        /* Other */
        NID_X25519
1369 1370 1371
    };
    static const char *test_curves_names[EC_NUM] = {
        /* Prime Curves */
1372 1373
        "secp160r1", "nistp192", "nistp224",
        "nistp256", "nistp384", "nistp521",
1374
        /* Binary Curves */
1375 1376 1377
        "nistk163", "nistk233", "nistk283",
        "nistk409", "nistk571", "nistb163",
        "nistb233", "nistb283", "nistb409",
1378 1379 1380
        "nistb571",
        /* Other */
        "X25519"
1381 1382
    };
    static int test_curves_bits[EC_NUM] = {
1383 1384 1385 1386 1387
        160, 192, 224,
        256, 384, 521,
        163, 233, 283,
        409, 571, 163,
        233, 283, 409,
1388
        571, 253 /* X25519 */
1389
    };
1390
#endif
1391
#ifndef OPENSSL_NO_EC
1392
    int ecdsa_doit[EC_NUM];
1393
    int secret_size_a, secret_size_b;
1394
    int ecdh_checks = 1;
1395 1396
    int secret_idx = 0;
    long ecdh_c[EC_NUM][2];
1397
    int ecdh_doit[EC_NUM];
1398
#endif
1399

1400
    memset(results, 0, sizeof(results));
D
Dr. Stephen Henson 已提交
1401

1402
    memset(c, 0, sizeof(c));
M
Matt Caswell 已提交
1403
#ifndef OPENSSL_NO_DES
1404
    memset(DES_iv, 0, sizeof(DES_iv));
M
Matt Caswell 已提交
1405
#endif
1406 1407 1408 1409 1410 1411
    memset(iv, 0, sizeof(iv));

    for (i = 0; i < ALGOR_NUM; i++)
        doit[i] = 0;
    for (i = 0; i < RSA_NUM; i++)
        rsa_doit[i] = 0;
M
Matt Caswell 已提交
1412
#ifndef OPENSSL_NO_DSA
1413 1414
    for (i = 0; i < DSA_NUM; i++)
        dsa_doit[i] = 0;
M
Matt Caswell 已提交
1415
#endif
1416
#ifndef OPENSSL_NO_EC
1417 1418 1419 1420
    for (i = 0; i < EC_NUM; i++)
        ecdsa_doit[i] = 0;
    for (i = 0; i < EC_NUM; i++)
        ecdh_doit[i] = 0;
1421
#endif
1422

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
    misalign = 0;

    prog = opt_init(argc, argv, speed_options);
    while ((o = opt_next()) != OPT_EOF) {
        switch (o) {
        case OPT_EOF:
        case OPT_ERR:
 opterr:
            BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
            goto end;
        case OPT_HELP:
            opt_help(speed_options);
            ret = 0;
            goto end;
        case OPT_ELAPSED:
1438
            usertime = 0;
1439 1440 1441 1442 1443 1444 1445 1446 1447
            break;
        case OPT_EVP:
            evp_cipher = EVP_get_cipherbyname(opt_arg());
            if (evp_cipher == NULL)
                evp_md = EVP_get_digestbyname(opt_arg());
            if (evp_cipher == NULL && evp_md == NULL) {
                BIO_printf(bio_err,
                           "%s: %s  an unknown cipher or digest\n",
                           prog, opt_arg());
1448 1449 1450
                goto end;
            }
            doit[D_EVP] = 1;
1451 1452
            break;
        case OPT_DECRYPT:
1453
            decrypt = 1;
1454 1455
            break;
        case OPT_ENGINE:
1456 1457 1458 1459 1460 1461
            /*
             * In a forked execution, an engine might need to be
             * initialised by each child process, not by the parent.
             * So store the name here and run setup_engine() later on.
             */
            engine_id = opt_arg();
1462 1463
            break;
        case OPT_MULTI:
1464
#ifndef NO_FORK
1465
            multi = atoi(opt_arg());
1466 1467 1468
#endif
            break;
        case OPT_ASYNCJOBS:
1469
#ifndef OPENSSL_NO_ASYNC
1470
            async_jobs = atoi(opt_arg());
1471 1472 1473 1474 1475 1476
            if (!ASYNC_is_capable()) {
                BIO_printf(bio_err,
                           "%s: async_jobs specified but async not supported\n",
                           prog);
                goto opterr;
            }
1477
#endif
1478
            break;
1479 1480
        case OPT_MISALIGN:
            if (!opt_int(opt_arg(), &misalign))
1481
                goto end;
1482
            if (misalign > MISALIGN) {
1483
                BIO_printf(bio_err,
1484 1485
                           "%s: Maximum offset is %d\n", prog, MISALIGN);
                goto opterr;
1486
            }
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
            break;
        case OPT_MR:
            mr = 1;
            break;
        case OPT_MB:
            multiblock = 1;
            break;
        }
    }
    argc = opt_num_rest();
    argv = opt_rest();

    /* Remaining arguments are algorithms. */
    for ( ; *argv; argv++) {
        if (found(*argv, doit_choices, &i)) {
            doit[i] = 1;
            continue;
        }
1505
#ifndef OPENSSL_NO_DES
1506 1507 1508 1509
        if (strcmp(*argv, "des") == 0) {
            doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
            continue;
        }
1510
#endif
1511 1512 1513 1514
        if (strcmp(*argv, "sha") == 0) {
            doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
            continue;
        }
1515 1516
#ifndef OPENSSL_NO_RSA
# ifndef RSA_NULL
1517
        if (strcmp(*argv, "openssl") == 0) {
R
Rich Salz 已提交
1518
            RSA_set_default_method(RSA_PKCS1_OpenSSL());
1519 1520
            continue;
        }
1521
# endif
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
        if (strcmp(*argv, "rsa") == 0) {
            rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] =
                rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] =
                rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] =
                rsa_doit[R_RSA_15360] = 1;
            continue;
        }
        if (found(*argv, rsa_choices, &i)) {
            rsa_doit[i] = 1;
            continue;
        }
1533
#endif
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
#ifndef OPENSSL_NO_DSA
        if (strcmp(*argv, "dsa") == 0) {
            dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
                dsa_doit[R_DSA_2048] = 1;
            continue;
        }
        if (found(*argv, dsa_choices, &i)) {
            dsa_doit[i] = 2;
            continue;
        }
1544 1545
#endif
#ifndef OPENSSL_NO_AES
1546
        if (strcmp(*argv, "aes") == 0) {
1547 1548 1549 1550
            doit[D_CBC_128_AES] = doit[D_CBC_192_AES] =
                doit[D_CBC_256_AES] = 1;
            continue;
        }
1551 1552
#endif
#ifndef OPENSSL_NO_CAMELLIA
1553
        if (strcmp(*argv, "camellia") == 0) {
1554 1555 1556 1557
            doit[D_CBC_128_CML] = doit[D_CBC_192_CML] =
                doit[D_CBC_256_CML] = 1;
            continue;
        }
1558
#endif
1559
#ifndef OPENSSL_NO_EC
1560
        if (strcmp(*argv, "ecdsa") == 0) {
1561 1562
            for (i = 0; i < EC_NUM; i++)
                ecdsa_doit[i] = 1;
1563 1564 1565 1566 1567 1568 1569
            continue;
        }
        if (found(*argv, ecdsa_choices, &i)) {
            ecdsa_doit[i] = 2;
            continue;
        }
        if (strcmp(*argv, "ecdh") == 0) {
1570 1571
            for (i = 0; i < EC_NUM; i++)
                ecdh_doit[i] = 1;
1572 1573 1574 1575 1576
            continue;
        }
        if (found(*argv, ecdh_choices, &i)) {
            ecdh_doit[i] = 2;
            continue;
1577
        }
1578 1579 1580
#endif
        BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
        goto end;
1581
    }
1582

