speed.c 99.8 KB
Newer Older
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 3 4 5 6
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8 9 10 11 12 13
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15 16 17 18 19 20
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
21
 *
22 23 24 25 26 27 28 29 30 31 32 33 34 35
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37 38
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40 41 42 43 44 45 46 47 48 49 50
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
51
 *
52 53 54 55 56
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
B
Bodo Möller 已提交
57
/* ====================================================================
58
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
B
Bodo Möller 已提交
59
 *
60
 * Portions of the attached software ("Contribution") are developed by
B
Bodo Möller 已提交
61 62 63 64 65
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
 *
 * The Contribution is licensed pursuant to the OpenSSL open source
 * license provided above.
 *
66
 * The ECDH and ECDSA speed test software is originally written by
B
Bodo Möller 已提交
67 68 69
 * Sumit Gupta of Sun Microsystems Laboratories.
 *
 */
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#undef SECONDS
#define SECONDS                 3
#define PRIME_SECONDS   10
#define RSA_SECONDS             10
#define DSA_SECONDS             10
#define ECDSA_SECONDS   10
#define ECDH_SECONDS    10

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "apps.h"
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
89
#include <openssl/async.h>
90 91 92
#if !defined(OPENSSL_SYS_MSDOS)
# include OPENSSL_UNISTD
#endif
93

94
#if defined(_WIN32)
95 96
# include <windows.h>
#endif
97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DES
# include <openssl/des.h>
#endif
#ifndef OPENSSL_NO_AES
# include <openssl/aes.h>
#endif
#ifndef OPENSSL_NO_CAMELLIA
# include <openssl/camellia.h>
#endif
#ifndef OPENSSL_NO_MD2
# include <openssl/md2.h>
#endif
#ifndef OPENSSL_NO_MDC2
# include <openssl/mdc2.h>
#endif
#ifndef OPENSSL_NO_MD4
# include <openssl/md4.h>
#endif
#ifndef OPENSSL_NO_MD5
# include <openssl/md5.h>
#endif
120 121
#include <openssl/hmac.h>
#include <openssl/sha.h>
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#ifndef OPENSSL_NO_RMD160
# include <openssl/ripemd.h>
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
# include <openssl/whrlpool.h>
#endif
#ifndef OPENSSL_NO_RC4
# include <openssl/rc4.h>
#endif
#ifndef OPENSSL_NO_RC5
# include <openssl/rc5.h>
#endif
#ifndef OPENSSL_NO_RC2
# include <openssl/rc2.h>
#endif
#ifndef OPENSSL_NO_IDEA
# include <openssl/idea.h>
#endif
#ifndef OPENSSL_NO_SEED
# include <openssl/seed.h>
#endif
#ifndef OPENSSL_NO_BF
# include <openssl/blowfish.h>
#endif
#ifndef OPENSSL_NO_CAST
# include <openssl/cast.h>
#endif
#ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
# include "./testrsa.h"
#endif
#include <openssl/x509.h>
#ifndef OPENSSL_NO_DSA
# include <openssl/dsa.h>
# include "./testdsa.h"
#endif
158
#ifndef OPENSSL_NO_EC
D
Dr. Stephen Henson 已提交
159
# include <openssl/ec.h>
160 161
#endif
#include <openssl/modes.h>
162

163
#ifndef HAVE_FORK
R
Rich Salz 已提交
164
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS)
165
#  define HAVE_FORK 0
166
# else
167
#  define HAVE_FORK 1
168
# endif
169
#endif
170

171 172 173 174 175 176 177
#if HAVE_FORK
# undef NO_FORK
#else
# define NO_FORK
#endif

#undef BUFSIZE
178
#define BUFSIZE (1024*16+1)
179
#define MAX_MISALIGNMENT 63
180

181 182 183 184 185 186 187 188 189 190
#define ALGOR_NUM       30
#define SIZE_NUM        6
#define PRIME_NUM       3
#define RSA_NUM         7
#define DSA_NUM         3

#define EC_NUM          17
#define MAX_ECDH_SIZE   256
#define MISALIGN        64

191
static volatile int run = 0;
192

193 194
static int mr = 0;
static int usertime = 1;
195

196 197
typedef struct loopargs_st {
    ASYNC_JOB *inprogress_job;
198
    ASYNC_WAIT_CTX *wait_ctx;
199 200 201 202
    unsigned char *buf;
    unsigned char *buf2;
    unsigned char *buf_malloc;
    unsigned char *buf2_malloc;
203 204 205 206 207 208 209 210 211 212 213 214 215 216
    unsigned int *siglen;
#ifndef OPENSSL_NO_RSA
    RSA *rsa_key[RSA_NUM];
#endif
#ifndef OPENSSL_NO_DSA
    DSA *dsa_key[DSA_NUM];
#endif
#ifndef OPENSSL_NO_EC
    EC_KEY *ecdsa[EC_NUM];
    EC_KEY *ecdh_a[EC_NUM];
    EC_KEY *ecdh_b[EC_NUM];
    unsigned char *secret_a;
    unsigned char *secret_b;
#endif
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    EVP_CIPHER_CTX *ctx;
    HMAC_CTX *hctx;
    GCM128_CONTEXT *gcm_ctx;
} loopargs_t;

#ifndef OPENSSL_NO_MD2
static int EVP_Digest_MD2_loop(void *args);
#endif

#ifndef OPENSSL_NO_MDC2
static int EVP_Digest_MDC2_loop(void *args);
#endif
#ifndef OPENSSL_NO_MD4
static int EVP_Digest_MD4_loop(void *args);
#endif
#ifndef OPENSSL_NO_MD5
static int MD5_loop(void *args);
static int HMAC_loop(void *args);
#endif
static int SHA1_loop(void *args);
static int SHA256_loop(void *args);
static int SHA512_loop(void *args);
#ifndef OPENSSL_NO_WHIRLPOOL
static int WHIRLPOOL_loop(void *args);
#endif
#ifndef OPENSSL_NO_RMD160
static int EVP_Digest_RMD160_loop(void *args);
#endif
#ifndef OPENSSL_NO_RC4
static int RC4_loop(void *args);
#endif
#ifndef OPENSSL_NO_DES
static int DES_ncbc_encrypt_loop(void *args);
static int DES_ede3_cbc_encrypt_loop(void *args);
#endif
#ifndef OPENSSL_NO_AES
static int AES_cbc_128_encrypt_loop(void *args);
static int AES_cbc_192_encrypt_loop(void *args);
static int AES_ige_128_encrypt_loop(void *args);
static int AES_cbc_256_encrypt_loop(void *args);
static int AES_ige_192_encrypt_loop(void *args);
static int AES_ige_256_encrypt_loop(void *args);
static int CRYPTO_gcm128_aad_loop(void *args);
#endif
static int EVP_Update_loop(void *args);
static int EVP_Digest_loop(void *args);
#ifndef OPENSSL_NO_RSA
static int RSA_sign_loop(void *args);
static int RSA_verify_loop(void *args);
#endif
#ifndef OPENSSL_NO_DSA
static int DSA_sign_loop(void *args);
static int DSA_verify_loop(void *args);
#endif
#ifndef OPENSSL_NO_EC
static int ECDSA_sign_loop(void *args);
static int ECDSA_verify_loop(void *args);
static int ECDH_compute_key_loop(void *args);
#endif
static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs);

278
static double Time_F(int s);
279
static void print_message(const char *s, long num, int length);
280
static void pkey_print_message(const char *str, const char *str2,
281 282
                               long num, int bits, int sec);
static void print_result(int alg, int run_no, int count, double time_used);
283
#ifndef NO_FORK
284
static int do_multi(int multi);
285
#endif
286 287 288 289 290 291 292 293 294 295

static const char *names[ALGOR_NUM] = {
    "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
    "des cbc", "des ede3", "idea cbc", "seed cbc",
    "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
    "aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
    "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
    "evp", "sha256", "sha512", "whirlpool",
    "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
};
296

297
static double results[ALGOR_NUM][SIZE_NUM];
298
static int lengths[SIZE_NUM] = {
299
    16, 64, 256, 1024, 8 * 1024, 16 * 1024
300
};
301

302
#ifndef OPENSSL_NO_RSA
303
static double rsa_results[RSA_NUM][2];
304 305
#endif
#ifndef OPENSSL_NO_DSA
306
static double dsa_results[DSA_NUM][2];
307
#endif
308
#ifndef OPENSSL_NO_EC
B
Bodo Möller 已提交
309 310
static double ecdsa_results[EC_NUM][2];
static double ecdh_results[EC_NUM][1];
311
#endif
B
Bodo Möller 已提交
312

313
#if defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_EC)
314 315
static const char rnd_seed[] =
    "string to make the random number generator think it has entropy";
N
make  
Nils Larsch 已提交
316
static int rnd_fake = 0;
317
#endif
318

319 320 321 322 323 324
#ifdef SIGALRM
# if defined(__STDC__) || defined(sgi) || defined(_AIX)
#  define SIGRETTYPE void
# else
#  define SIGRETTYPE int
# endif
D
Dr. Stephen Henson 已提交
325

326
static SIGRETTYPE sig_done(int sig);
U
Ulf Möller 已提交
327
static SIGRETTYPE sig_done(int sig)
328 329 330 331
{
    signal(SIGALRM, sig_done);
    run = 0;
}
332
#endif
333

334 335
#define START   0
#define STOP    1
336

337
#if defined(_WIN32)
R
Richard Levitte 已提交
338

339 340 341
# if !defined(SIGALRM)
#  define SIGALRM
# endif
342 343 344 345 346
static unsigned int lapse, schlock;
static void alarm_win32(unsigned int secs)
{
    lapse = secs * 1000;
}
R
Richard Levitte 已提交
347

348
# define alarm alarm_win32
349 350 351 352 353 354 355 356

static DWORD WINAPI sleepy(VOID * arg)
{
    schlock = 1;
    Sleep(lapse);
    run = 0;
    return 0;
}
357

358
static double Time_F(int s)
359 360 361 362 363 364 365 366
{
    double ret;
    static HANDLE thr;

    if (s == START) {
        schlock = 0;
        thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
        if (thr == NULL) {
367 368 369
            DWORD err = GetLastError();
            BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
            ExitProcess(err);
370 371 372 373 374 375 376 377 378 379 380 381 382
        }
        while (!schlock)
            Sleep(0);           /* scheduler spinlock */
        ret = app_tminterval(s, usertime);
    } else {
        ret = app_tminterval(s, usertime);
        if (run)
            TerminateThread(thr, 0);
        CloseHandle(thr);
    }

    return ret;
}
383
#else
384

385 386 387 388 389 390 391
static double Time_F(int s)
{
    double ret = app_tminterval(s, usertime);
    if (s == STOP)
        alarm(0);
    return ret;
}
392
#endif
393

394
#ifndef OPENSSL_NO_EC
395
static const int KDF1_SHA1_len = 20;
396 397 398 399 400
static void *KDF1_SHA1(const void *in, size_t inlen, void *out,
                       size_t *outlen)
{
    if (*outlen < SHA_DIGEST_LENGTH)
        return NULL;
R
Rich Salz 已提交
401
    *outlen = SHA_DIGEST_LENGTH;
402 403
    return SHA1(in, inlen, out);
}
404
#endif                         /* OPENSSL_NO_EC */
405

406
static void multiblock_speed(const EVP_CIPHER *evp_cipher);
407

408 409 410 411 412 413 414 415 416 417 418 419 420
static int found(const char *name, const OPT_PAIR * pairs, int *result)
{
    for (; pairs->name; pairs++)
        if (strcmp(name, pairs->name) == 0) {
            *result = pairs->retval;
            return 1;
        }
    return 0;
}

typedef enum OPTION_choice {
    OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
    OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
421
    OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS
422 423 424 425 426 427
} OPTION_CHOICE;

OPTIONS speed_options[] = {
    {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
    {OPT_HELP_STR, 1, '-', "Valid options are:\n"},
    {"help", OPT_HELP, '-', "Display this summary"},
428 429 430 431 432 433
    {"evp", OPT_EVP, 's', "Use specified EVP cipher"},
    {"decrypt", OPT_DECRYPT, '-',
     "Time decryption instead of encryption (only EVP)"},
    {"mr", OPT_MR, '-', "Produce machine readable output"},
    {"mb", OPT_MB, '-'},
    {"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"},
434 435 436 437 438
    {"elapsed", OPT_ELAPSED, '-',
     "Measure time in real time instead of CPU user time"},
#ifndef NO_FORK
    {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
#endif
439
#ifndef OPENSSL_NO_ASYNC
440 441
    {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start pnum jobs"},
#endif
442 443 444
#ifndef OPENSSL_NO_ENGINE
    {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
#endif
445
    {NULL},
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
};

