region_based_detector.py 9.1 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Region-Based detector
"""
import time

import numpy as np

from mindspore import Model
from mindspore import Tensor

from mindarmour.detectors.detector import Detector
from mindarmour.utils.logger import LogUtil
from mindarmour.utils._check_param import check_numpy_param, check_param_type, \
    check_pair_numpy_param, check_model, check_int_positive, \
    check_value_positive, check_value_non_negative, check_param_in_range, \
    check_equal_shape

LOGGER = LogUtil.get_instance()
TAG = 'RegionBasedDetector'


class RegionBasedDetector(Detector):
    """
    This class implement a region-based detector.

    Reference: `Mitigating evasion attacks to deep neural networks via
    region-based classification <https://arxiv.org/abs/1709.05583>`_

    Args:
        model (Model): Target model.
        number_points (int): The number of samples generate from the
            hyper cube of original sample. Default: 10.
        initial_radius (float): Initial radius of hyper cube. Default: 0.0.
        max_radius (float): Maximum radius of hyper cube. Default: 1.0.
        search_step (float): Incremental during search of radius. Default: 0.01.
        degrade_limit (float): Acceptable decrease of classification accuracy.
            Default: 0.0.
        sparse (bool): If True, input labels are sparse-encoded. If False,
            input labels are one-hot-encoded. Default: False.

    Examples:
        >>> detector = RegionBasedDetector(model)
        >>> detector.fit(Tensor(ori), Tensor(labels))
        >>> adv_ids = detector.detect(Tensor(adv))
    """

    def __init__(self, model, number_points=10, initial_radius=0.0,
                 max_radius=1.0, search_step=0.01, degrade_limit=0.0,
                 sparse=False):
        super(RegionBasedDetector, self).__init__()
        self._model = check_model('targeted model', model, Model)
        self._number_points = check_int_positive('number_points', number_points)
        self._initial_radius = check_value_non_negative('initial_radius',
                                                        initial_radius)
        self._max_radius = check_value_positive('max_radius', max_radius)
        self._search_step = check_value_positive('search_step', search_step)
        self._degrade_limit = check_value_non_negative('degrade_limit',
                                                       degrade_limit)
        self._sparse = check_param_type('sparse', sparse, bool)
        self._radius = None

    def set_radius(self, radius):
        """Set radius."""

        self._radius = check_param_in_range('radius', radius,
                                            self._initial_radius,
                                            self._max_radius)

    def fit(self, inputs, labels=None):
        """
        Train detector to decide the best radius.

        Args:
            inputs (numpy.ndarray): Benign samples.
            labels (numpy.ndarray): Ground truth labels of the input samples.
                Default:None.

        Returns:
            float, the best radius.
        """
        inputs, labels = check_pair_numpy_param('inputs', inputs,
                                                'labels', labels)
        LOGGER.debug(TAG, 'enter fit() function.')
        time_start = time.time()
        search_iters = (self._max_radius
                        - self._initial_radius) / self._search_step
        search_iters = np.round(search_iters).astype(int)
        radius = self._initial_radius
        pred = self._model.predict(Tensor(inputs))
        raw_preds = np.argmax(pred.asnumpy(), axis=1)
        if not self._sparse:
            labels = np.argmax(labels, axis=1)
        raw_preds, labels = check_equal_shape('raw_preds', raw_preds, 'labels',
                                              labels)
        raw_acc = np.sum(raw_preds == labels) / inputs.shape[0]

        for _ in range(search_iters):
            rc_preds = self._rc_forward(inputs, radius)
            rc_preds, labels = check_equal_shape('rc_preds', rc_preds, 'labels',
                                                 labels)
            def_acc = np.sum(rc_preds == labels) / inputs.shape[0]
            if def_acc >= raw_acc - self._degrade_limit:
                radius += self._search_step
                continue
            break

        self._radius = radius - self._search_step
        LOGGER.debug(TAG, 'best radius is: %s', self._radius)
        LOGGER.debug(TAG,
                     'time used to train detector of %d samples is: %s seconds',
                     inputs.shape[0],
                     time.time() - time_start)
        return self._radius

    def _generate_hyper_cube(self, inputs, radius):
        """
        Generate random samples in the hyper cubes around input samples.