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    /* Initialize the job pool if async mode is enabled */
    if (async_jobs > 0) {
        if (!ASYNC_init_thread(async_jobs, async_jobs)) {
            BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
            goto end;
        }
    }

    loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
    loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
    memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));

1595
    for (i = 0; i < loopargs_len; i++) {
1596 1597 1598 1599 1600 1601 1602 1603
        if (async_jobs > 0) {
            loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
            if (loopargs[i].wait_ctx == NULL) {
                BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
                goto end;
            }
        }

1604 1605 1606 1607 1608
        loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
        loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
        /* Align the start of buffers on a 64 byte boundary */
        loopargs[i].buf = loopargs[i].buf_malloc + misalign;
        loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
1609 1610 1611 1612 1613
        loopargs[i].siglen = app_malloc(sizeof(unsigned int), "signature length");
#ifndef OPENSSL_NO_EC
        loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
        loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
#endif
1614 1615
    }

1616
#ifndef NO_FORK
1617 1618
    if (multi && do_multi(multi))
        goto show_res;
1619
#endif
1620

1621 1622 1623
    /* Initialize the engine after the fork */
    (void)setup_engine(engine_id, 0);

1624
    /* No parameters; turn on everything. */
1625
    if ((argc == 0) && !doit[D_EVP]) {
1626
        for (i = 0; i < ALGOR_NUM; i++)
1627 1628 1629 1630
            if (i != D_EVP)
                doit[i] = 1;
        for (i = 0; i < RSA_NUM; i++)
            rsa_doit[i] = 1;
M
Matt Caswell 已提交
1631
#ifndef OPENSSL_NO_DSA
1632 1633
        for (i = 0; i < DSA_NUM; i++)
            dsa_doit[i] = 1;
M
Matt Caswell 已提交
1634
#endif
1635
#ifndef OPENSSL_NO_EC
1636 1637 1638 1639
        for (i = 0; i < EC_NUM; i++)
            ecdsa_doit[i] = 1;
        for (i = 0; i < EC_NUM; i++)
            ecdh_doit[i] = 1;
1640
#endif
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
    }
    for (i = 0; i < ALGOR_NUM; i++)
        if (doit[i])
            pr_header++;

    if (usertime == 0 && !mr)
        BIO_printf(bio_err,
                   "You have chosen to measure elapsed time "
                   "instead of user CPU time.\n");

1651
#ifndef OPENSSL_NO_RSA
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    for (i = 0; i < loopargs_len; i++) {
        for (k = 0; k < RSA_NUM; k++) {
            const unsigned char *p;

            p = rsa_data[k];
            loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
            if (loopargs[i].rsa_key[k] == NULL) {
                BIO_printf(bio_err, "internal error loading RSA key number %d\n",
                        k);
                goto end;
            }
1663
        }
1664 1665 1666
    }
#endif
#ifndef OPENSSL_NO_DSA
1667 1668 1669 1670 1671
    for (i = 0; i < loopargs_len; i++) {
        loopargs[i].dsa_key[0] = get_dsa512();
        loopargs[i].dsa_key[1] = get_dsa1024();
        loopargs[i].dsa_key[2] = get_dsa2048();
    }
1672 1673
#endif
#ifndef OPENSSL_NO_DES
1674 1675 1676
    DES_set_key_unchecked(&key, &sch);
    DES_set_key_unchecked(&key2, &sch2);
    DES_set_key_unchecked(&key3, &sch3);
1677 1678
#endif
#ifndef OPENSSL_NO_AES
1679 1680 1681
    AES_set_encrypt_key(key16, 128, &aes_ks1);
    AES_set_encrypt_key(key24, 192, &aes_ks2);
    AES_set_encrypt_key(key32, 256, &aes_ks3);
1682 1683
#endif
#ifndef OPENSSL_NO_CAMELLIA
1684 1685 1686
    Camellia_set_key(key16, 128, &camellia_ks1);
    Camellia_set_key(ckey24, 192, &camellia_ks2);
    Camellia_set_key(ckey32, 256, &camellia_ks3);
1687 1688
#endif
#ifndef OPENSSL_NO_IDEA
1689
    idea_set_encrypt_key(key16, &idea_ks);
1690 1691
#endif
#ifndef OPENSSL_NO_SEED
1692
    SEED_set_key(key16, &seed_ks);
1693 1694
#endif
#ifndef OPENSSL_NO_RC4
1695
    RC4_set_key(&rc4_ks, 16, key16);
1696 1697
#endif
#ifndef OPENSSL_NO_RC2
1698
    RC2_set_key(&rc2_ks, 16, key16, 128);
1699 1700
#endif
#ifndef OPENSSL_NO_RC5
1701
    RC5_32_set_key(&rc5_ks, 16, key16, 12);
1702 1703
#endif
#ifndef OPENSSL_NO_BF
1704
    BF_set_key(&bf_ks, 16, key16);
1705 1706
#endif
#ifndef OPENSSL_NO_CAST
1707
    CAST_set_key(&cast_ks, 16, key16);
1708 1709
#endif
#ifndef OPENSSL_NO_RSA
1710
    memset(rsa_c, 0, sizeof(rsa_c));
1711 1712 1713
#endif
#ifndef SIGALRM
# ifndef OPENSSL_NO_DES
1714 1715 1716 1717 1718 1719 1720
    BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
    count = 10;
    do {
        long it;
        count *= 2;
        Time_F(START);
        for (it = count; it; it--)
1721 1722
            DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
                            (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
        d = Time_F(STOP);
    } while (d < 3);
    save_count = count;
    c[D_MD2][0] = count / 10;
    c[D_MDC2][0] = count / 10;
    c[D_MD4][0] = count;
    c[D_MD5][0] = count;
    c[D_HMAC][0] = count;
    c[D_SHA1][0] = count;
    c[D_RMD160][0] = count;
    c[D_RC4][0] = count * 5;
    c[D_CBC_DES][0] = count;
    c[D_EDE3_DES][0] = count / 3;
    c[D_CBC_IDEA][0] = count;
    c[D_CBC_SEED][0] = count;
    c[D_CBC_RC2][0] = count;
    c[D_CBC_RC5][0] = count;
    c[D_CBC_BF][0] = count;
    c[D_CBC_CAST][0] = count;
    c[D_CBC_128_AES][0] = count;
    c[D_CBC_192_AES][0] = count;
    c[D_CBC_256_AES][0] = count;
    c[D_CBC_128_CML][0] = count;
    c[D_CBC_192_CML][0] = count;
    c[D_CBC_256_CML][0] = count;
    c[D_SHA256][0] = count;
    c[D_SHA512][0] = count;
    c[D_WHIRLPOOL][0] = count;
    c[D_IGE_128_AES][0] = count;
    c[D_IGE_192_AES][0] = count;
    c[D_IGE_256_AES][0] = count;
    c[D_GHASH][0] = count;

    for (i = 1; i < SIZE_NUM; i++) {
        long l0, l1;

        l0 = (long)lengths[0];
        l1 = (long)lengths[i];

        c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
        c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
        c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
        c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
        c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
        c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
        c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
        c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
        c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
        c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
1772
        c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

        l0 = (long)lengths[i - 1];

        c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
        c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
        c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
        c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
        c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
        c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
        c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
        c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
        c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
        c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
        c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
        c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
        c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
        c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
        c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
        c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
        c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
        c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
    }
B
Bodo Möller 已提交
1795

1796
#  ifndef OPENSSL_NO_RSA
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
    rsa_c[R_RSA_512][0] = count / 2000;
    rsa_c[R_RSA_512][1] = count / 400;
    for (i = 1; i < RSA_NUM; i++) {
        rsa_c[i][0] = rsa_c[i - 1][0] / 8;
        rsa_c[i][1] = rsa_c[i - 1][1] / 4;
        if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0))
            rsa_doit[i] = 0;
        else {
            if (rsa_c[i][0] == 0) {
                rsa_c[i][0] = 1;
                rsa_c[i][1] = 20;
            }
        }
    }
1811
#  endif
1812