#define D_MD2           0
#define D_MDC2          1
#define D_MD4           2
#define D_MD5           3
#define D_HMAC          4
#define D_SHA1          5
#define D_RMD160        6
#define D_RC4           7
#define D_CBC_DES       8
#define D_EDE3_DES      9
#define D_CBC_IDEA      10
#define D_CBC_SEED      11
#define D_CBC_RC2       12
#define D_CBC_RC5       13
#define D_CBC_BF        14
#define D_CBC_CAST      15
#define D_CBC_128_AES   16
#define D_CBC_192_AES   17
#define D_CBC_256_AES   18
#define D_CBC_128_CML   19
#define D_CBC_192_CML   20
#define D_CBC_256_CML   21
#define D_EVP           22
#define D_SHA256        23
#define D_SHA512        24
#define D_WHIRLPOOL     25
#define D_IGE_128_AES   26
#define D_IGE_192_AES   27
#define D_IGE_256_AES   28
#define D_GHASH         29
478
static OPT_PAIR doit_choices[] = {
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
#ifndef OPENSSL_NO_MD2
    {"md2", D_MD2},
#endif
#ifndef OPENSSL_NO_MDC2
    {"mdc2", D_MDC2},
#endif
#ifndef OPENSSL_NO_MD4
    {"md4", D_MD4},
#endif
#ifndef OPENSSL_NO_MD5
    {"md5", D_MD5},
#endif
#ifndef OPENSSL_NO_MD5
    {"hmac", D_HMAC},
#endif
    {"sha1", D_SHA1},
    {"sha256", D_SHA256},
    {"sha512", D_SHA512},
#ifndef OPENSSL_NO_WHIRLPOOL
    {"whirlpool", D_WHIRLPOOL},
#endif
R
Rich Salz 已提交
500
#ifndef OPENSSL_NO_RMD160
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    {"ripemd", D_RMD160},
    {"rmd160", D_RMD160},
    {"ripemd160", D_RMD160},
#endif
#ifndef OPENSSL_NO_RC4
    {"rc4", D_RC4},
#endif
#ifndef OPENSSL_NO_DES
    {"des-cbc", D_CBC_DES},
    {"des-ede3", D_EDE3_DES},
#endif
#ifndef OPENSSL_NO_AES
    {"aes-128-cbc", D_CBC_128_AES},
    {"aes-192-cbc", D_CBC_192_AES},
    {"aes-256-cbc", D_CBC_256_AES},
    {"aes-128-ige", D_IGE_128_AES},
    {"aes-192-ige", D_IGE_192_AES},
    {"aes-256-ige", D_IGE_256_AES},
#endif
#ifndef OPENSSL_NO_RC2
    {"rc2-cbc", D_CBC_RC2},
    {"rc2", D_CBC_RC2},
#endif
#ifndef OPENSSL_NO_RC5
    {"rc5-cbc", D_CBC_RC5},
    {"rc5", D_CBC_RC5},
#endif
#ifndef OPENSSL_NO_IDEA
    {"idea-cbc", D_CBC_IDEA},
    {"idea", D_CBC_IDEA},
#endif
#ifndef OPENSSL_NO_SEED
    {"seed-cbc", D_CBC_SEED},
    {"seed", D_CBC_SEED},
#endif
#ifndef OPENSSL_NO_BF
    {"bf-cbc", D_CBC_BF},
    {"blowfish", D_CBC_BF},
    {"bf", D_CBC_BF},
#endif
#ifndef OPENSSL_NO_CAST
    {"cast-cbc", D_CBC_CAST},
    {"cast", D_CBC_CAST},
    {"cast5", D_CBC_CAST},
#endif
    {"ghash", D_GHASH},
    {NULL}
};

#define R_DSA_512       0
#define R_DSA_1024      1
#define R_DSA_2048      2
static OPT_PAIR dsa_choices[] = {
    {"dsa512", R_DSA_512},
    {"dsa1024", R_DSA_1024},
    {"dsa2048", R_DSA_2048},
    {NULL},
};
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
#define R_RSA_512       0
#define R_RSA_1024      1
#define R_RSA_2048      2
#define R_RSA_3072      3
#define R_RSA_4096      4
#define R_RSA_7680      5
#define R_RSA_15360     6
static OPT_PAIR rsa_choices[] = {
    {"rsa512", R_RSA_512},
    {"rsa1024", R_RSA_1024},
    {"rsa2048", R_RSA_2048},
    {"rsa3072", R_RSA_3072},
    {"rsa4096", R_RSA_4096},
    {"rsa7680", R_RSA_7680},
    {"rsa15360", R_RSA_15360},
    {NULL}
};

#define R_EC_P160    0
#define R_EC_P192    1
#define R_EC_P224    2
#define R_EC_P256    3
#define R_EC_P384    4
#define R_EC_P521    5
#define R_EC_K163    6
#define R_EC_K233    7
#define R_EC_K283    8
#define R_EC_K409    9
#define R_EC_K571    10
#define R_EC_B163    11
#define R_EC_B233    12
#define R_EC_B283    13
#define R_EC_B409    14
#define R_EC_B571    15
594
#define R_EC_X25519  16
R
Richard Levitte 已提交
595
#ifndef OPENSSL_NO_EC
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static OPT_PAIR ecdsa_choices[] = {
    {"ecdsap160", R_EC_P160},
    {"ecdsap192", R_EC_P192},
    {"ecdsap224", R_EC_P224},
    {"ecdsap256", R_EC_P256},
    {"ecdsap384", R_EC_P384},
    {"ecdsap521", R_EC_P521},
    {"ecdsak163", R_EC_K163},
    {"ecdsak233", R_EC_K233},
    {"ecdsak283", R_EC_K283},
    {"ecdsak409", R_EC_K409},
    {"ecdsak571", R_EC_K571},
    {"ecdsab163", R_EC_B163},
    {"ecdsab233", R_EC_B233},
    {"ecdsab283", R_EC_B283},
    {"ecdsab409", R_EC_B409},
    {"ecdsab571", R_EC_B571},
    {NULL}
};
static OPT_PAIR ecdh_choices[] = {
    {"ecdhp160", R_EC_P160},
    {"ecdhp192", R_EC_P192},
    {"ecdhp224", R_EC_P224},
    {"ecdhp256", R_EC_P256},
    {"ecdhp384", R_EC_P384},
    {"ecdhp521", R_EC_P521},
    {"ecdhk163", R_EC_K163},
    {"ecdhk233", R_EC_K233},
    {"ecdhk283", R_EC_K283},
    {"ecdhk409", R_EC_K409},
    {"ecdhk571", R_EC_K571},
    {"ecdhb163", R_EC_B163},
    {"ecdhb233", R_EC_B233},
    {"ecdhb283", R_EC_B283},
    {"ecdhb409", R_EC_B409},
    {"ecdhb571", R_EC_B571},
632
    {"ecdhx25519", R_EC_X25519},
633 634 635 636
    {NULL}
};
#endif

637 638 639 640 641 642 643 644 645 646 647 648
#ifndef SIGALRM
# define COND(d) (count < (d))
# define COUNT(d) (d)
#else
# define COND(c) (run && count<0x7fffffff)
# define COUNT(d) (count)
#endif                         /* SIGALRM */

static int testnum;
static char *engine_id = NULL;


649
#ifndef OPENSSL_NO_MD2
650 651 652 653
static int EVP_Digest_MD2_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
654
    unsigned char md2[MD2_DIGEST_LENGTH];
655 656 657 658 659 660
    int count;
    for (count = 0; COND(c[D_MD2][testnum]); count++)
        EVP_Digest(buf, (unsigned long)lengths[testnum], &(md2[0]), NULL,
                EVP_md2(), NULL);
    return count;
}
661
#endif
662

663
#ifndef OPENSSL_NO_MDC2
664 665 666 667
static int EVP_Digest_MDC2_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
668
    unsigned char mdc2[MDC2_DIGEST_LENGTH];
669 670 671 672 673 674
    int count;
    for (count = 0; COND(c[D_MDC2][testnum]); count++)
        EVP_Digest(buf, (unsigned long)lengths[testnum], &(mdc2[0]), NULL,
                EVP_mdc2(), NULL);
    return count;
}
675
#endif
676

677
#ifndef OPENSSL_NO_MD4
678 679 680 681
static int EVP_Digest_MD4_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
682
    unsigned char md4[MD4_DIGEST_LENGTH];
683 684 685 686 687 688
    int count;
    for (count = 0; COND(c[D_MD4][testnum]); count++)
        EVP_Digest(&(buf[0]), (unsigned long)lengths[testnum], &(md4[0]),
                NULL, EVP_md4(), NULL);
    return count;
}
689
#endif
690

691
#ifndef OPENSSL_NO_MD5
692 693 694 695
static int MD5_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
696
    unsigned char md5[MD5_DIGEST_LENGTH];
697 698 699 700 701 702 703 704 705 706 707
    int count;
    for (count = 0; COND(c[D_MD5][testnum]); count++)
        MD5(buf, lengths[testnum], md5);
    return count;
}

static int HMAC_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    HMAC_CTX *hctx = tempargs->hctx;
708
    unsigned char hmac[MD5_DIGEST_LENGTH];
709 710 711 712 713 714 715 716
    int count;
    for (count = 0; COND(c[D_HMAC][testnum]); count++) {
        HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
        HMAC_Update(hctx, buf, lengths[testnum]);
        HMAC_Final(hctx, &(hmac[0]), NULL);
    }
    return count;
}
717
#endif
718 719 720 721 722

static int SHA1_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
723
    unsigned char sha[SHA_DIGEST_LENGTH];
724 725 726 727 728 729 730 731 732 733
    int count;
    for (count = 0; COND(c[D_SHA1][testnum]); count++)
        SHA1(buf, lengths[testnum], sha);
    return count;
}

static int SHA256_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
734
    unsigned char sha256[SHA256_DIGEST_LENGTH];
735 736 737 738 739 740 741 742 743 744
    int count;
    for (count = 0; COND(c[D_SHA256][testnum]); count++)
        SHA256(buf, lengths[testnum], sha256);
    return count;
}

static int SHA512_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
745
    unsigned char sha512[SHA512_DIGEST_LENGTH];
746 747 748 749 750 751
    int count;
    for (count = 0; COND(c[D_SHA512][testnum]); count++)
        SHA512(buf, lengths[testnum], sha512);
    return count;
}

752
#ifndef OPENSSL_NO_WHIRLPOOL
753 754 755 756
static int WHIRLPOOL_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
757
    unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
758 759 760 761 762
    int count;
    for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
        WHIRLPOOL(buf, lengths[testnum], whirlpool);
    return count;
}
763
#endif
764

R
Rich Salz 已提交
765
#ifndef OPENSSL_NO_RMD160
766 767 768 769
static int EVP_Digest_RMD160_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
770
    unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
771 772 773 774 775 776
    int count;
    for (count = 0; COND(c[D_RMD160][testnum]); count++)
        EVP_Digest(buf, (unsigned long)lengths[testnum], &(rmd160[0]), NULL,
                EVP_ripemd160(), NULL);
    return count;
}
777
#endif
778

779
#ifndef OPENSSL_NO_RC4
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static RC4_KEY rc4_ks;
static int RC4_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_RC4][testnum]); count++)
        RC4(&rc4_ks, (unsigned int)lengths[testnum], buf, buf);
    return count;
}
#endif

#ifndef OPENSSL_NO_DES
static unsigned char DES_iv[8];
static DES_key_schedule sch;
static DES_key_schedule sch2;
static DES_key_schedule sch3;
static int DES_ncbc_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
        DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
                &DES_iv, DES_ENCRYPT);
    return count;
}

static int DES_ede3_cbc_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
        DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
                &sch, &sch2, &sch3,
                &DES_iv, DES_ENCRYPT);
    return count;
}
#endif

#ifndef OPENSSL_NO_AES
# define MAX_BLOCK_SIZE 128
#else
# define MAX_BLOCK_SIZE 64
#endif

static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
#ifndef OPENSSL_NO_AES
static AES_KEY aes_ks1, aes_ks2, aes_ks3;
static int AES_cbc_128_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
        AES_cbc_encrypt(buf, buf,
                (unsigned long)lengths[testnum], &aes_ks1,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_cbc_192_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
        AES_cbc_encrypt(buf, buf,
                (unsigned long)lengths[testnum], &aes_ks2,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_cbc_256_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    int count;
    for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
        AES_cbc_encrypt(buf, buf,
                (unsigned long)lengths[testnum], &aes_ks3,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_ige_128_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
    int count;
    for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
        AES_ige_encrypt(buf, buf2,
                (unsigned long)lengths[testnum], &aes_ks1,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_ige_192_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
    int count;
    for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
        AES_ige_encrypt(buf, buf2,
                (unsigned long)lengths[testnum], &aes_ks2,
                iv, AES_ENCRYPT);
    return count;
}

static int AES_ige_256_encrypt_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
    int count;
    for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
        AES_ige_encrypt(buf, buf2,
                (unsigned long)lengths[testnum], &aes_ks3,
                iv, AES_ENCRYPT);
    return count;
}

static int CRYPTO_gcm128_aad_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
    int count;
    for (count = 0; COND(c[D_GHASH][testnum]); count++)
        CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
    return count;
}