        Args:
            inputs (numpy.ndarray): Input samples.
            radius (float): The scope to generate hyper cubes around input samples.

        Returns:
            numpy.ndarray, randomly chosen samples in the hyper cubes.
        """
        LOGGER.debug(TAG, 'enter _generate_hyper_cube().')
        res = []
        for _ in range(self._number_points):
            res.append(np.clip((inputs + np.random.uniform(
                -radius, radius, len(inputs))), 0.0, 1.0).astype(inputs.dtype))
        return np.asarray(res)

    def _rc_forward(self, inputs, radius):
        """
        Generate region-based predictions for input samples.

        Args:
            inputs (numpy.ndarray): Input samples.
            radius (float): The scope to generate hyper cubes around input samples.

        Returns:
            numpy.ndarray, classification result for input samples.
        """
        LOGGER.debug(TAG, 'enter _rc_forward().')
        res = []
        for _, elem in enumerate(inputs):
            hyper_cube_x = self._generate_hyper_cube(elem, radius)
            hyper_cube_preds = []
            for ite_hyper_cube_x in hyper_cube_x:
                model_inputs = Tensor(np.expand_dims(ite_hyper_cube_x, axis=0))
                ite_preds = self._model.predict(model_inputs).asnumpy()[0]
                hyper_cube_preds.append(ite_preds)
            pred_labels = np.argmax(hyper_cube_preds, axis=1)
            bin_count = np.bincount(pred_labels)
            # count the number of different class and choose the max one
            # as final class
            hyper_cube_tag = np.argmax(bin_count, axis=0)
            res.append(hyper_cube_tag)
        return np.asarray(res)

    def detect(self, inputs):
        """
        Tell whether input samples are adversarial or not.

        Args:
            inputs (numpy.ndarray): Suspicious samples to be judged.

        Returns:
            list[int], whether a sample is adversarial. if res[i]=1, then the
            input sample with index i is adversarial.
        """
        LOGGER.debug(TAG, 'enter detect().')
        self._radius = check_param_type('radius', self._radius, float)
        inputs = check_numpy_param('inputs', inputs)
        time_start = time.time()
        res = [1]*inputs.shape[0]
        raw_preds = np.argmax(self._model.predict(Tensor(inputs)).asnumpy(),
                              axis=1)
        rc_preds = self._rc_forward(inputs, self._radius)
        for i in range(inputs.shape[0]):
            if raw_preds[i] == rc_preds[i]:
                res[i] = 0
        LOGGER.debug(TAG,
                     'time used to detect %d samples is : %s seconds',
                     inputs.shape[0],
                     time.time() - time_start)
        return res

    def detect_diff(self, inputs):
        """
        Return raw prediction results and region-based prediction results.

        Args:
            inputs (numpy.ndarray): Input samples.

        Returns:
            numpy.ndarray, raw prediction results and region-based prediction results of input samples.
        """
        LOGGER.debug(TAG, 'enter detect_diff().')
        inputs = check_numpy_param('inputs', inputs)

        raw_preds = self._model.predict(Tensor(inputs))
        rc_preds = self._rc_forward(inputs, self._radius)

        return raw_preds.asnumpy(), rc_preds

    def transform(self, inputs):
        """
        Generate hyper cube for input samples.

        Args:
            inputs (numpy.ndarray): Input samples.

        Returns:
            numpy.ndarray, hyper cube corresponds to every sample.
        """
        LOGGER.debug(TAG, 'enter transform().')
        inputs = check_numpy_param('inputs', inputs)
        res = []
        for _, elem in enumerate(inputs):
            res.append(self._generate_hyper_cube(elem, self._radius))
        return np.asarray(res)