1813
#  ifndef OPENSSL_NO_DSA
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
    dsa_c[R_DSA_512][0] = count / 1000;
    dsa_c[R_DSA_512][1] = count / 1000 / 2;
    for (i = 1; i < DSA_NUM; i++) {
        dsa_c[i][0] = dsa_c[i - 1][0] / 4;
        dsa_c[i][1] = dsa_c[i - 1][1] / 4;
        if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0))
            dsa_doit[i] = 0;
        else {
            if (dsa_c[i] == 0) {
                dsa_c[i][0] = 1;
                dsa_c[i][1] = 1;
            }
        }
    }
1828
#  endif
1829

1830
#  ifndef OPENSSL_NO_EC
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
    ecdsa_c[R_EC_P160][0] = count / 1000;
    ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
    for (i = R_EC_P192; i <= R_EC_P521; i++) {
        ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
        ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
        if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
            ecdsa_doit[i] = 0;
        else {
            if (ecdsa_c[i] == 0) {
                ecdsa_c[i][0] = 1;
                ecdsa_c[i][1] = 1;
            }
        }
    }
    ecdsa_c[R_EC_K163][0] = count / 1000;
    ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
    for (i = R_EC_K233; i <= R_EC_K571; i++) {
        ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
        ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
        if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
            ecdsa_doit[i] = 0;
        else {
            if (ecdsa_c[i] == 0) {
                ecdsa_c[i][0] = 1;
                ecdsa_c[i][1] = 1;
            }
        }
    }
    ecdsa_c[R_EC_B163][0] = count / 1000;
    ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
    for (i = R_EC_B233; i <= R_EC_B571; i++) {
        ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
        ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
        if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
            ecdsa_doit[i] = 0;
        else {
            if (ecdsa_c[i] == 0) {
                ecdsa_c[i][0] = 1;
                ecdsa_c[i][1] = 1;
            }
        }
    }
1873

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
    ecdh_c[R_EC_P160][0] = count / 1000;
    ecdh_c[R_EC_P160][1] = count / 1000;
    for (i = R_EC_P192; i <= R_EC_P521; i++) {
        ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
        ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
        if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
            ecdh_doit[i] = 0;
        else {
            if (ecdh_c[i] == 0) {
                ecdh_c[i][0] = 1;
                ecdh_c[i][1] = 1;
            }
        }
    }
    ecdh_c[R_EC_K163][0] = count / 1000;
    ecdh_c[R_EC_K163][1] = count / 1000;
    for (i = R_EC_K233; i <= R_EC_K571; i++) {
        ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
        ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
        if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
            ecdh_doit[i] = 0;
        else {
            if (ecdh_c[i] == 0) {
                ecdh_c[i][0] = 1;
                ecdh_c[i][1] = 1;
            }
        }
    }
    ecdh_c[R_EC_B163][0] = count / 1000;
    ecdh_c[R_EC_B163][1] = count / 1000;
    for (i = R_EC_B233; i <= R_EC_B571; i++) {
        ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
        ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
        if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
            ecdh_doit[i] = 0;
        else {
            if (ecdh_c[i] == 0) {
                ecdh_c[i][0] = 1;
                ecdh_c[i][1] = 1;
            }
        }
    }
1916
#  endif
B
Bodo Möller 已提交
1917

1918
# else
1919 1920 1921 1922 1923
/* not worth fixing */
#  error "You cannot disable DES on systems without SIGALRM."
# endif                        /* OPENSSL_NO_DES */
#else
# ifndef _WIN32
1924
    signal(SIGALRM, sig_done);
1925 1926
# endif
#endif                         /* SIGALRM */
1927

1928
#ifndef OPENSSL_NO_MD2
1929
    if (doit[D_MD2]) {
1930 1931
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]);
1932
            Time_F(START);
1933
            count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
1934
            d = Time_F(STOP);
1935
            print_result(D_MD2, testnum, count, d);
1936 1937
        }
    }
1938 1939
#endif
#ifndef OPENSSL_NO_MDC2
1940
    if (doit[D_MDC2]) {
1941 1942
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]);
1943
            Time_F(START);
1944
            count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
1945
            d = Time_F(STOP);
1946
            print_result(D_MDC2, testnum, count, d);
1947 1948
        }
    }
1949
#endif
1950

1951
#ifndef OPENSSL_NO_MD4
1952
    if (doit[D_MD4]) {
1953 1954
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]);
1955
            Time_F(START);
1956
            count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
1957
            d = Time_F(STOP);
1958
            print_result(D_MD4, testnum, count, d);
1959 1960
        }
    }
1961
#endif
1962

1963
#ifndef OPENSSL_NO_MD5
1964
    if (doit[D_MD5]) {
1965 1966
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]);
1967
            Time_F(START);
1968
            count = run_benchmark(async_jobs, MD5_loop, loopargs);
1969
            d = Time_F(STOP);
1970
            print_result(D_MD5, testnum, count, d);
1971 1972
        }
    }
1973
#endif
1974

1975
#ifndef OPENSSL_NO_MD5
1976
    if (doit[D_HMAC]) {
1977
        for (i = 0; i < loopargs_len; i++) {
1978 1979 1980 1981 1982
            loopargs[i].hctx = HMAC_CTX_new();
            if (loopargs[i].hctx == NULL) {
                BIO_printf(bio_err, "HMAC malloc failure, exiting...");
                exit(1);
            }
1983

1984 1985
            HMAC_Init_ex(loopargs[i].hctx, (unsigned char *)"This is a key...",
                    16, EVP_md5(), NULL);
1986
        }
1987 1988
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]);
1989
            Time_F(START);
1990
            count = run_benchmark(async_jobs, HMAC_loop, loopargs);
1991
            d = Time_F(STOP);
1992 1993
            print_result(D_HMAC, testnum, count, d);
        }
1994
        for (i = 0; i < loopargs_len; i++) {
1995
            HMAC_CTX_free(loopargs[i].hctx);
1996 1997
        }
    }
1998
#endif
1999
    if (doit[D_SHA1]) {
2000 2001
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]);
2002
            Time_F(START);
2003
            count = run_benchmark(async_jobs, SHA1_loop, loopargs);
2004
            d = Time_F(STOP);
2005
            print_result(D_SHA1, testnum, count, d);
2006 2007 2008
        }
    }
    if (doit[D_SHA256]) {
2009 2010
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]);
2011
            Time_F(START);
2012
            count = run_benchmark(async_jobs, SHA256_loop, loopargs);
2013
            d = Time_F(STOP);
2014
            print_result(D_SHA256, testnum, count, d);
2015 2016 2017
        }
    }
    if (doit[D_SHA512]) {
2018 2019
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]);
2020
            Time_F(START);
2021
            count = run_benchmark(async_jobs, SHA512_loop, loopargs);
2022
            d = Time_F(STOP);
2023
            print_result(D_SHA512, testnum, count, d);
2024 2025
        }
    }
A
Andy Polyakov 已提交
2026

2027
#ifndef OPENSSL_NO_WHIRLPOOL
2028
    if (doit[D_WHIRLPOOL]) {
2029 2030
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]);
2031
            Time_F(START);
2032
            count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
2033
            d = Time_F(STOP);
2034
            print_result(D_WHIRLPOOL, testnum, count, d);
2035 2036
        }
    }
2037
#endif
2038