#endif

static int decrypt = 0;
static int EVP_Update_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    EVP_CIPHER_CTX *ctx = tempargs->ctx;
    int outl, count;
    if (decrypt)
        for (count = 0;
                COND(save_count * 4 * lengths[0] / lengths[testnum]);
                count++)
            EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
    else
        for (count = 0;
                COND(save_count * 4 * lengths[0] / lengths[testnum]);
                count++)
            EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
    if (decrypt)
        EVP_DecryptFinal_ex(ctx, buf, &outl);
    else
        EVP_EncryptFinal_ex(ctx, buf, &outl);
    return count;
}

static const EVP_MD *evp_md = NULL;
static int EVP_Digest_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char md[EVP_MAX_MD_SIZE];
    int count;
    for (count = 0;
            COND(save_count * 4 * lengths[0] / lengths[testnum]); count++)
        EVP_Digest(buf, lengths[testnum], &(md[0]), NULL, evp_md, NULL);

    return count;
}

#ifndef OPENSSL_NO_RSA
static long rsa_c[RSA_NUM][2];

static int RSA_sign_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
964 965
    unsigned int *rsa_num = tempargs->siglen;
    RSA **rsa_key = tempargs->rsa_key;
966 967
    int ret, count;
    for (count = 0; COND(rsa_c[testnum][0]); count++) {
968
        ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
        if (ret == 0) {
            BIO_printf(bio_err, "RSA sign failure\n");
            ERR_print_errors(bio_err);
            count = -1;
            break;
        }
    }
    return count;
}

static int RSA_verify_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
984 985
    unsigned int rsa_num = *(tempargs->siglen);
    RSA **rsa_key = tempargs->rsa_key;
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    int ret, count;
    for (count = 0; COND(rsa_c[testnum][1]); count++) {
        ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
        if (ret <= 0) {
            BIO_printf(bio_err, "RSA verify failure\n");
            ERR_print_errors(bio_err);
            count = -1;
            break;
        }
    }
    return count;
}
#endif

#ifndef OPENSSL_NO_DSA
static long dsa_c[DSA_NUM][2];
static int DSA_sign_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
1007 1008
    DSA **dsa_key = tempargs->dsa_key;
    unsigned int *siglen = tempargs->siglen;
1009 1010 1011 1012 1013 1014
    int ret, count;
    for (count = 0; COND(dsa_c[testnum][0]); count++) {
        ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
        if (ret == 0) {
            BIO_printf(bio_err, "DSA sign failure\n");
            ERR_print_errors(bio_err);
1015
            count = -1;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
            break;
        }
    }
    return count;
}

static int DSA_verify_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
    unsigned char *buf2 = tempargs->buf2;
1027 1028
    DSA **dsa_key = tempargs->dsa_key;
    unsigned int siglen = *(tempargs->siglen);
1029 1030 1031 1032 1033 1034
    int ret, count;
    for (count = 0; COND(dsa_c[testnum][1]); count++) {
        ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
        if (ret <= 0) {
            BIO_printf(bio_err, "DSA verify failure\n");
            ERR_print_errors(bio_err);
1035
            count = -1;
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
            break;
        }
    }
    return count;
}
#endif

#ifndef OPENSSL_NO_EC
static long ecdsa_c[EC_NUM][2];
static int ECDSA_sign_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
1049 1050 1051
    EC_KEY **ecdsa = tempargs->ecdsa;
    unsigned char *ecdsasig = tempargs->buf2;
    unsigned int *ecdsasiglen = tempargs->siglen;
1052 1053 1054 1055 1056 1057 1058
    int ret, count;
    for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
        ret = ECDSA_sign(0, buf, 20,
                ecdsasig, ecdsasiglen, ecdsa[testnum]);
        if (ret == 0) {
            BIO_printf(bio_err, "ECDSA sign failure\n");
            ERR_print_errors(bio_err);
1059
            count = -1;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
            break;
        }
    }
    return count;
}

static int ECDSA_verify_loop(void *args)
{
    loopargs_t *tempargs = (loopargs_t *)args;
    unsigned char *buf = tempargs->buf;
1070 1071 1072
    EC_KEY **ecdsa = tempargs->ecdsa;
    unsigned char *ecdsasig = tempargs->buf2;
    unsigned int ecdsasiglen = *(tempargs->siglen);
1073 1074 1075 1076 1077 1078 1079
    int ret, count;
    for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
        ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
                ecdsa[testnum]);
        if (ret != 1) {
            BIO_printf(bio_err, "ECDSA verify failure\n");
            ERR_print_errors(bio_err);
1080
            count = -1;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
            break;
        }
    }
    return count;
}

static int outlen;
static void *(*kdf) (const void *in, size_t inlen, void *out,
        size_t *xoutlen);

static int ECDH_compute_key_loop(void *args)
{
1093 1094 1095 1096
    loopargs_t *tempargs = (loopargs_t *)args;
    EC_KEY **ecdh_a = tempargs->ecdh_a;
    EC_KEY **ecdh_b = tempargs->ecdh_b;
    unsigned char *secret_a = tempargs->secret_a;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    int count;
    for (count = 0; COND(ecdh_c[testnum][0]); count++) {
        ECDH_compute_key(secret_a, outlen,
                EC_KEY_get0_public_key(ecdh_b[testnum]),
                ecdh_a[testnum], kdf);
    }
    return count;
}
#endif


static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs)
{
    int job_op_count = 0;
    int total_op_count = 0;
    int num_inprogress = 0;
    int error = 0;
    int i = 0;
1115 1116
    OSSL_ASYNC_FD job_fd = 0;
    size_t num_job_fds = 0;
1117 1118 1119

    run = 1;

1120
    if (async_jobs == 0) {
1121 1122 1123
        return loop_function((void *)loopargs);
    }

1124

1125
    for (i = 0; i < async_jobs && !error; i++) {
1126 1127 1128
        switch (ASYNC_start_job(&(loopargs[i].inprogress_job), loopargs[i].wait_ctx,
                                &job_op_count, loop_function,
                                (void *)(loopargs + i), sizeof(loopargs_t))) {
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
            case ASYNC_PAUSE:
                ++num_inprogress;
                break;
            case ASYNC_FINISH:
                if (job_op_count == -1) {
                    error = 1;
                } else {
                    total_op_count += job_op_count;
                }
                break;
            case ASYNC_NO_JOBS:
            case ASYNC_ERR:
                BIO_printf(bio_err, "Failure in the job\n");
                ERR_print_errors(bio_err);
                error = 1;
                break;
        }
    }

    while (num_inprogress > 0) {
1149
#if defined(OPENSSL_SYS_WINDOWS)
1150
        DWORD avail = 0;
1151
#elif defined(OPENSSL_SYS_UNIX)
1152
        int select_result = 0;
1153 1154
        OSSL_ASYNC_FD max_fd = 0;
        fd_set waitfdset;
1155

1156
        FD_ZERO(&waitfdset);
1157

1158 1159 1160
        for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
            if (loopargs[i].inprogress_job == NULL)
                continue;
1161

1162 1163 1164 1165 1166 1167
            if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
                    || num_job_fds > 1) {
                BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
                ERR_print_errors(bio_err);
                error = 1;
                break;
1168
            }
1169 1170 1171 1172
            ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
            FD_SET(job_fd, &waitfdset);
            if (job_fd > max_fd)
                max_fd = job_fd;
1173 1174
        }

1175
        select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
1176 1177 1178 1179
        if (select_result == -1 && errno == EINTR)
            continue;

        if (select_result == -1) {
1180 1181 1182 1183
            BIO_printf(bio_err, "Failure in the select\n");
            ERR_print_errors(bio_err);
            error = 1;
            break;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        }

        if (select_result == 0)
            continue;
#endif

        for (i = 0; i < async_jobs; i++) {
            if (loopargs[i].inprogress_job == NULL)
                continue;

1194 1195 1196 1197 1198 1199 1200 1201
            if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
                    || num_job_fds > 1) {
                BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
                ERR_print_errors(bio_err);
                error = 1;
                break;
            }
            ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
1202

1203
#if defined(OPENSSL_SYS_UNIX)
1204
            if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
1205
                continue;
1206
#elif defined(OPENSSL_SYS_WINDOWS)
1207 1208
            if (num_job_fds == 1 &&
                    !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0)
1209 1210 1211
                continue;
#endif

1212
            switch (ASYNC_start_job(&(loopargs[i].inprogress_job), loopargs[i].wait_ctx,
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
                        &job_op_count, loop_function, (void *)(loopargs + i),
                        sizeof(loopargs_t))) {
                case ASYNC_PAUSE:
                    break;
                case ASYNC_FINISH:
                    if (job_op_count == -1) {
                        error = 1;
                    } else {
                        total_op_count += job_op_count;
                    }
                    --num_inprogress;
                    loopargs[i].inprogress_job = NULL;
                    break;
                case ASYNC_NO_JOBS:
                case ASYNC_ERR:
                    --num_inprogress;
                    loopargs[i].inprogress_job = NULL;
                    BIO_printf(bio_err, "Failure in the job\n");
                    ERR_print_errors(bio_err);
                    error = 1;
                    break;
            }
        }
    }

    return error ? -1 : total_op_count;
}

int speed_main(int argc, char **argv)
{
    loopargs_t *loopargs = NULL;
    int loopargs_len = 0;
    char *prog;
    const EVP_CIPHER *evp_cipher = NULL;
    double d = 0.0;
    OPTION_CHOICE o;
    int multiblock = 0, doit[ALGOR_NUM], pr_header = 0;
    int dsa_doit[DSA_NUM], rsa_doit[RSA_NUM];
    int ret = 1, i, k, misalign = 0;
    long c[ALGOR_NUM][SIZE_NUM], count = 0, save_count = 0;
#ifndef NO_FORK
    int multi = 0;
#endif
    int async_jobs = 0;
    /* What follows are the buffers and key material. */
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
1259
    long rsa_count = 1;
1260 1261
#endif
#ifndef OPENSSL_NO_RC5
1262
    RC5_32_KEY rc5_ks;
1263 1264
#endif
#ifndef OPENSSL_NO_RC2
1265
    RC2_KEY rc2_ks;
1266 1267
#endif
#ifndef OPENSSL_NO_IDEA
1268
    IDEA_KEY_SCHEDULE idea_ks;
1269 1270
#endif
#ifndef OPENSSL_NO_SEED
1271
    SEED_KEY_SCHEDULE seed_ks;
1272 1273
#endif
#ifndef OPENSSL_NO_BF
1274
    BF_KEY bf_ks;
1275 1276
#endif
#ifndef OPENSSL_NO_CAST
1277
    CAST_KEY cast_ks;
1278
#endif
1279 1280 1281 1282
    static const unsigned char key16[16] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
    };
1283
#ifndef OPENSSL_NO_AES
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    static const unsigned char key24[24] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
    };
    static const unsigned char key32[32] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
        0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
    };
1295 1296
#endif
#ifndef OPENSSL_NO_CAMELLIA
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    static const unsigned char ckey24[24] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
    };
    static const unsigned char ckey32[32] = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
        0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
    };
1308
    CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
1309 1310
#endif
#ifndef OPENSSL_NO_DES
1311 1312 1313 1314 1315 1316 1317 1318 1319
    static DES_cblock key = {
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
    };
    static DES_cblock key2 = {
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
    };
    static DES_cblock key3 = {
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
    };
1320 1321
#endif
#ifndef OPENSSL_NO_RSA
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    static unsigned int rsa_bits[RSA_NUM] = {
        512, 1024, 2048, 3072, 4096, 7680, 15360
    };
    static unsigned char *rsa_data[RSA_NUM] = {
        test512, test1024, test2048, test3072, test4096, test7680, test15360
    };
    static int rsa_data_length[RSA_NUM] = {
        sizeof(test512), sizeof(test1024),
        sizeof(test2048), sizeof(test3072),
        sizeof(test4096), sizeof(test7680),
        sizeof(test15360)
    };
1334 1335
#endif
#ifndef OPENSSL_NO_DSA
1336
    static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
1337 1338
#endif
#ifndef OPENSSL_NO_EC
1339 1340 1341 1342 1343 1344 1345
    /*
     * We only test over the following curves as they are representative, To
     * add tests over more curves, simply add the curve NID and curve name to
     * the following arrays and increase the EC_NUM value accordingly.
     */
    static unsigned int test_curves[EC_NUM] = {
        /* Prime Curves */
1346 1347
        NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1,
        NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1,
1348
        /* Binary Curves */
1349 1350 1351
        NID_sect163k1, NID_sect233k1, NID_sect283k1,
        NID_sect409k1, NID_sect571k1, NID_sect163r2,
        NID_sect233r1, NID_sect283r1, NID_sect409r1,
1352 1353 1354
        NID_sect571r1,
        /* Other */
        NID_X25519
1355 1356 1357
    };
    static const char *test_curves_names[EC_NUM] = {
        /* Prime Curves */
1358 1359
        "secp160r1", "nistp192", "nistp224",
        "nistp256", "nistp384", "nistp521",
1360
        /* Binary Curves */
1361 1362 1363
        "nistk163", "nistk233", "nistk283",
        "nistk409", "nistk571", "nistb163",
        "nistb233", "nistb283", "nistb409",
1364 1365 1366
        "nistb571",
        /* Other */
        "X25519"
1367 1368
    };
    static int test_curves_bits[EC_NUM] = {
1369 1370 1371 1372 1373
        160, 192, 224,
        256, 384, 521,
        163, 233, 283,
        409, 571, 163,
        233, 283, 409,
1374
        571, 253 /* X25519 */
1375
    };
1376
#endif
1377
#ifndef OPENSSL_NO_EC
1378
    int ecdsa_doit[EC_NUM];
1379
    int secret_size_a, secret_size_b;
1380
    int ecdh_checks = 1;
1381 1382
    int secret_idx = 0;
    long ecdh_c[EC_NUM][2];
1383
    int ecdh_doit[EC_NUM];
1384
#endif
1385

