- 02 3月, 2022 12 次提交
-
-
由 王明冬 提交于
-
由 fwenguang 提交于
-
由 Baibaifan 提交于
-
由 lkylkylky 提交于
-
由 zhouweiwei2014 提交于
* change CUDA implementaion of randint OP,move distribution common func to phi * fix CI * fix CI
-
由 wanghuancoder 提交于
* open eager when WITH_PYTHON, test=develop * refine, test=develop * refine, test=develop * add DWITH_PYTHON for gen_fluid_lib, test=develop
-
由 Wangzheee 提交于
-
由 JingZhuangzhuang 提交于
-
由 Feiyu Chan 提交于
* move sequence2batch * move lstm and gru * Add phi/kernels directory into exclusion to stop using hipcc to compile non .cu files in it.
-
由 Weilong Wu 提交于
-
由 From00 提交于
-
由 Shang Zhizhou 提交于
* update pd_2_trt lower pass * update pd_2_trt lower pass * update style * udpate * change trt.graph to trt.create_engine * update comments * update comments * add test
-
- 01 3月, 2022 28 次提交
-
-
由 Zhanlue Yang 提交于
-
由 Qi Li 提交于
-
由 zhouweiwei2014 提交于
* fix bug of paddle.to_tensor and paddle.moveaxis * fix CI
-
由 Allen Guo 提交于
-
由 chentianyu03 提交于
* modify infershape utils and rm reduce infershape * merge develop * fix infermete bug * add IsForInferShape func in ArgumentMappingContext * add reduce_mean infermeta * modify annotation * add default dims
-
由 xiongkun 提交于
* tranfer the selu_op and pass the CI * add sig files * fix code * fix by code review * remove TOOD * change the include position * change the head position
-
由 niuliling123 提交于
* Add function description for Kernel Primitive API 1. Set cumsum and sort share memory size = 1024 2.sort and cumsum api limitation : blockDim.x must be less than 512 (blockDim.x <= 512)
-
由 Zhanlue Yang 提交于
* Refactored GradNodeAccumulation data structure and behaviour * Fixed CI issues * Fix compilation issues * Fixed minor issues * Reverted changes for intermediate and OverwriteOutput * fixed minor issue * Fixed auto codegen for intermediate tensors * Removed restriction on AccumulationNode modification * Fixed CI Coverage issues * Adjusted Log contents * Fixed CI issues
-
由 joanna.wozna.intel 提交于
* Add mobilenetv3_large performance test * Disable the BF16 test if the device does not support BF16 computations * Change test timeout
-
由 zhangbo9674 提交于
* add layer norm * add p norm * add reduce sum * refine layer norm register bf16 for cudnn811 * add bf16 cast for hip * add unittest * refine rocm * refine layer_norm unittest * refine reduce op * refine unittest * enhance atol for reduce unittest
-
由 wenbin 提交于
* remove * pass * more pass
-
由 zhangchunle 提交于
-
由 zhangbo9674 提交于
* add scale gather sum * refine CUDA_ATOMIC_WRAPPER ADD for bf16 * add gather unittest * solve conflict * add scale uinttest * add sum unittest * solve conflict * refine gather unittest * refine unittest
-
由 Guoxia Wang 提交于
-
由 pangyoki 提交于
-
由 HydrogenSulfate 提交于
-
由 ronnywang 提交于
-
由 zyfncg 提交于
* remove SetAllocationForOutputTenosr * add place param for copy kernel * recover SetAllocationForOutputTenosr * polish code * fix empty_dev api bug * remove reseting dtype and layout for output in executor * fix merge bug * [Phi] Add ClearHolder when re-alloc on new place in DeviceContext * fix hostAlloc * remove setting output allocation * remove full_kernel_impl.h * fix bug of xpu full_like Co-authored-by: NAurelius84 <zhangliujie@baidu.com>
-
由 Leo Chen 提交于
* move uniform_random to phi * fit selected_rows * replace mutable_data
-
由 Chen Weihang 提交于
* support kps backend and compile * resolve conflict * fix kps backend trans * test in xpu2 device * remove dummy kernel
-
由 z8hanghuan 提交于
* optimize mergeadd for sparse_adam,*test=kunlun * optimize mergeadd for sparse_adam,*test=kunlun * optimize mergeadd for sparse_adam, *test=kunlun
-
由 zyfncg 提交于
* add multi input for infer_shape * support multi output for infershape * fix split bug * fix bug of concat * support vector<MetaTensor*> in infrt * fix bug
-
由 Aurelius84 提交于
* [Phi] Migrate logical_and/or/not/xor into Phi * fix unittest * fix function name
-
由 ShenLiang 提交于
* add reducer
-
由 crystal 提交于
* optimize group norm forward * use vectorized optimization * add scalar calculation code * optimize code
-
由 chentianyu03 提交于
-
由 王明冬 提交于
-
由 sneaxiy 提交于
* vectorize lamb kernel * remove flags, add ut * remove useless codes * refine code, add param order
-