2039
#ifndef OPENSSL_NO_RMD160
2040
    if (doit[D_RMD160]) {
2041 2042
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]);
2043
            Time_F(START);
2044
            count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
2045
            d = Time_F(STOP);
2046
            print_result(D_RMD160, testnum, count, d);
2047 2048
        }
    }
2049 2050
#endif
#ifndef OPENSSL_NO_RC4
2051
    if (doit[D_RC4]) {
2052 2053
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]);
2054
            Time_F(START);
2055
            count = run_benchmark(async_jobs, RC4_loop, loopargs);
2056
            d = Time_F(STOP);
2057
            print_result(D_RC4, testnum, count, d);
2058 2059
        }
    }
2060 2061
#endif
#ifndef OPENSSL_NO_DES
2062
    if (doit[D_CBC_DES]) {
2063 2064
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]);
2065
            Time_F(START);
2066
            count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
2067
            d = Time_F(STOP);
2068
            print_result(D_CBC_DES, testnum, count, d);
2069 2070
        }
    }
2071

2072
    if (doit[D_EDE3_DES]) {
2073 2074
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]);
2075
            Time_F(START);
2076
            count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
2077
            d = Time_F(STOP);
2078
            print_result(D_EDE3_DES, testnum, count, d);
2079 2080
        }
    }
2081 2082
#endif
#ifndef OPENSSL_NO_AES
2083
    if (doit[D_CBC_128_AES]) {
2084 2085 2086
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
                          lengths[testnum]);
2087
            Time_F(START);
2088
            count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
2089
            d = Time_F(STOP);
2090
            print_result(D_CBC_128_AES, testnum, count, d);
2091 2092 2093
        }
    }
    if (doit[D_CBC_192_AES]) {
2094 2095 2096
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
                          lengths[testnum]);
2097
            Time_F(START);
2098
            count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
2099
            d = Time_F(STOP);
2100
            print_result(D_CBC_192_AES, testnum, count, d);
2101 2102 2103
        }
    }
    if (doit[D_CBC_256_AES]) {
2104 2105 2106
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
                          lengths[testnum]);
2107
            Time_F(START);
2108
            count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
2109
            d = Time_F(STOP);
2110
            print_result(D_CBC_256_AES, testnum, count, d);
2111 2112
        }
    }
B
Ben Laurie 已提交
2113

2114
    if (doit[D_IGE_128_AES]) {
2115 2116 2117
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
                          lengths[testnum]);
2118
            Time_F(START);
2119
            count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
2120
            d = Time_F(STOP);
2121
            print_result(D_IGE_128_AES, testnum, count, d);
2122 2123 2124
        }
    }
    if (doit[D_IGE_192_AES]) {
2125 2126 2127
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
                          lengths[testnum]);
2128
            Time_F(START);
2129
            count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
2130
            d = Time_F(STOP);
2131
            print_result(D_IGE_192_AES, testnum, count, d);
2132 2133 2134
        }
    }
    if (doit[D_IGE_256_AES]) {
2135 2136 2137
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
                          lengths[testnum]);
2138
            Time_F(START);
2139
            count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
2140
            d = Time_F(STOP);
2141
            print_result(D_IGE_256_AES, testnum, count, d);
2142 2143 2144
        }
    }
    if (doit[D_GHASH]) {
2145
        for (i = 0; i < loopargs_len; i++) {
2146 2147 2148
            loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
            CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12);
        }
2149

2150 2151
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]);
2152
            Time_F(START);
2153
            count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
2154
            d = Time_F(STOP);
2155
            print_result(D_GHASH, testnum, count, d);
2156
        }
2157
        for (i = 0; i < loopargs_len; i++)
2158
            CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
2159
    }
2160 2161
#endif
#ifndef OPENSSL_NO_CAMELLIA
2162
    if (doit[D_CBC_128_CML]) {
2163 2164 2165 2166 2167 2168 2169
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
                          lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2170
            Time_F(START);
2171 2172 2173
            for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
                Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                     (unsigned long)lengths[testnum], &camellia_ks1,
2174 2175
                                     iv, CAMELLIA_ENCRYPT);
            d = Time_F(STOP);
2176
            print_result(D_CBC_128_CML, testnum, count, d);
2177 2178 2179
        }
    }
    if (doit[D_CBC_192_CML]) {
2180 2181 2182 2183 2184 2185 2186
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
                          lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2187
            Time_F(START);
2188 2189 2190
            for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
                Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                     (unsigned long)lengths[testnum], &camellia_ks2,
2191 2192
                                     iv, CAMELLIA_ENCRYPT);
            d = Time_F(STOP);
2193
            print_result(D_CBC_192_CML, testnum, count, d);
2194 2195 2196
        }
    }
    if (doit[D_CBC_256_CML]) {
2197 2198 2199 2200 2201 2202 2203
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
                          lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2204
            Time_F(START);
2205 2206 2207
            for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
                Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                     (unsigned long)lengths[testnum], &camellia_ks3,
2208 2209
                                     iv, CAMELLIA_ENCRYPT);
            d = Time_F(STOP);
2210
            print_result(D_CBC_256_CML, testnum, count, d);
2211 2212
        }
    }
2213 2214
#endif
#ifndef OPENSSL_NO_IDEA
2215
    if (doit[D_CBC_IDEA]) {
2216 2217 2218 2219 2220 2221
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2222
            Time_F(START);
2223 2224 2225
            for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
                idea_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                 (unsigned long)lengths[testnum], &idea_ks,
2226 2227
                                 iv, IDEA_ENCRYPT);
            d = Time_F(STOP);
2228
            print_result(D_CBC_IDEA, testnum, count, d);
2229 2230
        }
    }
2231 2232
#endif
#ifndef OPENSSL_NO_SEED
2233
    if (doit[D_CBC_SEED]) {
2234 2235 2236 2237 2238 2239
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2240
            Time_F(START);
2241 2242 2243
            for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
                SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                 (unsigned long)lengths[testnum], &seed_ks, iv, 1);
2244
            d = Time_F(STOP);
2245
            print_result(D_CBC_SEED, testnum, count, d);
2246 2247
        }
    }
2248 2249
#endif
#ifndef OPENSSL_NO_RC2
2250
    if (doit[D_CBC_RC2]) {
2251 2252 2253 2254 2255 2256
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2257
            Time_F(START);
2258 2259 2260
            for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
                RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                (unsigned long)lengths[testnum], &rc2_ks,
2261 2262
                                iv, RC2_ENCRYPT);
            d = Time_F(STOP);
2263
            print_result(D_CBC_RC2, testnum, count, d);
2264 2265
        }
    }
2266 2267
#endif
#ifndef OPENSSL_NO_RC5
2268
    if (doit[D_CBC_RC5]) {
2269 2270 2271 2272 2273 2274
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2275
            Time_F(START);
2276 2277 2278
            for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
                RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                   (unsigned long)lengths[testnum], &rc5_ks,
2279 2280
                                   iv, RC5_ENCRYPT);
            d = Time_F(STOP);
2281
            print_result(D_CBC_RC5, testnum, count, d);
2282 2283
        }
    }
2284 2285
#endif
#ifndef OPENSSL_NO_BF
2286
    if (doit[D_CBC_BF]) {
2287 2288 2289 2290 2291 2292
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2293
            Time_F(START);
2294 2295 2296
            for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
                BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                               (unsigned long)lengths[testnum], &bf_ks,
2297 2298
                               iv, BF_ENCRYPT);
            d = Time_F(STOP);
2299
            print_result(D_CBC_BF, testnum, count, d);
2300 2301
        }
    }
2302 2303
#endif
#ifndef OPENSSL_NO_CAST
2304
    if (doit[D_CBC_CAST]) {
2305 2306 2307 2308 2309 2310
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2311
            Time_F(START);
2312 2313 2314
            for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
                CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                 (unsigned long)lengths[testnum], &cast_ks,
2315 2316
                                 iv, CAST_ENCRYPT);
            d = Time_F(STOP);
2317
            print_result(D_CBC_CAST, testnum, count, d);
2318 2319
        }
    }
2320
#endif
2321