1386
    memset(results, 0, sizeof(results));
D
Dr. Stephen Henson 已提交
1387

1388
    memset(c, 0, sizeof(c));
M
Matt Caswell 已提交
1389
#ifndef OPENSSL_NO_DES
1390
    memset(DES_iv, 0, sizeof(DES_iv));
M
Matt Caswell 已提交
1391
#endif
1392 1393 1394 1395 1396 1397 1398 1399
    memset(iv, 0, sizeof(iv));

    for (i = 0; i < ALGOR_NUM; i++)
        doit[i] = 0;
    for (i = 0; i < RSA_NUM; i++)
        rsa_doit[i] = 0;
    for (i = 0; i < DSA_NUM; i++)
        dsa_doit[i] = 0;
1400
#ifndef OPENSSL_NO_EC
1401 1402 1403 1404
    for (i = 0; i < EC_NUM; i++)
        ecdsa_doit[i] = 0;
    for (i = 0; i < EC_NUM; i++)
        ecdh_doit[i] = 0;
1405
#endif
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    misalign = 0;

    prog = opt_init(argc, argv, speed_options);
    while ((o = opt_next()) != OPT_EOF) {
        switch (o) {
        case OPT_EOF:
        case OPT_ERR:
 opterr:
            BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
            goto end;
        case OPT_HELP:
            opt_help(speed_options);
            ret = 0;
            goto end;
        case OPT_ELAPSED:
1422
            usertime = 0;
1423 1424 1425 1426 1427 1428 1429 1430 1431
            break;
        case OPT_EVP:
            evp_cipher = EVP_get_cipherbyname(opt_arg());
            if (evp_cipher == NULL)
                evp_md = EVP_get_digestbyname(opt_arg());
            if (evp_cipher == NULL && evp_md == NULL) {
                BIO_printf(bio_err,
                           "%s: %s  an unknown cipher or digest\n",
                           prog, opt_arg());
1432 1433 1434
                goto end;
            }
            doit[D_EVP] = 1;
1435 1436
            break;
        case OPT_DECRYPT:
1437
            decrypt = 1;
1438 1439
            break;
        case OPT_ENGINE:
1440 1441 1442 1443 1444 1445
            /*
             * In a forked execution, an engine might need to be
             * initialised by each child process, not by the parent.
             * So store the name here and run setup_engine() later on.
             */
            engine_id = opt_arg();
1446 1447
            break;
        case OPT_MULTI:
1448
#ifndef NO_FORK
1449
            multi = atoi(opt_arg());
1450 1451 1452
#endif
            break;
        case OPT_ASYNCJOBS:
1453
#ifndef OPENSSL_NO_ASYNC
1454
            async_jobs = atoi(opt_arg());
1455 1456 1457 1458 1459 1460
            if (!ASYNC_is_capable()) {
                BIO_printf(bio_err,
                           "%s: async_jobs specified but async not supported\n",
                           prog);
                goto opterr;
            }
1461
#endif
1462
            break;
1463 1464
        case OPT_MISALIGN:
            if (!opt_int(opt_arg(), &misalign))
1465
                goto end;
1466
            if (misalign > MISALIGN) {
1467
                BIO_printf(bio_err,
1468 1469
                           "%s: Maximum offset is %d\n", prog, MISALIGN);
                goto opterr;
1470
            }
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
            break;
        case OPT_MR:
            mr = 1;
            break;
        case OPT_MB:
            multiblock = 1;
            break;
        }
    }
    argc = opt_num_rest();
    argv = opt_rest();

    /* Remaining arguments are algorithms. */
    for ( ; *argv; argv++) {
        if (found(*argv, doit_choices, &i)) {
            doit[i] = 1;
            continue;
        }
1489
#ifndef OPENSSL_NO_DES
1490 1491 1492 1493
        if (strcmp(*argv, "des") == 0) {
            doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
            continue;
        }
1494
#endif
1495 1496 1497 1498
        if (strcmp(*argv, "sha") == 0) {
            doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
            continue;
        }
1499 1500
#ifndef OPENSSL_NO_RSA
# ifndef RSA_NULL
1501
        if (strcmp(*argv, "openssl") == 0) {
R
Rich Salz 已提交
1502
            RSA_set_default_method(RSA_PKCS1_OpenSSL());
1503 1504
            continue;
        }
1505
# endif
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
        if (strcmp(*argv, "rsa") == 0) {
            rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] =
                rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] =
                rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] =
                rsa_doit[R_RSA_15360] = 1;
            continue;
        }
        if (found(*argv, rsa_choices, &i)) {
            rsa_doit[i] = 1;
            continue;
        }
1517
#endif
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
#ifndef OPENSSL_NO_DSA
        if (strcmp(*argv, "dsa") == 0) {
            dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
                dsa_doit[R_DSA_2048] = 1;
            continue;
        }
        if (found(*argv, dsa_choices, &i)) {
            dsa_doit[i] = 2;
            continue;
        }
1528 1529
#endif
#ifndef OPENSSL_NO_AES
1530
        if (strcmp(*argv, "aes") == 0) {
1531 1532 1533 1534
            doit[D_CBC_128_AES] = doit[D_CBC_192_AES] =
                doit[D_CBC_256_AES] = 1;
            continue;
        }
1535 1536
#endif
#ifndef OPENSSL_NO_CAMELLIA
1537
        if (strcmp(*argv, "camellia") == 0) {
1538 1539 1540 1541
            doit[D_CBC_128_CML] = doit[D_CBC_192_CML] =
                doit[D_CBC_256_CML] = 1;
            continue;
        }
1542
#endif
1543
#ifndef OPENSSL_NO_EC
1544
        if (strcmp(*argv, "ecdsa") == 0) {
1545 1546
            for (i = 0; i < EC_NUM; i++)
                ecdsa_doit[i] = 1;
1547 1548 1549 1550 1551 1552 1553
            continue;
        }
        if (found(*argv, ecdsa_choices, &i)) {
            ecdsa_doit[i] = 2;
            continue;
        }
        if (strcmp(*argv, "ecdh") == 0) {
1554 1555
            for (i = 0; i < EC_NUM; i++)
                ecdh_doit[i] = 1;
1556 1557 1558 1559 1560
            continue;
        }
        if (found(*argv, ecdh_choices, &i)) {
            ecdh_doit[i] = 2;
            continue;
1561
        }
1562 1563 1564
#endif
        BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
        goto end;
1565
    }
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    /* Initialize the job pool if async mode is enabled */
    if (async_jobs > 0) {
        if (!ASYNC_init_thread(async_jobs, async_jobs)) {
            BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
            goto end;
        }
    }

    loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
    loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
    memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));

1579
    for (i = 0; i < loopargs_len; i++) {
1580 1581 1582 1583 1584 1585 1586 1587
        if (async_jobs > 0) {
            loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
            if (loopargs[i].wait_ctx == NULL) {
                BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
                goto end;
            }
        }

1588 1589 1590 1591 1592
        loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
        loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
        /* Align the start of buffers on a 64 byte boundary */
        loopargs[i].buf = loopargs[i].buf_malloc + misalign;
        loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
1593 1594 1595 1596 1597
        loopargs[i].siglen = app_malloc(sizeof(unsigned int), "signature length");
#ifndef OPENSSL_NO_EC
        loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
        loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
#endif
1598 1599
    }

1600
#ifndef NO_FORK
1601 1602
    if (multi && do_multi(multi))
        goto show_res;
1603
#endif
1604

1605 1606 1607
    /* Initialize the engine after the fork */
    (void)setup_engine(engine_id, 0);

1608
    /* No parameters; turn on everything. */
1609
    if ((argc == 0) && !doit[D_EVP]) {
1610
        for (i = 0; i < ALGOR_NUM; i++)
1611 1612 1613 1614 1615 1616
            if (i != D_EVP)
                doit[i] = 1;
        for (i = 0; i < RSA_NUM; i++)
            rsa_doit[i] = 1;
        for (i = 0; i < DSA_NUM; i++)
            dsa_doit[i] = 1;
1617
#ifndef OPENSSL_NO_EC
1618 1619 1620 1621
        for (i = 0; i < EC_NUM; i++)
            ecdsa_doit[i] = 1;
        for (i = 0; i < EC_NUM; i++)
            ecdh_doit[i] = 1;
1622
#endif
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
    }
    for (i = 0; i < ALGOR_NUM; i++)
        if (doit[i])
            pr_header++;

    if (usertime == 0 && !mr)
        BIO_printf(bio_err,
                   "You have chosen to measure elapsed time "
                   "instead of user CPU time.\n");

1633
#ifndef OPENSSL_NO_RSA
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
    for (i = 0; i < loopargs_len; i++) {
        for (k = 0; k < RSA_NUM; k++) {
            const unsigned char *p;