2322
    if (doit[D_EVP]) {
2323
#ifdef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
2324 2325 2326 2327
        if (multiblock && evp_cipher) {
            if (!
                (EVP_CIPHER_flags(evp_cipher) &
                 EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
R
Rich Salz 已提交
2328
                BIO_printf(bio_err, "%s is not multi-block capable\n",
2329
                           OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
2330 2331
                goto end;
            }
2332 2333 2334 2335
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2336
            multiblock_speed(evp_cipher);
2337
            ret = 0;
2338 2339
            goto end;
        }
2340
#endif
2341
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
2342 2343
            if (evp_cipher) {

2344
                names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
2345 2346 2347 2348
                /*
                 * -O3 -fschedule-insns messes up an optimization here!
                 * names[D_EVP] somehow becomes NULL
                 */
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
                print_message(names[D_EVP], save_count, lengths[testnum]);

                for (k = 0; k < loopargs_len; k++) {
                    loopargs[k].ctx = EVP_CIPHER_CTX_new();
                    if (decrypt)
                        EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
                    else
                        EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
                    EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
                }
2359 2360

                Time_F(START);
2361
                count = run_benchmark(async_jobs, EVP_Update_loop, loopargs);
2362
                d = Time_F(STOP);
2363 2364 2365
                for (k = 0; k < loopargs_len; k++) {
                    EVP_CIPHER_CTX_free(loopargs[k].ctx);
                }
2366 2367
            }
            if (evp_md) {
2368
                names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
2369
                print_message(names[D_EVP], save_count, lengths[testnum]);
2370
                Time_F(START);
2371
                count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
2372 2373
                d = Time_F(STOP);
            }
2374
            print_result(D_EVP, testnum, count, d);
2375 2376
        }
    }
2377

2378
    for (i = 0; i < loopargs_len; i++)
2379 2380
        RAND_bytes(loopargs[i].buf, 36);

2381
#ifndef OPENSSL_NO_RSA
2382 2383 2384
    for (testnum = 0; testnum < RSA_NUM; testnum++) {
        int st = 0;
        if (!rsa_doit[testnum])
2385
            continue;
2386 2387 2388
        for (i = 0; i < loopargs_len; i++) {
            st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
                          loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
2389 2390 2391
            if (st == 0)
                break;
        }
2392
        if (st == 0) {
2393 2394 2395 2396 2397 2398
            BIO_printf(bio_err,
                       "RSA sign failure.  No RSA sign will be done.\n");
            ERR_print_errors(bio_err);
            rsa_count = 1;
        } else {
            pkey_print_message("private", "rsa",
2399 2400
                               rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS);
            /* RSA_blinding_on(rsa_key[testnum],NULL); */
2401
            Time_F(START);
2402
            count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
2403 2404 2405 2406
            d = Time_F(STOP);
            BIO_printf(bio_err,
                       mr ? "+R1:%ld:%d:%.2f\n"
                       : "%ld %d bit private RSA's in %.2fs\n",
2407 2408
                       count, rsa_bits[testnum], d);
            rsa_results[testnum][0] = d / (double)count;
2409 2410
            rsa_count = count;
        }
2411

2412 2413 2414
        for (i = 0; i < loopargs_len; i++) {
            st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
                            *(loopargs[i].siglen), loopargs[i].rsa_key[testnum]);
2415 2416 2417
            if (st <= 0)
                break;
        }
2418
        if (st <= 0) {
2419 2420 2421
            BIO_printf(bio_err,
                       "RSA verify failure.  No RSA verify will be done.\n");
            ERR_print_errors(bio_err);
2422
            rsa_doit[testnum] = 0;
2423 2424
        } else {
            pkey_print_message("public", "rsa",
2425
                               rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS);
2426
            Time_F(START);
2427
            count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
2428 2429 2430 2431
            d = Time_F(STOP);
            BIO_printf(bio_err,
                       mr ? "+R2:%ld:%d:%.2f\n"
                       : "%ld %d bit public RSA's in %.2fs\n",
2432 2433
                       count, rsa_bits[testnum], d);
            rsa_results[testnum][1] = d / (double)count;
2434
        }
2435

2436 2437
        if (rsa_count <= 1) {
            /* if longer than 10s, don't do any more */
2438 2439
            for (testnum++; testnum < RSA_NUM; testnum++)
                rsa_doit[testnum] = 0;
2440 2441
        }
    }
2442
#endif
2443

2444
    for (i = 0; i < loopargs_len; i++)
2445 2446
        RAND_bytes(loopargs[i].buf, 36);

2447
#ifndef OPENSSL_NO_DSA
2448 2449 2450
    if (RAND_status() != 1) {
        RAND_seed(rnd_seed, sizeof rnd_seed);
    }
2451 2452 2453
    for (testnum = 0; testnum < DSA_NUM; testnum++) {
        int st = 0;
        if (!dsa_doit[testnum])
2454 2455
            continue;

2456 2457
        /* DSA_generate_key(dsa_key[testnum]); */
        /* DSA_sign_setup(dsa_key[testnum],NULL); */
2458 2459 2460
        for (i = 0; i < loopargs_len; i++) {
            st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
                          loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
2461 2462 2463
            if (st == 0)
                break;
        }
2464
        if (st == 0) {
2465 2466 2467 2468 2469 2470
            BIO_printf(bio_err,
                       "DSA sign failure.  No DSA sign will be done.\n");
            ERR_print_errors(bio_err);
            rsa_count = 1;
        } else {
            pkey_print_message("sign", "dsa",
2471
                               dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS);
2472
            Time_F(START);
2473
            count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
2474 2475 2476 2477
            d = Time_F(STOP);
            BIO_printf(bio_err,
                       mr ? "+R3:%ld:%d:%.2f\n"
                       : "%ld %d bit DSA signs in %.2fs\n",
2478 2479
                       count, dsa_bits[testnum], d);
            dsa_results[testnum][0] = d / (double)count;
2480 2481
            rsa_count = count;
        }
B
Bodo Möller 已提交
2482

2483 2484 2485
        for (i = 0; i < loopargs_len; i++) {
            st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
                            *(loopargs[i].siglen), loopargs[i].dsa_key[testnum]);
2486 2487 2488
            if (st <= 0)
                break;
        }
2489
        if (st <= 0) {
2490 2491 2492
            BIO_printf(bio_err,
                       "DSA verify failure.  No DSA verify will be done.\n");
            ERR_print_errors(bio_err);
2493
            dsa_doit[testnum] = 0;
2494 2495
        } else {
            pkey_print_message("verify", "dsa",
2496
                               dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS);
2497
            Time_F(START);
2498
            count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
2499 2500 2501 2502
            d = Time_F(STOP);
            BIO_printf(bio_err,
                       mr ? "+R4:%ld:%d:%.2f\n"
                       : "%ld %d bit DSA verify in %.2fs\n",
2503 2504
                       count, dsa_bits[testnum], d);
            dsa_results[testnum][1] = d / (double)count;
2505
        }
B
Bodo Möller 已提交
2506

2507 2508
        if (rsa_count <= 1) {
            /* if longer than 10s, don't do any more */
2509 2510
            for (testnum++; testnum < DSA_NUM; testnum++)
                dsa_doit[testnum] = 0;
2511 2512
        }
    }
2513
#endif
B
Bodo Möller 已提交
2514

2515
#ifndef OPENSSL_NO_EC
2516 2517 2518
    if (RAND_status() != 1) {
        RAND_seed(rnd_seed, sizeof rnd_seed);
    }
2519
    for (testnum = 0; testnum < EC_NUM; testnum++) {
2520
        int st = 1;
2521

2522
        if (!ecdsa_doit[testnum])
2523
            continue;           /* Ignore Curve */
2524 2525 2526 2527 2528 2529 2530 2531
        for (i = 0; i < loopargs_len; i++) {
            loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
            if (loopargs[i].ecdsa[testnum] == NULL) {
                st = 0;
                break;
            }
        }
        if (st == 0) {
2532 2533 2534 2535
            BIO_printf(bio_err, "ECDSA failure.\n");
            ERR_print_errors(bio_err);
            rsa_count = 1;
        } else {
2536 2537 2538 2539 2540 2541
            for (i = 0; i < loopargs_len; i++) {
                EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL);
                /* Perform ECDSA signature test */
                EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
                st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
                                loopargs[i].siglen, loopargs[i].ecdsa[testnum]);
2542 2543 2544
                if (st == 0)
                    break;
            }
2545
            if (st == 0) {
2546 2547 2548 2549 2550 2551
                BIO_printf(bio_err,
                           "ECDSA sign failure.  No ECDSA sign will be done.\n");
                ERR_print_errors(bio_err);
                rsa_count = 1;
            } else {
                pkey_print_message("sign", "ecdsa",
2552 2553
                                   ecdsa_c[testnum][0],
                                   test_curves_bits[testnum], ECDSA_SECONDS);
2554
                Time_F(START);
2555
                count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
2556 2557 2558 2559 2560
                d = Time_F(STOP);

                BIO_printf(bio_err,
                           mr ? "+R5:%ld:%d:%.2f\n" :
                           "%ld %d bit ECDSA signs in %.2fs \n",
2561 2562
                           count, test_curves_bits[testnum], d);
                ecdsa_results[testnum][0] = d / (double)count;
2563 2564 2565 2566
                rsa_count = count;
            }

            /* Perform ECDSA verification test */
2567 2568 2569
            for (i = 0; i < loopargs_len; i++) {
                st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
                                  *(loopargs[i].siglen), loopargs[i].ecdsa[testnum]);
2570 2571 2572
                if (st != 1)
                    break;
            }
2573
            if (st != 1) {
2574 2575 2576
                BIO_printf(bio_err,
                           "ECDSA verify failure.  No ECDSA verify will be done.\n");
                ERR_print_errors(bio_err);
2577
                ecdsa_doit[testnum] = 0;
2578 2579
            } else {
                pkey_print_message("verify", "ecdsa",
2580 2581
                                   ecdsa_c[testnum][1],
                                   test_curves_bits[testnum], ECDSA_SECONDS);
2582
                Time_F(START);
2583
                count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
2584 2585 2586 2587
                d = Time_F(STOP);
                BIO_printf(bio_err,
                           mr ? "+R6:%ld:%d:%.2f\n"
                           : "%ld %d bit ECDSA verify in %.2fs\n",
2588 2589
                           count, test_curves_bits[testnum], d);
                ecdsa_results[testnum][1] = d / (double)count;
2590 2591 2592 2593
            }

            if (rsa_count <= 1) {
                /* if longer than 10s, don't do any more */
2594 2595
                for (testnum++; testnum < EC_NUM; testnum++)
                    ecdsa_doit[testnum] = 0;
2596 2597 2598
            }
        }
    }
2599 2600 2601
#endif

#ifndef OPENSSL_NO_EC
2602 2603 2604
    if (RAND_status() != 1) {
        RAND_seed(rnd_seed, sizeof rnd_seed);
    }
2605 2606
    for (testnum = 0; testnum < EC_NUM; testnum++) {
        if (!ecdh_doit[testnum])
2607
            continue;
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
        for (i = 0; i < loopargs_len; i++) {
            loopargs[i].ecdh_a[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
            loopargs[i].ecdh_b[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
            if (loopargs[i].ecdh_a[testnum] == NULL ||
                loopargs[i].ecdh_b[testnum] == NULL) {
                ecdh_checks = 0;
                break;
            }
        }
        if (ecdh_checks == 0) {
2618 2619 2620 2621
            BIO_printf(bio_err, "ECDH failure.\n");
            ERR_print_errors(bio_err);
            rsa_count = 1;
        } else {
2622 2623 2624 2625 2626 2627
            for (i = 0; i < loopargs_len; i++) {
                /* generate two ECDH key pairs */
                if (!EC_KEY_generate_key(loopargs[i].ecdh_a[testnum]) ||
                        !EC_KEY_generate_key(loopargs[i].ecdh_b[testnum])) {
                    BIO_printf(bio_err, "ECDH key generation failure.\n");
                    ERR_print_errors(bio_err);
2628
                    ecdh_checks = 0;
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
                    rsa_count = 1;
                } else {
                    /*
                     * If field size is not more than 24 octets, then use SHA-1
                     * hash of result; otherwise, use result (see section 4.8 of
                     * draft-ietf-tls-ecc-03.txt).
                     */
                    int field_size;
                    field_size =
                        EC_GROUP_get_degree(EC_KEY_get0_group(loopargs[i].ecdh_a[testnum]));
                    if (field_size <= 24 * 8) {
                        outlen = KDF1_SHA1_len;
                        kdf = KDF1_SHA1;
                    } else {
                        outlen = (field_size + 7) / 8;
                        kdf = NULL;
                    }
                    secret_size_a =
                        ECDH_compute_key(loopargs[i].secret_a, outlen,
                                EC_KEY_get0_public_key(loopargs[i].ecdh_b[testnum]),
                                loopargs[i].ecdh_a[testnum], kdf);
                    secret_size_b =
                        ECDH_compute_key(loopargs[i].secret_b, outlen,
                                EC_KEY_get0_public_key(loopargs[i].ecdh_a[testnum]),
                                loopargs[i].ecdh_b[testnum], kdf);
                    if (secret_size_a != secret_size_b)
2655
                        ecdh_checks = 0;
2656 2657
                    else
                        ecdh_checks = 1;
2658

2659 2660 2661 2662 2663
                    for (secret_idx = 0; (secret_idx < secret_size_a)
                            && (ecdh_checks == 1); secret_idx++) {
                        if (loopargs[i].secret_a[secret_idx] != loopargs[i].secret_b[secret_idx])
                            ecdh_checks = 0;
                    }
2664

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
                    if (ecdh_checks == 0) {
                        BIO_printf(bio_err, "ECDH computations don't match.\n");
                        ERR_print_errors(bio_err);
                        rsa_count = 1;
                        break;
                    }
                }
                if (ecdh_checks != 0) {
                    pkey_print_message("", "ecdh",
                            ecdh_c[testnum][0],
                            test_curves_bits[testnum], ECDH_SECONDS);
                    Time_F(START);
                    count = run_benchmark(async_jobs, ECDH_compute_key_loop, loopargs);
                    d = Time_F(STOP);
                    BIO_printf(bio_err,
                            mr ? "+R7:%ld:%d:%.2f\n" :
                            "%ld %d-bit ECDH ops in %.2fs\n", count,
                            test_curves_bits[testnum], d);
                    ecdh_results[testnum][0] = d / (double)count;
                    rsa_count = count;
                }
2686 2687
            }
        }
B
Bodo Möller 已提交
2688

2689 2690
        if (rsa_count <= 1) {
            /* if longer than 10s, don't do any more */
2691 2692
            for (testnum++; testnum < EC_NUM; testnum++)
                ecdh_doit[testnum] = 0;
2693 2694
        }
    }
2695 2696
#endif
#ifndef NO_FORK
2697
 show_res:
2698
#endif
2699
    if (!mr) {
R
Rich Salz 已提交
2700 2701
        printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
        printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
2702 2703
        printf("options:");
        printf("%s ", BN_options());
2704
#ifndef OPENSSL_NO_MD2
2705
        printf("%s ", MD2_options());
2706 2707
#endif
#ifndef OPENSSL_NO_RC4
2708
        printf("%s ", RC4_options());
2709 2710
#endif
#ifndef OPENSSL_NO_DES
2711
        printf("%s ", DES_options());
2712 2713
#endif
#ifndef OPENSSL_NO_AES
2714
        printf("%s ", AES_options());
2715 2716
#endif
#ifndef OPENSSL_NO_IDEA
2717
        printf("%s ", idea_options());
2718 2719
#endif
#ifndef OPENSSL_NO_BF
2720
        printf("%s ", BF_options());
2721
#endif
R
Rich Salz 已提交
2722
        printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
2723
    }
B
Bodo Möller 已提交
2724