            p = rsa_data[k];
            loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
            if (loopargs[i].rsa_key[k] == NULL) {
                BIO_printf(bio_err, "internal error loading RSA key number %d\n",
                        k);
                goto end;
            }
1645
        }
1646 1647 1648
    }
#endif
#ifndef OPENSSL_NO_DSA
1649 1650 1651 1652 1653
    for (i = 0; i < loopargs_len; i++) {
        loopargs[i].dsa_key[0] = get_dsa512();
        loopargs[i].dsa_key[1] = get_dsa1024();
        loopargs[i].dsa_key[2] = get_dsa2048();
    }
1654 1655
#endif
#ifndef OPENSSL_NO_DES
1656 1657 1658
    DES_set_key_unchecked(&key, &sch);
    DES_set_key_unchecked(&key2, &sch2);
    DES_set_key_unchecked(&key3, &sch3);
1659 1660
#endif
#ifndef OPENSSL_NO_AES
1661 1662 1663
    AES_set_encrypt_key(key16, 128, &aes_ks1);
    AES_set_encrypt_key(key24, 192, &aes_ks2);
    AES_set_encrypt_key(key32, 256, &aes_ks3);
1664 1665
#endif
#ifndef OPENSSL_NO_CAMELLIA
1666 1667 1668
    Camellia_set_key(key16, 128, &camellia_ks1);
    Camellia_set_key(ckey24, 192, &camellia_ks2);
    Camellia_set_key(ckey32, 256, &camellia_ks3);
1669 1670
#endif
#ifndef OPENSSL_NO_IDEA
1671
    idea_set_encrypt_key(key16, &idea_ks);
1672 1673
#endif
#ifndef OPENSSL_NO_SEED
1674
    SEED_set_key(key16, &seed_ks);
1675 1676
#endif
#ifndef OPENSSL_NO_RC4
1677
    RC4_set_key(&rc4_ks, 16, key16);
1678 1679
#endif
#ifndef OPENSSL_NO_RC2
1680
    RC2_set_key(&rc2_ks, 16, key16, 128);
1681 1682
#endif
#ifndef OPENSSL_NO_RC5
1683
    RC5_32_set_key(&rc5_ks, 16, key16, 12);
1684 1685
#endif
#ifndef OPENSSL_NO_BF
1686
    BF_set_key(&bf_ks, 16, key16);
1687 1688
#endif
#ifndef OPENSSL_NO_CAST
1689
    CAST_set_key(&cast_ks, 16, key16);
1690 1691
#endif
#ifndef OPENSSL_NO_RSA
1692
    memset(rsa_c, 0, sizeof(rsa_c));
1693 1694 1695
#endif
#ifndef SIGALRM
# ifndef OPENSSL_NO_DES
1696 1697 1698 1699 1700 1701 1702
    BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
    count = 10;
    do {
        long it;
        count *= 2;
        Time_F(START);
        for (it = count; it; it--)
1703 1704
            DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
                            (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        d = Time_F(STOP);
    } while (d < 3);
    save_count = count;
    c[D_MD2][0] = count / 10;
    c[D_MDC2][0] = count / 10;
    c[D_MD4][0] = count;
    c[D_MD5][0] = count;
    c[D_HMAC][0] = count;
    c[D_SHA1][0] = count;
    c[D_RMD160][0] = count;
    c[D_RC4][0] = count * 5;
    c[D_CBC_DES][0] = count;
    c[D_EDE3_DES][0] = count / 3;
    c[D_CBC_IDEA][0] = count;
    c[D_CBC_SEED][0] = count;
    c[D_CBC_RC2][0] = count;
    c[D_CBC_RC5][0] = count;
    c[D_CBC_BF][0] = count;
    c[D_CBC_CAST][0] = count;
    c[D_CBC_128_AES][0] = count;
    c[D_CBC_192_AES][0] = count;
    c[D_CBC_256_AES][0] = count;
    c[D_CBC_128_CML][0] = count;
    c[D_CBC_192_CML][0] = count;
    c[D_CBC_256_CML][0] = count;
    c[D_SHA256][0] = count;
    c[D_SHA512][0] = count;
    c[D_WHIRLPOOL][0] = count;
    c[D_IGE_128_AES][0] = count;
    c[D_IGE_192_AES][0] = count;
    c[D_IGE_256_AES][0] = count;
    c[D_GHASH][0] = count;

    for (i = 1; i < SIZE_NUM; i++) {
        long l0, l1;

        l0 = (long)lengths[0];
        l1 = (long)lengths[i];

        c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
        c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
        c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
        c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
        c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
        c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
        c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
        c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
        c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
        c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
1754
        c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

        l0 = (long)lengths[i - 1];

        c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
        c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
        c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
        c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
        c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
        c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
        c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
        c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
        c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
        c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
        c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
        c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
        c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
        c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
        c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
        c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
        c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
        c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
    }
B
Bodo Möller 已提交
1777

1778
#  ifndef OPENSSL_NO_RSA
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
    rsa_c[R_RSA_512][0] = count / 2000;
    rsa_c[R_RSA_512][1] = count / 400;
    for (i = 1; i < RSA_NUM; i++) {
        rsa_c[i][0] = rsa_c[i - 1][0] / 8;
        rsa_c[i][1] = rsa_c[i - 1][1] / 4;
        if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0))
            rsa_doit[i] = 0;
        else {
            if (rsa_c[i][0] == 0) {
                rsa_c[i][0] = 1;
                rsa_c[i][1] = 20;
            }
        }
    }
1793
#  endif
1794

1795
#  ifndef OPENSSL_NO_DSA
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    dsa_c[R_DSA_512][0] = count / 1000;
    dsa_c[R_DSA_512][1] = count / 1000 / 2;
    for (i = 1; i < DSA_NUM; i++) {
        dsa_c[i][0] = dsa_c[i - 1][0] / 4;
        dsa_c[i][1] = dsa_c[i - 1][1] / 4;
        if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0))
            dsa_doit[i] = 0;
        else {
            if (dsa_c[i] == 0) {
                dsa_c[i][0] = 1;
                dsa_c[i][1] = 1;
            }
        }
    }
1810
#  endif
1811

1812
#  ifndef OPENSSL_NO_EC
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    ecdsa_c[R_EC_P160][0] = count / 1000;
    ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
    for (i = R_EC_P192; i <= R_EC_P521; i++) {
        ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
        ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
        if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
            ecdsa_doit[i] = 0;
        else {
            if (ecdsa_c[i] == 0) {
                ecdsa_c[i][0] = 1;
                ecdsa_c[i][1] = 1;
            }
        }
    }
    ecdsa_c[R_EC_K163][0] = count / 1000;
    ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
    for (i = R_EC_K233; i <= R_EC_K571; i++) {
        ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
        ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
        if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
            ecdsa_doit[i] = 0;
        else {
            if (ecdsa_c[i] == 0) {
                ecdsa_c[i][0] = 1;
                ecdsa_c[i][1] = 1;
            }
        }
    }
    ecdsa_c[R_EC_B163][0] = count / 1000;
    ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
    for (i = R_EC_B233; i <= R_EC_B571; i++) {
        ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
        ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
        if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
            ecdsa_doit[i] = 0;
        else {
            if (ecdsa_c[i] == 0) {
                ecdsa_c[i][0] = 1;
                ecdsa_c[i][1] = 1;
            }
        }
    }
1855

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    ecdh_c[R_EC_P160][0] = count / 1000;
    ecdh_c[R_EC_P160][1] = count / 1000;
    for (i = R_EC_P192; i <= R_EC_P521; i++) {
        ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
        ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
        if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
            ecdh_doit[i] = 0;
        else {
            if (ecdh_c[i] == 0) {
                ecdh_c[i][0] = 1;
                ecdh_c[i][1] = 1;
            }
        }
    }
    ecdh_c[R_EC_K163][0] = count / 1000;
    ecdh_c[R_EC_K163][1] = count / 1000;
    for (i = R_EC_K233; i <= R_EC_K571; i++) {
        ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
        ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
        if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
            ecdh_doit[i] = 0;
        else {
            if (ecdh_c[i] == 0) {
                ecdh_c[i][0] = 1;
                ecdh_c[i][1] = 1;
            }
        }
    }
    ecdh_c[R_EC_B163][0] = count / 1000;
    ecdh_c[R_EC_B163][1] = count / 1000;
    for (i = R_EC_B233; i <= R_EC_B571; i++) {
        ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
        ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
        if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
            ecdh_doit[i] = 0;
        else {
            if (ecdh_c[i] == 0) {
                ecdh_c[i][0] = 1;
                ecdh_c[i][1] = 1;
            }
        }
    }
1898
#  endif
B
Bodo Möller 已提交
1899

1900
# else
1901 1902 1903 1904 1905
/* not worth fixing */
#  error "You cannot disable DES on systems without SIGALRM."
# endif                        /* OPENSSL_NO_DES */
#else
# ifndef _WIN32
1906
    signal(SIGALRM, sig_done);
1907 1908
# endif
#endif                         /* SIGALRM */
1909

1910
#ifndef OPENSSL_NO_MD2
1911
    if (doit[D_MD2]) {
1912 1913
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]);
1914
            Time_F(START);
1915
            count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
1916
            d = Time_F(STOP);
1917
            print_result(D_MD2, testnum, count, d);
1918 1919
        }
    }
1920 1921
#endif
#ifndef OPENSSL_NO_MDC2
1922
    if (doit[D_MDC2]) {
1923 1924
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]);
1925
            Time_F(START);
1926
            count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
1927
            d = Time_F(STOP);
1928
            print_result(D_MDC2, testnum, count, d);
1929 1930
        }
    }
1931
#endif
1932

1933
#ifndef OPENSSL_NO_MD4
1934
    if (doit[D_MD4]) {
1935 1936
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]);
1937
            Time_F(START);
1938
            count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
1939
            d = Time_F(STOP);
1940
            print_result(D_MD4, testnum, count, d);
1941 1942
        }
    }
1943
#endif
1944

1945
#ifndef OPENSSL_NO_MD5
1946
    if (doit[D_MD5]) {
1947 1948
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]);
1949
            Time_F(START);
1950
            count = run_benchmark(async_jobs, MD5_loop, loopargs);
1951
            d = Time_F(STOP);
1952
            print_result(D_MD5, testnum, count, d);
1953 1954
        }
    }
1955
#endif
1956

1957
#ifndef OPENSSL_NO_MD5
1958
    if (doit[D_HMAC]) {
1959
        for (i = 0; i < loopargs_len; i++) {
1960 1961 1962 1963 1964
            loopargs[i].hctx = HMAC_CTX_new();
            if (loopargs[i].hctx == NULL) {
                BIO_printf(bio_err, "HMAC malloc failure, exiting...");
                exit(1);
            }
1965

1966 1967
            HMAC_Init_ex(loopargs[i].hctx, (unsigned char *)"This is a key...",
                    16, EVP_md5(), NULL);
1968
        }
1969 1970
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]);
1971
            Time_F(START);
1972
            count = run_benchmark(async_jobs, HMAC_loop, loopargs);
1973
            d = Time_F(STOP);
1974 1975
            print_result(D_HMAC, testnum, count, d);
        }
1976
        for (i = 0; i < loopargs_len; i++) {
1977
            HMAC_CTX_free(loopargs[i].hctx);
1978 1979
        }
    }
1980
#endif
1981
    if (doit[D_SHA1]) {
1982 1983
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]);
1984
            Time_F(START);
1985
            count = run_benchmark(async_jobs, SHA1_loop, loopargs);
1986
            d = Time_F(STOP);
1987
            print_result(D_SHA1, testnum, count, d);
1988 1989 1990
        }
    }
    if (doit[D_SHA256]) {
1991 1992
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]);
1993
            Time_F(START);
1994
            count = run_benchmark(async_jobs, SHA256_loop, loopargs);
1995
            d = Time_F(STOP);
1996
            print_result(D_SHA256, testnum, count, d);
1997 1998 1999
        }
    }
    if (doit[D_SHA512]) {
2000 2001
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]);
2002
            Time_F(START);
2003
            count = run_benchmark(async_jobs, SHA512_loop, loopargs);
2004
            d = Time_F(STOP);
2005
            print_result(D_SHA512, testnum, count, d);
2006 2007
        }
    }
A
Andy Polyakov 已提交
2008

2009
#ifndef OPENSSL_NO_WHIRLPOOL
2010
    if (doit[D_WHIRLPOOL]) {
2011 2012
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]);
2013
            Time_F(START);
2014
            count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
2015
            d = Time_F(STOP);
2016
            print_result(D_WHIRLPOOL, testnum, count, d);
2017 2018
        }
    }
2019
#endif
2020

2021
#ifndef OPENSSL_NO_RMD160
2022
    if (doit[D_RMD160]) {
2023 2024
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]);
2025
            Time_F(START);
2026
            count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
2027
            d = Time_F(STOP);
2028
            print_result(D_RMD160, testnum, count, d);
2029 2030
        }
    }
2031 2032
#endif
#ifndef OPENSSL_NO_RC4
2033
    if (doit[D_RC4]) {
2034 2035
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]);
2036
            Time_F(START);
2037
            count = run_benchmark(async_jobs, RC4_loop, loopargs);
2038
            d = Time_F(STOP);
2039
            print_result(D_RC4, testnum, count, d);
2040 2041
        }
    }
2042 2043
#endif
#ifndef OPENSSL_NO_DES
2044
    if (doit[D_CBC_DES]) {
2045 2046
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]);
2047
            Time_F(START);
2048
            count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
2049
            d = Time_F(STOP);
2050
            print_result(D_CBC_DES, testnum, count, d);
2051 2052
        }
    }
2053

2054
    if (doit[D_EDE3_DES]) {
2055 2056
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]);
2057
            Time_F(START);
2058
            count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
2059
            d = Time_F(STOP);
2060
            print_result(D_EDE3_DES, testnum, count, d);
2061 2062
        }
    }
2063 2064
#endif
#ifndef OPENSSL_NO_AES
2065
    if (doit[D_CBC_128_AES]) {
2066 2067 2068
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
                          lengths[testnum]);
2069
            Time_F(START);
2070
            count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
2071
            d = Time_F(STOP);
2072
            print_result(D_CBC_128_AES, testnum, count, d);
2073 2074 2075
        }
    }
    if (doit[D_CBC_192_AES]) {
2076 2077 2078
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
                          lengths[testnum]);
2079
            Time_F(START);
2080
            count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
2081
            d = Time_F(STOP);
2082
            print_result(D_CBC_192_AES, testnum, count, d);
2083 2084 2085
        }
    }
    if (doit[D_CBC_256_AES]) {
2086 2087 2088
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
                          lengths[testnum]);
2089
            Time_F(START);
2090
            count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
2091
            d = Time_F(STOP);
2092
            print_result(D_CBC_256_AES, testnum, count, d);
2093 2094
        }
    }
B
Ben Laurie 已提交
2095