2725 2726
    if (pr_header) {
        if (mr)
2727
            printf("+H");
2728
        else {
2729 2730 2731
            printf
                ("The 'numbers' are in 1000s of bytes per second processed.\n");
            printf("type        ");
2732
        }
2733 2734
        for (testnum = 0; testnum < SIZE_NUM; testnum++)
            printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
2735
        printf("\n");
2736
    }
B
Bodo Möller 已提交
2737

2738 2739 2740 2741
    for (k = 0; k < ALGOR_NUM; k++) {
        if (!doit[k])
            continue;
        if (mr)
2742
            printf("+F:%d:%s", k, names[k]);
2743
        else
2744
            printf("%-13s", names[k]);
2745 2746 2747
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            if (results[k][testnum] > 10000 && !mr)
                printf(" %11.2fk", results[k][testnum] / 1e3);
2748
            else
2749
                printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
2750
        }
2751
        printf("\n");
2752
    }
2753
#ifndef OPENSSL_NO_RSA
2754
    testnum = 1;
2755 2756 2757
    for (k = 0; k < RSA_NUM; k++) {
        if (!rsa_doit[k])
            continue;
2758
        if (testnum && !mr) {
2759
            printf("%18ssign    verify    sign/s verify/s\n", " ");
2760
            testnum = 0;
2761 2762
        }
        if (mr)
2763 2764
            printf("+F2:%u:%u:%f:%f\n",
                   k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
2765
        else
2766 2767 2768
            printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
                   rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
                   1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
2769
    }
2770 2771
#endif
#ifndef OPENSSL_NO_DSA
2772
    testnum = 1;
2773 2774 2775
    for (k = 0; k < DSA_NUM; k++) {
        if (!dsa_doit[k])
            continue;
2776
        if (testnum && !mr) {
2777
            printf("%18ssign    verify    sign/s verify/s\n", " ");
2778
            testnum = 0;
2779 2780
        }
        if (mr)
2781 2782
            printf("+F3:%u:%u:%f:%f\n",
                   k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
2783
        else
2784 2785 2786
            printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
                   dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
                   1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
2787
    }
2788
#endif
2789
#ifndef OPENSSL_NO_EC
2790
    testnum = 1;
2791 2792 2793
    for (k = 0; k < EC_NUM; k++) {
        if (!ecdsa_doit[k])
            continue;
2794
        if (testnum && !mr) {
2795
            printf("%30ssign    verify    sign/s verify/s\n", " ");
2796
            testnum = 0;
2797 2798 2799
        }

        if (mr)
2800 2801 2802
            printf("+F4:%u:%u:%f:%f\n",
                   k, test_curves_bits[k],
                   ecdsa_results[k][0], ecdsa_results[k][1]);
2803
        else
2804 2805 2806 2807 2808
            printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
                   test_curves_bits[k],
                   test_curves_names[k],
                   ecdsa_results[k][0], ecdsa_results[k][1],
                   1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
2809
    }
2810 2811 2812
#endif

#ifndef OPENSSL_NO_EC
2813
    testnum = 1;
2814 2815 2816
    for (k = 0; k < EC_NUM; k++) {
        if (!ecdh_doit[k])
            continue;
2817
        if (testnum && !mr) {
2818
            printf("%30sop      op/s\n", " ");
2819
            testnum = 0;
2820 2821
        }
        if (mr)
2822 2823 2824
            printf("+F5:%u:%u:%f:%f\n",
                   k, test_curves_bits[k],
                   ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
2825 2826

        else
2827 2828 2829 2830
            printf("%4u bit ecdh (%s) %8.4fs %8.1f\n",
                   test_curves_bits[k],
                   test_curves_names[k],
                   ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
2831
    }
2832
#endif
2833

2834
    ret = 0;
2835 2836 2837

 end:
    ERR_print_errors(bio_err);
2838
    for (i = 0; i < loopargs_len; i++) {
2839 2840 2841 2842
        OPENSSL_free(loopargs[i].buf_malloc);
        OPENSSL_free(loopargs[i].buf2_malloc);
        OPENSSL_free(loopargs[i].siglen);
    }
2843
#ifndef OPENSSL_NO_RSA
2844 2845 2846 2847
    for (i = 0; i < loopargs_len; i++) {
        for (k = 0; k < RSA_NUM; k++)
            RSA_free(loopargs[i].rsa_key[k]);
    }
2848 2849
#endif
#ifndef OPENSSL_NO_DSA
2850 2851 2852 2853
    for (i = 0; i < loopargs_len; i++) {
        for (k = 0; k < DSA_NUM; k++)
            DSA_free(loopargs[i].dsa_key[k]);
    }
2854
#endif
2855

2856
#ifndef OPENSSL_NO_EC
2857 2858 2859 2860 2861 2862
    for (i = 0; i < loopargs_len; i++) {
        for (k = 0; k < EC_NUM; k++) {
            EC_KEY_free(loopargs[i].ecdsa[k]);
            EC_KEY_free(loopargs[i].ecdh_a[k]);
            EC_KEY_free(loopargs[i].ecdh_b[k]);
        }
2863 2864
        OPENSSL_free(loopargs[i].secret_a);
        OPENSSL_free(loopargs[i].secret_b);
2865
    }
2866
#endif
2867 2868 2869 2870
    if (async_jobs > 0) {
        for (i = 0; i < loopargs_len; i++)
            ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);

2871
        ASYNC_cleanup_thread();
2872 2873
    }
    OPENSSL_free(loopargs);
2874
    return (ret);
2875
}
2876

2877
static void print_message(const char *s, long num, int length)
2878
{
2879
#ifdef SIGALRM
2880 2881 2882 2883 2884
    BIO_printf(bio_err,
               mr ? "+DT:%s:%d:%d\n"
               : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
    (void)BIO_flush(bio_err);
    alarm(SECONDS);
2885
#else
2886 2887 2888 2889
    BIO_printf(bio_err,
               mr ? "+DN:%s:%ld:%d\n"
               : "Doing %s %ld times on %d size blocks: ", s, num, length);
    (void)BIO_flush(bio_err);
2890
#endif
2891
}
2892

2893
static void pkey_print_message(const char *str, const char *str2, long num,
2894 2895
                               int bits, int tm)
{
2896
#ifdef SIGALRM
2897 2898 2899 2900 2901
    BIO_printf(bio_err,
               mr ? "+DTP:%d:%s:%s:%d\n"
               : "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
    (void)BIO_flush(bio_err);
    alarm(tm);
2902
#else
2903 2904 2905 2906
    BIO_printf(bio_err,
               mr ? "+DNP:%ld:%d:%s:%s\n"
               : "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
    (void)BIO_flush(bio_err);
2907
#endif
2908
}
2909

2910 2911 2912 2913 2914 2915 2916
static void print_result(int alg, int run_no, int count, double time_used)
{
    BIO_printf(bio_err,
               mr ? "+R:%d:%s:%f\n"
               : "%d %s's in %.2fs\n", count, names[alg], time_used);
    results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
}
2917

2918
#ifndef NO_FORK
2919
static char *sstrsep(char **string, const char *delim)
2920
{
2921 2922 2923 2924 2925 2926
    char isdelim[256];
    char *token = *string;

    if (**string == 0)
        return NULL;

2927
    memset(isdelim, 0, sizeof isdelim);
2928 2929
    isdelim[0] = 1;

2930
    while (*delim) {
2931 2932
        isdelim[(unsigned char)(*delim)] = 1;
        delim++;
2933
    }
2934

2935
    while (!isdelim[(unsigned char)(**string)]) {
2936
        (*string)++;
2937
    }
2938