2096
    if (doit[D_IGE_128_AES]) {
2097 2098 2099
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
                          lengths[testnum]);
2100
            Time_F(START);
2101
            count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
2102
            d = Time_F(STOP);
2103
            print_result(D_IGE_128_AES, testnum, count, d);
2104 2105 2106
        }
    }
    if (doit[D_IGE_192_AES]) {
2107 2108 2109
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
                          lengths[testnum]);
2110
            Time_F(START);
2111
            count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
2112
            d = Time_F(STOP);
2113
            print_result(D_IGE_192_AES, testnum, count, d);
2114 2115 2116
        }
    }
    if (doit[D_IGE_256_AES]) {
2117 2118 2119
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
                          lengths[testnum]);
2120
            Time_F(START);
2121
            count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
2122
            d = Time_F(STOP);
2123
            print_result(D_IGE_256_AES, testnum, count, d);
2124 2125 2126
        }
    }
    if (doit[D_GHASH]) {
2127
        for (i = 0; i < loopargs_len; i++) {
2128 2129 2130
            loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
            CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12);
        }
2131

2132 2133
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]);
2134
            Time_F(START);
2135
            count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
2136
            d = Time_F(STOP);
2137
            print_result(D_GHASH, testnum, count, d);
2138
        }
2139
        for (i = 0; i < loopargs_len; i++)
2140
            CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
2141
    }
2142 2143
#endif
#ifndef OPENSSL_NO_CAMELLIA
2144
    if (doit[D_CBC_128_CML]) {
2145 2146 2147 2148 2149 2150 2151
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
                          lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2152
            Time_F(START);
2153 2154 2155
            for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
                Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                     (unsigned long)lengths[testnum], &camellia_ks1,
2156 2157
                                     iv, CAMELLIA_ENCRYPT);
            d = Time_F(STOP);
2158
            print_result(D_CBC_128_CML, testnum, count, d);
2159 2160 2161
        }
    }
    if (doit[D_CBC_192_CML]) {
2162 2163 2164 2165 2166 2167 2168
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
                          lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2169
            Time_F(START);
2170 2171 2172
            for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
                Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                     (unsigned long)lengths[testnum], &camellia_ks2,
2173 2174
                                     iv, CAMELLIA_ENCRYPT);
            d = Time_F(STOP);
2175
            print_result(D_CBC_192_CML, testnum, count, d);
2176 2177 2178
        }
    }
    if (doit[D_CBC_256_CML]) {
2179 2180 2181 2182 2183 2184 2185
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
                          lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2186
            Time_F(START);
2187 2188 2189
            for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
                Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                     (unsigned long)lengths[testnum], &camellia_ks3,
2190 2191
                                     iv, CAMELLIA_ENCRYPT);
            d = Time_F(STOP);
2192
            print_result(D_CBC_256_CML, testnum, count, d);
2193 2194
        }
    }
2195 2196
#endif
#ifndef OPENSSL_NO_IDEA
2197
    if (doit[D_CBC_IDEA]) {
2198 2199 2200 2201 2202 2203
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2204
            Time_F(START);
2205 2206 2207
            for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
                idea_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                 (unsigned long)lengths[testnum], &idea_ks,
2208 2209
                                 iv, IDEA_ENCRYPT);
            d = Time_F(STOP);
2210
            print_result(D_CBC_IDEA, testnum, count, d);
2211 2212
        }
    }
2213 2214
#endif
#ifndef OPENSSL_NO_SEED
2215
    if (doit[D_CBC_SEED]) {
2216 2217 2218 2219 2220 2221
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2222
            Time_F(START);
2223 2224 2225
            for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
                SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                 (unsigned long)lengths[testnum], &seed_ks, iv, 1);
2226
            d = Time_F(STOP);
2227
            print_result(D_CBC_SEED, testnum, count, d);
2228 2229
        }
    }
2230 2231
#endif
#ifndef OPENSSL_NO_RC2
2232
    if (doit[D_CBC_RC2]) {
2233 2234 2235 2236 2237 2238
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2239
            Time_F(START);
2240 2241 2242
            for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
                RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                (unsigned long)lengths[testnum], &rc2_ks,
2243 2244
                                iv, RC2_ENCRYPT);
            d = Time_F(STOP);
2245
            print_result(D_CBC_RC2, testnum, count, d);
2246 2247
        }
    }
2248 2249
#endif
#ifndef OPENSSL_NO_RC5
2250
    if (doit[D_CBC_RC5]) {
2251 2252 2253 2254 2255 2256
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2257
            Time_F(START);
2258 2259 2260
            for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
                RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                   (unsigned long)lengths[testnum], &rc5_ks,
2261 2262
                                   iv, RC5_ENCRYPT);
            d = Time_F(STOP);
2263
            print_result(D_CBC_RC5, testnum, count, d);
2264 2265
        }
    }
2266 2267
#endif
#ifndef OPENSSL_NO_BF
2268
    if (doit[D_CBC_BF]) {
2269 2270 2271 2272 2273 2274
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2275
            Time_F(START);
2276 2277 2278
            for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
                BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                               (unsigned long)lengths[testnum], &bf_ks,
2279 2280
                               iv, BF_ENCRYPT);
            d = Time_F(STOP);
2281
            print_result(D_CBC_BF, testnum, count, d);
2282 2283
        }
    }
2284 2285
#endif
#ifndef OPENSSL_NO_CAST
2286
    if (doit[D_CBC_CAST]) {
2287 2288 2289 2290 2291 2292
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]);
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2293
            Time_F(START);
2294 2295 2296
            for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
                CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
                                 (unsigned long)lengths[testnum], &cast_ks,
2297 2298
                                 iv, CAST_ENCRYPT);
            d = Time_F(STOP);
2299
            print_result(D_CBC_CAST, testnum, count, d);
2300 2301
        }
    }
2302
#endif
2303

2304
    if (doit[D_EVP]) {
2305
#ifdef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
2306 2307 2308 2309
        if (multiblock && evp_cipher) {
            if (!
                (EVP_CIPHER_flags(evp_cipher) &
                 EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
R
Rich Salz 已提交
2310
                BIO_printf(bio_err, "%s is not multi-block capable\n",
2311
                           OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
2312 2313
                goto end;
            }
2314 2315 2316 2317
            if (async_jobs > 0) {
                BIO_printf(bio_err, "Async mode is not supported, exiting...");
                exit(1);
            }
2318
            multiblock_speed(evp_cipher);
2319
            ret = 0;
2320 2321
            goto end;
        }
2322
#endif
2323
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
2324 2325
            if (evp_cipher) {

2326
                names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
2327 2328 2329 2330
                /*
                 * -O3 -fschedule-insns messes up an optimization here!
                 * names[D_EVP] somehow becomes NULL
                 */
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
                print_message(names[D_EVP], save_count, lengths[testnum]);

                for (k = 0; k < loopargs_len; k++) {
                    loopargs[k].ctx = EVP_CIPHER_CTX_new();
                    if (decrypt)
                        EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
                    else
                        EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
                    EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
                }
2341 2342

                Time_F(START);
2343
                count = run_benchmark(async_jobs, EVP_Update_loop, loopargs);
2344
                d = Time_F(STOP);
2345 2346 2347
                for (k = 0; k < loopargs_len; k++) {
                    EVP_CIPHER_CTX_free(loopargs[k].ctx);
                }
2348 2349
            }
            if (evp_md) {
2350
                names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
2351
                print_message(names[D_EVP], save_count, lengths[testnum]);
2352
                Time_F(START);
2353
                count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
2354 2355
                d = Time_F(STOP);
            }
2356
            print_result(D_EVP, testnum, count, d);
2357 2358
        }
    }
2359

2360
    for (i = 0; i < loopargs_len; i++)
2361 2362
        RAND_bytes(loopargs[i].buf, 36);

2363
#ifndef OPENSSL_NO_RSA
2364 2365 2366
    for (testnum = 0; testnum < RSA_NUM; testnum++) {
        int st = 0;
        if (!rsa_doit[testnum])
2367
            continue;
2368 2369 2370
        for (i = 0; i < loopargs_len; i++) {
            st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
                          loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
2371 2372 2373
            if (st == 0)
                break;
        }
2374
        if (st == 0) {
2375 2376 2377 2378 2379 2380
            BIO_printf(bio_err,
                       "RSA sign failure.  No RSA sign will be done.\n");
            ERR_print_errors(bio_err);
            rsa_count = 1;
        } else {
            pkey_print_message("private", "rsa",
2381 2382
                               rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS);
            /* RSA_blinding_on(rsa_key[testnum],NULL); */
2383
            Time_F(START);
2384
            count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
2385 2386 2387 2388
            d = Time_F(STOP);
            BIO_printf(bio_err,
                       mr ? "+R1:%ld:%d:%.2f\n"
                       : "%ld %d bit private RSA's in %.2fs\n",
2389 2390
                       count, rsa_bits[testnum], d);
            rsa_results[testnum][0] = d / (double)count;
2391 2392
            rsa_count = count;
        }
2393

2394 2395 2396
        for (i = 0; i < loopargs_len; i++) {
            st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
                            *(loopargs[i].siglen), loopargs[i].rsa_key[testnum]);
2397 2398 2399
            if (st <= 0)
                break;
        }
2400
        if (st <= 0) {
2401 2402 2403
            BIO_printf(bio_err,
                       "RSA verify failure.  No RSA verify will be done.\n");
            ERR_print_errors(bio_err);
2404
            rsa_doit[testnum] = 0;
2405 2406
        } else {
            pkey_print_message("public", "rsa",
2407
                               rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS);
2408
            Time_F(START);
2409
            count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
2410 2411 2412 2413
            d = Time_F(STOP);
            BIO_printf(bio_err,
                       mr ? "+R2:%ld:%d:%.2f\n"
                       : "%ld %d bit public RSA's in %.2fs\n",
2414 2415
                       count, rsa_bits[testnum], d);
            rsa_results[testnum][1] = d / (double)count;
2416
        }
2417

2418 2419
        if (rsa_count <= 1) {
            /* if longer than 10s, don't do any more */
2420 2421
            for (testnum++; testnum < RSA_NUM; testnum++)
                rsa_doit[testnum] = 0;
2422 2423
        }
    }
2424
#endif
2425

2426
    for (i = 0; i < loopargs_len; i++)
2427 2428
        RAND_bytes(loopargs[i].buf, 36);

2429
#ifndef OPENSSL_NO_DSA
2430 2431 2432 2433
    if (RAND_status() != 1) {
        RAND_seed(rnd_seed, sizeof rnd_seed);
        rnd_fake = 1;
    }
2434 2435 2436
    for (testnum = 0; testnum < DSA_NUM; testnum++) {
        int st = 0;
        if (!dsa_doit[testnum])
2437 2438
            continue;

2439 2440
        /* DSA_generate_key(dsa_key[testnum]); */
        /* DSA_sign_setup(dsa_key[testnum],NULL); */
2441 2442 2443
        for (i = 0; i < loopargs_len; i++) {
            st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
                          loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
2444 2445 2446
            if (st == 0)
                break;
        }
2447
        if (st == 0) {
2448 2449 2450 2451 2452 2453
            BIO_printf(bio_err,
                       "DSA sign failure.  No DSA sign will be done.\n");
            ERR_print_errors(bio_err);
            rsa_count = 1;
        } else {
            pkey_print_message("sign", "dsa",
2454
                               dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS);
2455
            Time_F(START);
2456
            count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
2457 2458 2459 2460
            d = Time_F(STOP);
            BIO_printf(bio_err,
                       mr ? "+R3:%ld:%d:%.2f\n"
                       : "%ld %d bit DSA signs in %.2fs\n",
2461 2462
                       count, dsa_bits[testnum], d);
            dsa_results[testnum][0] = d / (double)count;
2463 2464
            rsa_count = count;
        }
B
Bodo Möller 已提交
2465

2466 2467 2468
        for (i = 0; i < loopargs_len; i++) {
            st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
                            *(loopargs[i].siglen), loopargs[i].dsa_key[testnum]);
2469 2470 2471
            if (st <= 0)
                break;
        }
2472
        if (st <= 0) {
2473 2474 2475
            BIO_printf(bio_err,
                       "DSA verify failure.  No DSA verify will be done.\n");
            ERR_print_errors(bio_err);
2476
            dsa_doit[testnum] = 0;
2477 2478
        } else {
            pkey_print_message("verify", "dsa",
2479
                               dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS);
2480
            Time_F(START);
2481
            count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
2482 2483 2484 2485
            d = Time_F(STOP);
            BIO_printf(bio_err,
                       mr ? "+R4:%ld:%d:%.2f\n"
                       : "%ld %d bit DSA verify in %.2fs\n",
2486 2487
                       count, dsa_bits[testnum], d);
            dsa_results[testnum][1] = d / (double)count;
2488
        }
B
Bodo Möller 已提交
2489

2490 2491
        if (rsa_count <= 1) {
            /* if longer than 10s, don't do any more */
2492 2493
            for (testnum++; testnum < DSA_NUM; testnum++)
                dsa_doit[testnum] = 0;
2494 2495 2496 2497
        }
    }
    if (rnd_fake)
        RAND_cleanup();
2498
#endif
B
Bodo Möller 已提交
2499

2500
#ifndef OPENSSL_NO_EC
2501 2502 2503 2504
    if (RAND_status() != 1) {
        RAND_seed(rnd_seed, sizeof rnd_seed);
        rnd_fake = 1;
    }
2505
    for (testnum = 0; testnum < EC_NUM; testnum++) {
2506
        int st = 1;
2507

2508
        if (!ecdsa_doit[testnum])
2509
            continue;           /* Ignore Curve */
2510 2511 2512 2513 2514 2515 2516 2517
        for (i = 0; i < loopargs_len; i++) {
            loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
            if (loopargs[i].ecdsa[testnum] == NULL) {
                st = 0;
                break;
            }
        }
        if (st == 0) {
2518 2519 2520 2521
            BIO_printf(bio_err, "ECDSA failure.\n");
            ERR_print_errors(bio_err);
            rsa_count = 1;
        } else {
2522 2523 2524 2525 2526 2527
            for (i = 0; i < loopargs_len; i++) {
                EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL);
                /* Perform ECDSA signature test */
                EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
                st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
                                loopargs[i].siglen, loopargs[i].ecdsa[testnum]);
2528 2529 2530
                if (st == 0)
                    break;
            }
2531
            if (st == 0) {
2532 2533 2534 2535 2536 2537
                BIO_printf(bio_err,
                           "ECDSA sign failure.  No ECDSA sign will be done.\n");
                ERR_print_errors(bio_err);
                rsa_count = 1;
            } else {
                pkey_print_message("sign", "ecdsa",
2538 2539
                                   ecdsa_c[testnum][0],
                                   test_curves_bits[testnum], ECDSA_SECONDS);
2540
                Time_F(START);
2541
                count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
2542 2543 2544 2545 2546
                d = Time_F(STOP);

                BIO_printf(bio_err,
                           mr ? "+R5:%ld:%d:%.2f\n" :
                           "%ld %d bit ECDSA signs in %.2fs \n",
2547 2548
                           count, test_curves_bits[testnum], d);
                ecdsa_results[testnum][0] = d / (double)count;
2549 2550 2551 2552
                rsa_count = count;
            }

            /* Perform ECDSA verification test */
2553 2554 2555
            for (i = 0; i < loopargs_len; i++) {
                st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
                                  *(loopargs[i].siglen), loopargs[i].ecdsa[testnum]);
2556 2557 2558
                if (st != 1)
                    break;
            }
2559
            if (st != 1) {
2560 2561 2562
                BIO_printf(bio_err,
                           "ECDSA verify failure.  No ECDSA verify will be done.\n");
                ERR_print_errors(bio_err);
2563
                ecdsa_doit[testnum] = 0;
2564 2565
            } else {
                pkey_print_message("verify", "ecdsa",
2566 2567
                                   ecdsa_c[testnum][1],
                                   test_curves_bits[testnum], ECDSA_SECONDS);
2568
                Time_F(START);
2569
                count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
2570 2571 2572 2573
                d = Time_F(STOP);
                BIO_printf(bio_err,
                           mr ? "+R6:%ld:%d:%.2f\n"
                           : "%ld %d bit ECDSA verify in %.2fs\n",
2574 2575
                           count, test_curves_bits[testnum], d);
                ecdsa_results[testnum][1] = d / (double)count;
2576 2577 2578 2579
            }

            if (rsa_count <= 1) {
                /* if longer than 10s, don't do any more */
2580 2581
                for (testnum++; testnum < EC_NUM; testnum++)
                    ecdsa_doit[testnum] = 0;
2582 2583 2584 2585 2586
            }
        }
    }
    if (rnd_fake)
        RAND_cleanup();
2587 2588 2589
#endif

#ifndef OPENSSL_NO_EC
2590 2591 2592 2593
    if (RAND_status() != 1) {
        RAND_seed(rnd_seed, sizeof rnd_seed);
        rnd_fake = 1;
    }
2594 2595
    for (testnum = 0; testnum < EC_NUM; testnum++) {
        if (!ecdh_doit[testnum])
2596
            continue;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
        for (i = 0; i < loopargs_len; i++) {
            loopargs[i].ecdh_a[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
            loopargs[i].ecdh_b[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
            if (loopargs[i].ecdh_a[testnum] == NULL ||
                loopargs[i].ecdh_b[testnum] == NULL) {
                ecdh_checks = 0;
                break;
            }
        }
        if (ecdh_checks == 0) {
2607 2608 2609 2610
            BIO_printf(bio_err, "ECDH failure.\n");
            ERR_print_errors(bio_err);
            rsa_count = 1;
        } else {
2611 2612 2613 2614 2615 2616
            for (i = 0; i < loopargs_len; i++) {
                /* generate two ECDH key pairs */
                if (!EC_KEY_generate_key(loopargs[i].ecdh_a[testnum]) ||
                        !EC_KEY_generate_key(loopargs[i].ecdh_b[testnum])) {
                    BIO_printf(bio_err, "ECDH key generation failure.\n");
                    ERR_print_errors(bio_err);
2617
                    ecdh_checks = 0;
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
                    rsa_count = 1;
                } else {
                    /*
                     * If field size is not more than 24 octets, then use SHA-1
                     * hash of result; otherwise, use result (see section 4.8 of
                     * draft-ietf-tls-ecc-03.txt).
                     */
                    int field_size;
                    field_size =
                        EC_GROUP_get_degree(EC_KEY_get0_group(loopargs[i].ecdh_a[testnum]));
                    if (field_size <= 24 * 8) {
                        outlen = KDF1_SHA1_len;
                        kdf = KDF1_SHA1;
                    } else {
                        outlen = (field_size + 7) / 8;
                        kdf = NULL;
                    }
                    secret_size_a =
                        ECDH_compute_key(loopargs[i].secret_a, outlen,
                                EC_KEY_get0_public_key(loopargs[i].ecdh_b[testnum]),
                                loopargs[i].ecdh_a[testnum], kdf);
                    secret_size_b =
                        ECDH_compute_key(loopargs[i].secret_b, outlen,
                                EC_KEY_get0_public_key(loopargs[i].ecdh_a[testnum]),
                                loopargs[i].ecdh_b[testnum], kdf);
                    if (secret_size_a != secret_size_b)
2644
                        ecdh_checks = 0;
2645 2646
                    else
                        ecdh_checks = 1;
2647

2648 2649 2650 2651 2652
                    for (secret_idx = 0; (secret_idx < secret_size_a)
                            && (ecdh_checks == 1); secret_idx++) {
                        if (loopargs[i].secret_a[secret_idx] != loopargs[i].secret_b[secret_idx])
                            ecdh_checks = 0;
                    }
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
                    if (ecdh_checks == 0) {
                        BIO_printf(bio_err, "ECDH computations don't match.\n");
                        ERR_print_errors(bio_err);
                        rsa_count = 1;
                        break;
                    }
                }
                if (ecdh_checks != 0) {
                    pkey_print_message("", "ecdh",
                            ecdh_c[testnum][0],
                            test_curves_bits[testnum], ECDH_SECONDS);
                    Time_F(START);
                    count = run_benchmark(async_jobs, ECDH_compute_key_loop, loopargs);
                    d = Time_F(STOP);
                    BIO_printf(bio_err,
                            mr ? "+R7:%ld:%d:%.2f\n" :
                            "%ld %d-bit ECDH ops in %.2fs\n", count,
                            test_curves_bits[testnum], d);
                    ecdh_results[testnum][0] = d / (double)count;
                    rsa_count = count;
                }
2675 2676
            }
        }
B
Bodo Möller 已提交
2677

2678 2679
        if (rsa_count <= 1) {
            /* if longer than 10s, don't do any more */
2680 2681
            for (testnum++; testnum < EC_NUM; testnum++)
                ecdh_doit[testnum] = 0;
2682 2683 2684 2685
        }
    }
    if (rnd_fake)
        RAND_cleanup();
2686 2687
#endif
#ifndef NO_FORK
2688
 show_res:
2689
#endif
2690
    if (!mr) {
R
Rich Salz 已提交
2691 2692
        printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
        printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
2693 2694
        printf("options:");
        printf("%s ", BN_options());
2695
#ifndef OPENSSL_NO_MD2
2696
        printf("%s ", MD2_options());
2697 2698
#endif
#ifndef OPENSSL_NO_RC4
2699
        printf("%s ", RC4_options());
2700 2701
#endif
#ifndef OPENSSL_NO_DES
2702
        printf("%s ", DES_options());
2703 2704
#endif
#ifndef OPENSSL_NO_AES
2705
        printf("%s ", AES_options());
2706 2707
#endif
#ifndef OPENSSL_NO_IDEA
2708
        printf("%s ", idea_options());
2709 2710
#endif
#ifndef OPENSSL_NO_BF
2711
        printf("%s ", BF_options());
2712
#endif
R
Rich Salz 已提交
2713
        printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
2714
    }
B
Bodo Möller 已提交
2715

2716 2717
    if (pr_header) {
        if (mr)
2718
            printf("+H");
2719
        else {
2720 2721 2722
            printf
                ("The 'numbers' are in 1000s of bytes per second processed.\n");
            printf("type        ");
2723
        }
2724 2725
        for (testnum = 0; testnum < SIZE_NUM; testnum++)
            printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
2726
        printf("\n");
2727
    }
B
Bodo Möller 已提交
2728

2729 2730 2731 2732
    for (k = 0; k < ALGOR_NUM; k++) {
        if (!doit[k])
            continue;
        if (mr)
2733
            printf("+F:%d:%s", k, names[k]);
2734
        else
2735
            printf("%-13s", names[k]);
2736 2737 2738
        for (testnum = 0; testnum < SIZE_NUM; testnum++) {
            if (results[k][testnum] > 10000 && !mr)
                printf(" %11.2fk", results[k][testnum] / 1e3);
2739
            else
2740
                printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
2741
        }
2742
        printf("\n");
2743
    }
2744
#ifndef OPENSSL_NO_RSA
2745
    testnum = 1;
2746 2747 2748
    for (k = 0; k < RSA_NUM; k++) {
        if (!rsa_doit[k])
            continue;
2749
        if (testnum && !mr) {
2750
            printf("%18ssign    verify    sign/s verify/s\n", " ");
2751
            testnum = 0;
2752 2753
        }
        if (mr)
2754 2755
            printf("+F2:%u:%u:%f:%f\n",
                   k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
2756
        else
2757 2758 2759
            printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
                   rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
                   1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
2760
    }
2761 2762
#endif
#ifndef OPENSSL_NO_DSA
2763
    testnum = 1;
2764 2765 2766
    for (k = 0; k < DSA_NUM; k++) {
        if (!dsa_doit[k])
            continue;
2767
        if (testnum && !mr) {
2768
            printf("%18ssign    verify    sign/s verify/s\n", " ");
2769
            testnum = 0;
2770 2771
        }
        if (mr)
2772 2773
            printf("+F3:%u:%u:%f:%f\n",
                   k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
2774
        else
2775 2776 2777
            printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
                   dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
                   1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
2778
    }
2779
#endif
2780
#ifndef OPENSSL_NO_EC
2781
    testnum = 1;
2782 2783 2784
    for (k = 0; k < EC_NUM; k++) {
        if (!ecdsa_doit[k])
            continue;
2785
        if (testnum && !mr) {
2786
            printf("%30ssign    verify    sign/s verify/s\n", " ");
2787
            testnum = 0;
2788 2789 2790
        }

        if (mr)
2791 2792 2793
            printf("+F4:%u:%u:%f:%f\n",
                   k, test_curves_bits[k],
                   ecdsa_results[k][0], ecdsa_results[k][1]);
2794
        else
2795 2796 2797 2798 2799
            printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
                   test_curves_bits[k],
                   test_curves_names[k],
                   ecdsa_results[k][0], ecdsa_results[k][1],
                   1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
2800
    }
2801 2802 2803
#endif