2939
    if (**string) {
2940 2941
        **string = 0;
        (*string)++;
2942
    }
2943 2944

    return token;
2945
}
2946 2947

static int do_multi(int multi)
2948 2949 2950 2951 2952 2953
{
    int n;
    int fd[2];
    int *fds;
    static char sep[] = ":";

R
Rich Salz 已提交
2954
    fds = malloc(sizeof(*fds) * multi);
2955 2956
    for (n = 0; n < multi; ++n) {
        if (pipe(fd) == -1) {
R
Rich Salz 已提交
2957
            BIO_printf(bio_err, "pipe failure\n");
2958 2959 2960
            exit(1);
        }
        fflush(stdout);
R
Rich Salz 已提交
2961
        (void)BIO_flush(bio_err);
2962 2963 2964 2965 2966 2967 2968
        if (fork()) {
            close(fd[1]);
            fds[n] = fd[0];
        } else {
            close(fd[0]);
            close(1);
            if (dup(fd[1]) == -1) {
R
Rich Salz 已提交
2969
                BIO_printf(bio_err, "dup failed\n");
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
                exit(1);
            }
            close(fd[1]);
            mr = 1;
            usertime = 0;
            free(fds);
            return 0;
        }
        printf("Forked child %d\n", n);
    }
B
Bodo Möller 已提交
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
    /* for now, assume the pipe is long enough to take all the output */
    for (n = 0; n < multi; ++n) {
        FILE *f;
        char buf[1024];
        char *p;

        f = fdopen(fds[n], "r");
        while (fgets(buf, sizeof buf, f)) {
            p = strchr(buf, '\n');
            if (p)
                *p = '\0';
            if (buf[0] != '+') {
R
Rich Salz 已提交
2993
                BIO_printf(bio_err, "Don't understand line '%s' from child %d\n",
2994 2995 2996 2997
                        buf, n);
                continue;
            }
            printf("Got: %s from %d\n", buf, n);
R
Rich Salz 已提交
2998
            if (strncmp(buf, "+F:", 3) == 0) {
2999 3000 3001 3002 3003 3004 3005 3006
                int alg;
                int j;

                p = buf + 3;
                alg = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);
                for (j = 0; j < SIZE_NUM; ++j)
                    results[alg][j] += atof(sstrsep(&p, sep));
R
Rich Salz 已提交
3007
            } else if (strncmp(buf, "+F2:", 4) == 0) {
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
                int k;
                double d;

                p = buf + 4;
                k = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);

                d = atof(sstrsep(&p, sep));
                if (n)
                    rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
                else
                    rsa_results[k][0] = d;

                d = atof(sstrsep(&p, sep));
                if (n)
                    rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
                else
                    rsa_results[k][1] = d;
            }
3027
# ifndef OPENSSL_NO_DSA
R
Rich Salz 已提交
3028
            else if (strncmp(buf, "+F3:", 4) == 0) {
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
                int k;
                double d;

                p = buf + 4;
                k = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);

                d = atof(sstrsep(&p, sep));
                if (n)
                    dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
                else
                    dsa_results[k][0] = d;

                d = atof(sstrsep(&p, sep));
                if (n)
                    dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
                else
                    dsa_results[k][1] = d;
            }
3048
# endif
3049
# ifndef OPENSSL_NO_EC
R
Rich Salz 已提交
3050
            else if (strncmp(buf, "+F4:", 4) == 0) {
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
                int k;
                double d;

                p = buf + 4;
                k = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);

                d = atof(sstrsep(&p, sep));
                if (n)
                    ecdsa_results[k][0] =
                        1 / (1 / ecdsa_results[k][0] + 1 / d);
                else
                    ecdsa_results[k][0] = d;

                d = atof(sstrsep(&p, sep));
                if (n)
                    ecdsa_results[k][1] =
                        1 / (1 / ecdsa_results[k][1] + 1 / d);
                else
                    ecdsa_results[k][1] = d;
            }
3072 3073 3074
# endif

# ifndef OPENSSL_NO_EC
R
Rich Salz 已提交
3075
            else if (strncmp(buf, "+F5:", 4) == 0) {
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
                int k;
                double d;

                p = buf + 4;
                k = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);

                d = atof(sstrsep(&p, sep));
                if (n)
                    ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
                else
                    ecdh_results[k][0] = d;

            }
3090
# endif
3091

R
Rich Salz 已提交
3092
            else if (strncmp(buf, "+H:", 3) == 0) {
3093
                ;
3094
            } else
R
Rich Salz 已提交
3095
                BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n);
3096 3097 3098 3099 3100 3101 3102
        }

        fclose(f);
    }
    free(fds);
    return 1;
}
3103
#endif
3104 3105

static void multiblock_speed(const EVP_CIPHER *evp_cipher)
3106 3107 3108
{
    static int mblengths[] =
        { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
3109
    int j, count, num = OSSL_NELEM(mblengths);
3110 3111
    const char *alg_name;
    unsigned char *inp, *out, no_key[32], no_iv[16];
3112
    EVP_CIPHER_CTX *ctx;
3113 3114
    double d = 0.0;

R
Rich Salz 已提交
3115 3116
    inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
    out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
3117 3118 3119
    ctx = EVP_CIPHER_CTX_new();
    EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv);
    EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
3120
                        no_key);
3121
    alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
3122 3123 3124 3125 3126

    for (j = 0; j < num; j++) {
        print_message(alg_name, 0, mblengths[j]);
        Time_F(START);
        for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
3127
            unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
            size_t len = mblengths[j];
            int packlen;

            memset(aad, 0, 8);  /* avoid uninitialized values */
            aad[8] = 23;        /* SSL3_RT_APPLICATION_DATA */
            aad[9] = 3;         /* version */
            aad[10] = 2;
            aad[11] = 0;        /* length */
            aad[12] = 0;
            mb_param.out = NULL;
            mb_param.inp = aad;
            mb_param.len = len;
            mb_param.interleave = 8;

3143
            packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
3144 3145 3146 3147 3148 3149
                                          sizeof(mb_param), &mb_param);

            if (packlen > 0) {
                mb_param.out = out;
                mb_param.inp = inp;
                mb_param.len = len;
3150
                EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
3151 3152 3153 3154 3155 3156 3157 3158
                                    sizeof(mb_param), &mb_param);
            } else {
                int pad;

                RAND_bytes(out, 16);
                len += 16;
                aad[11] = len >> 8;
                aad[12] = len;
3159
                pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
3160
                                          EVP_AEAD_TLS1_AAD_LEN, aad);
3161
                EVP_Cipher(ctx, out, inp, len + pad);
3162 3163 3164
            }
        }
        d = Time_F(STOP);
3165
        BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
                   : "%d %s's in %.2fs\n", count, "evp", d);
        results[D_EVP][j] = ((double)count) / d * mblengths[j];
    }

    if (mr) {
        fprintf(stdout, "+H");
        for (j = 0; j < num; j++)
            fprintf(stdout, ":%d", mblengths[j]);
        fprintf(stdout, "\n");
        fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
        for (j = 0; j < num; j++)
            fprintf(stdout, ":%.2f", results[D_EVP][j]);
        fprintf(stdout, "\n");
    } else {
        fprintf(stdout,
                "The 'numbers' are in 1000s of bytes per second processed.\n");
        fprintf(stdout, "type                    ");
        for (j = 0; j < num; j++)
            fprintf(stdout, "%7d bytes", mblengths[j]);
        fprintf(stdout, "\n");
        fprintf(stdout, "%-24s", alg_name);

        for (j = 0; j < num; j++) {
            if (results[D_EVP][j] > 10000)
                fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
            else
                fprintf(stdout, " %11.2f ", results[D_EVP][j]);
        }
        fprintf(stdout, "\n");
    }

R
Rich Salz 已提交
3197 3198
    OPENSSL_free(inp);
    OPENSSL_free(out);
3199
    EVP_CIPHER_CTX_free(ctx);
3200
}