#ifndef OPENSSL_NO_EC
2804
    testnum = 1;
2805 2806 2807
    for (k = 0; k < EC_NUM; k++) {
        if (!ecdh_doit[k])
            continue;
2808
        if (testnum && !mr) {
2809
            printf("%30sop      op/s\n", " ");
2810
            testnum = 0;
2811 2812
        }
        if (mr)
2813 2814 2815
            printf("+F5:%u:%u:%f:%f\n",
                   k, test_curves_bits[k],
                   ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
2816 2817

        else
2818 2819 2820 2821
            printf("%4u bit ecdh (%s) %8.4fs %8.1f\n",
                   test_curves_bits[k],
                   test_curves_names[k],
                   ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
2822
    }
2823
#endif
2824

2825
    ret = 0;
2826 2827 2828

 end:
    ERR_print_errors(bio_err);
2829
    for (i = 0; i < loopargs_len; i++) {
2830 2831 2832 2833
        OPENSSL_free(loopargs[i].buf_malloc);
        OPENSSL_free(loopargs[i].buf2_malloc);
        OPENSSL_free(loopargs[i].siglen);
    }
2834
#ifndef OPENSSL_NO_RSA
2835 2836 2837 2838
    for (i = 0; i < loopargs_len; i++) {
        for (k = 0; k < RSA_NUM; k++)
            RSA_free(loopargs[i].rsa_key[k]);
    }
2839 2840
#endif
#ifndef OPENSSL_NO_DSA
2841 2842 2843 2844
    for (i = 0; i < loopargs_len; i++) {
        for (k = 0; k < DSA_NUM; k++)
            DSA_free(loopargs[i].dsa_key[k]);
    }
2845
#endif
2846

2847
#ifndef OPENSSL_NO_EC
2848 2849 2850 2851 2852 2853
    for (i = 0; i < loopargs_len; i++) {
        for (k = 0; k < EC_NUM; k++) {
            EC_KEY_free(loopargs[i].ecdsa[k]);
            EC_KEY_free(loopargs[i].ecdh_a[k]);
            EC_KEY_free(loopargs[i].ecdh_b[k]);
        }
2854 2855
        OPENSSL_free(loopargs[i].secret_a);
        OPENSSL_free(loopargs[i].secret_b);
2856
    }
2857
#endif
2858 2859 2860 2861
    if (async_jobs > 0) {
        for (i = 0; i < loopargs_len; i++)
            ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);

2862
        ASYNC_cleanup_thread();
2863 2864
    }
    OPENSSL_free(loopargs);
2865
    return (ret);
2866
}
2867

2868
static void print_message(const char *s, long num, int length)
2869
{
2870
#ifdef SIGALRM
2871 2872 2873 2874 2875
    BIO_printf(bio_err,
               mr ? "+DT:%s:%d:%d\n"
               : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
    (void)BIO_flush(bio_err);
    alarm(SECONDS);
2876
#else
2877 2878 2879 2880
    BIO_printf(bio_err,
               mr ? "+DN:%s:%ld:%d\n"
               : "Doing %s %ld times on %d size blocks: ", s, num, length);
    (void)BIO_flush(bio_err);
2881
#endif
2882
}
2883

2884
static void pkey_print_message(const char *str, const char *str2, long num,
2885 2886
                               int bits, int tm)
{
2887
#ifdef SIGALRM
2888 2889 2890 2891 2892
    BIO_printf(bio_err,
               mr ? "+DTP:%d:%s:%s:%d\n"
               : "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
    (void)BIO_flush(bio_err);
    alarm(tm);
2893
#else
2894 2895 2896 2897
    BIO_printf(bio_err,
               mr ? "+DNP:%ld:%d:%s:%s\n"
               : "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
    (void)BIO_flush(bio_err);
2898
#endif
2899
}
2900

2901 2902 2903 2904 2905 2906 2907
static void print_result(int alg, int run_no, int count, double time_used)
{
    BIO_printf(bio_err,
               mr ? "+R:%d:%s:%f\n"
               : "%d %s's in %.2fs\n", count, names[alg], time_used);
    results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
}
2908

2909
#ifndef NO_FORK
2910
static char *sstrsep(char **string, const char *delim)
2911
{
2912 2913 2914 2915 2916 2917
    char isdelim[256];
    char *token = *string;

    if (**string == 0)
        return NULL;

2918
    memset(isdelim, 0, sizeof isdelim);
2919 2920
    isdelim[0] = 1;

2921
    while (*delim) {
2922 2923
        isdelim[(unsigned char)(*delim)] = 1;
        delim++;
2924
    }
2925

2926
    while (!isdelim[(unsigned char)(**string)]) {
2927
        (*string)++;
2928
    }
2929

2930
    if (**string) {
2931 2932
        **string = 0;
        (*string)++;
2933
    }
2934 2935

    return token;
2936
}
2937 2938

static int do_multi(int multi)
2939 2940 2941 2942 2943 2944
{
    int n;
    int fd[2];
    int *fds;
    static char sep[] = ":";

R
Rich Salz 已提交
2945
    fds = malloc(sizeof(*fds) * multi);
2946 2947
    for (n = 0; n < multi; ++n) {
        if (pipe(fd) == -1) {
R
Rich Salz 已提交
2948
            BIO_printf(bio_err, "pipe failure\n");
2949 2950 2951
            exit(1);
        }
        fflush(stdout);
R
Rich Salz 已提交
2952
        (void)BIO_flush(bio_err);
2953 2954 2955 2956 2957 2958 2959
        if (fork()) {
            close(fd[1]);
            fds[n] = fd[0];
        } else {
            close(fd[0]);
            close(1);
            if (dup(fd[1]) == -1) {
R
Rich Salz 已提交
2960
                BIO_printf(bio_err, "dup failed\n");
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
                exit(1);
            }
            close(fd[1]);
            mr = 1;
            usertime = 0;
            free(fds);
            return 0;
        }
        printf("Forked child %d\n", n);
    }
B
Bodo Möller 已提交
2971

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
    /* for now, assume the pipe is long enough to take all the output */
    for (n = 0; n < multi; ++n) {
        FILE *f;
        char buf[1024];
        char *p;

        f = fdopen(fds[n], "r");
        while (fgets(buf, sizeof buf, f)) {
            p = strchr(buf, '\n');
            if (p)
                *p = '\0';
            if (buf[0] != '+') {
R
Rich Salz 已提交
2984
                BIO_printf(bio_err, "Don't understand line '%s' from child %d\n",
2985 2986 2987 2988
                        buf, n);
                continue;
            }
            printf("Got: %s from %d\n", buf, n);
R
Rich Salz 已提交
2989
            if (strncmp(buf, "+F:", 3) == 0) {
2990 2991 2992 2993 2994 2995 2996 2997
                int alg;
                int j;

                p = buf + 3;
                alg = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);
                for (j = 0; j < SIZE_NUM; ++j)
                    results[alg][j] += atof(sstrsep(&p, sep));
R
Rich Salz 已提交
2998
            } else if (strncmp(buf, "+F2:", 4) == 0) {
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
                int k;
                double d;

                p = buf + 4;
                k = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);

                d = atof(sstrsep(&p, sep));
                if (n)
                    rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
                else
                    rsa_results[k][0] = d;

                d = atof(sstrsep(&p, sep));
                if (n)
                    rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
                else
                    rsa_results[k][1] = d;
            }
3018
# ifndef OPENSSL_NO_DSA
R
Rich Salz 已提交
3019
            else if (strncmp(buf, "+F3:", 4) == 0) {
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
                int k;
                double d;

                p = buf + 4;
                k = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);

                d = atof(sstrsep(&p, sep));
                if (n)
                    dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
                else
                    dsa_results[k][0] = d;

                d = atof(sstrsep(&p, sep));
                if (n)
                    dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
                else
                    dsa_results[k][1] = d;
            }
3039
# endif
3040
# ifndef OPENSSL_NO_EC
R
Rich Salz 已提交
3041
            else if (strncmp(buf, "+F4:", 4) == 0) {
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
                int k;
                double d;

                p = buf + 4;
                k = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);

                d = atof(sstrsep(&p, sep));
                if (n)
                    ecdsa_results[k][0] =
                        1 / (1 / ecdsa_results[k][0] + 1 / d);
                else
                    ecdsa_results[k][0] = d;

                d = atof(sstrsep(&p, sep));
                if (n)
                    ecdsa_results[k][1] =
                        1 / (1 / ecdsa_results[k][1] + 1 / d);
                else
                    ecdsa_results[k][1] = d;
            }
3063 3064 3065
# endif

# ifndef OPENSSL_NO_EC
R
Rich Salz 已提交
3066
            else if (strncmp(buf, "+F5:", 4) == 0) {
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
                int k;
                double d;

                p = buf + 4;
                k = atoi(sstrsep(&p, sep));
                sstrsep(&p, sep);

                d = atof(sstrsep(&p, sep));
                if (n)
                    ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
                else
                    ecdh_results[k][0] = d;

            }
3081
# endif
3082

R
Rich Salz 已提交
3083
            else if (strncmp(buf, "+H:", 3) == 0) {
3084
                ;
3085
            } else
R
Rich Salz 已提交
3086
                BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n);
3087 3088 3089 3090 3091 3092 3093
        }

        fclose(f);
    }
    free(fds);
    return 1;
}
3094
#endif
3095 3096

static void multiblock_speed(const EVP_CIPHER *evp_cipher)
3097 3098 3099
{
    static int mblengths[] =
        { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
3100
    int j, count, num = OSSL_NELEM(mblengths);
3101 3102
    const char *alg_name;
    unsigned char *inp, *out, no_key[32], no_iv[16];
3103
    EVP_CIPHER_CTX *ctx;
3104 3105
    double d = 0.0;

R
Rich Salz 已提交
3106 3107
    inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
    out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
3108 3109 3110
    ctx = EVP_CIPHER_CTX_new();
    EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv);
    EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
3111
                        no_key);
3112
    alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
3113 3114 3115 3116 3117

    for (j = 0; j < num; j++) {
        print_message(alg_name, 0, mblengths[j]);
        Time_F(START);
        for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
3118
            unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
            size_t len = mblengths[j];
            int packlen;

            memset(aad, 0, 8);  /* avoid uninitialized values */
            aad[8] = 23;        /* SSL3_RT_APPLICATION_DATA */
            aad[9] = 3;         /* version */
            aad[10] = 2;
            aad[11] = 0;        /* length */
            aad[12] = 0;
            mb_param.out = NULL;
            mb_param.inp = aad;
            mb_param.len = len;
            mb_param.interleave = 8;

3134
            packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
3135 3136 3137 3138 3139 3140
                                          sizeof(mb_param), &mb_param);

            if (packlen > 0) {
                mb_param.out = out;
                mb_param.inp = inp;
                mb_param.len = len;
3141
                EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
3142 3143 3144 3145 3146 3147 3148 3149
                                    sizeof(mb_param), &mb_param);
            } else {
                int pad;

                RAND_bytes(out, 16);
                len += 16;
                aad[11] = len >> 8;
                aad[12] = len;
3150
                pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
3151
                                          EVP_AEAD_TLS1_AAD_LEN, aad);
3152
                EVP_Cipher(ctx, out, inp, len + pad);
3153 3154 3155
            }
        }
        d = Time_F(STOP);
3156
        BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
                   : "%d %s's in %.2fs\n", count, "evp", d);
        results[D_EVP][j] = ((double)count) / d * mblengths[j];
    }

    if (mr) {
        fprintf(stdout, "+H");
        for (j = 0; j < num; j++)
            fprintf(stdout, ":%d", mblengths[j]);
        fprintf(stdout, "\n");
        fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
        for (j = 0; j < num; j++)
            fprintf(stdout, ":%.2f", results[D_EVP][j]);
        fprintf(stdout, "\n");
    } else {
        fprintf(stdout,
                "The 'numbers' are in 1000s of bytes per second processed.\n");
        fprintf(stdout, "type                    ");
        for (j = 0; j < num; j++)
            fprintf(stdout, "%7d bytes", mblengths[j]);
        fprintf(stdout, "\n");
        fprintf(stdout, "%-24s", alg_name);

        for (j = 0; j < num; j++) {
            if (results[D_EVP][j] > 10000)
                fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
            else
                fprintf(stdout, " %11.2f ", results[D_EVP][j]);
        }
        fprintf(stdout, "\n");
    }

R
Rich Salz 已提交
3188 3189
    OPENSSL_free(inp);
    OPENSSL_free(out);
3190
    EVP_CIPHER_CTX_free(ctx);
3191
}