Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
4da841e0
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4da841e0
编写于
3月 01, 2022
作者:
S
ShenLiang
提交者:
GitHub
3月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[DP] Construct reducer group (#39987)
* add reducer
上级
657dd5a9
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
265 addition
and
91 deletion
+265
-91
paddle/fluid/distributed/collective/CMakeLists.txt
paddle/fluid/distributed/collective/CMakeLists.txt
+1
-0
paddle/fluid/distributed/collective/reducer.cc
paddle/fluid/distributed/collective/reducer.cc
+131
-0
paddle/fluid/distributed/collective/reducer.h
paddle/fluid/distributed/collective/reducer.h
+32
-0
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-1
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+14
-0
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+7
-1
python/paddle/fluid/tests/unittests/test_imperative_group.py
python/paddle/fluid/tests/unittests/test_imperative_group.py
+79
-89
未找到文件。
paddle/fluid/distributed/collective/CMakeLists.txt
浏览文件 @
4da841e0
cc_library
(
processgroup SRCS ProcessGroup.cc DEPS phi phi_api eager_api
)
cc_library
(
eager_reducer SRCS reducer.cc DEPS eager_api processgroup
)
if
(
WITH_NCCL
)
cc_library
(
processgroup_nccl SRCS ProcessGroupNCCL.cc DEPS place cuda_stream enforce collective_helper device_context phi phi_api eager_api
)
...
...
paddle/fluid/distributed/collective/reducer.cc
0 → 100644
浏览文件 @
4da841e0
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/distributed/collective/reducer.h"
#include "paddle/phi/common/data_type.h"
namespace
paddle
{
namespace
distributed
{
std
::
vector
<
std
::
vector
<
size_t
>>
Eager_AssignGroupBySize
(
const
std
::
vector
<
Tensor
>
tensors
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
const
std
::
vector
<
size_t
>
&
group_size_limits
,
const
std
::
vector
<
int64_t
>
&
tensor_indices
)
{
PADDLE_ENFORCE_EQ
(
tensors
.
size
(),
is_sparse_gradient
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"tensors len must be equal to is_sparse_gradient len, but "
"[%lu] != [%lu]"
,
tensors
.
size
(),
is_sparse_gradient
.
size
()));
auto
check_perm
=
[](
const
std
::
vector
<
int64_t
>
&
x
)
->
bool
{
size_t
len
=
x
.
size
();
std
::
vector
<
size_t
>
cnt
(
len
,
0
);
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
if
(
x
[
i
]
>=
static_cast
<
int64_t
>
(
len
)
||
x
[
i
]
<
0
||
cnt
[
x
[
i
]])
{
return
false
;
}
cnt
[
x
[
i
]]
++
;
}
return
true
;
};
PADDLE_ENFORCE_EQ
(
true
,
check_perm
(
tensor_indices
),
platform
::
errors
::
PreconditionNotMet
(
"tensor_indices must be a permutation from 0 to %lu"
,
tensor_indices
.
size
()));
// the return vector
std
::
vector
<
std
::
vector
<
size_t
>>
res
;
// Key: the var type
// Value: should use which index in group_size_limits for group size limit
std
::
map
<
experimental
::
DataType
,
size_t
>
group_limit_index
;
// Key: the var type
// Value: <the var index in input tensors, total numel in this group>
std
::
map
<
experimental
::
DataType
,
std
::
pair
<
std
::
vector
<
size_t
>
,
size_t
>>
next_group
;
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
const
auto
&
var
=
tensors
[
i
];
size_t
tensor_real_index
=
i
;
if
(
!
tensor_indices
.
empty
())
{
tensor_real_index
=
tensor_indices
[
i
];
}
if
(
is_sparse_gradient
[
tensor_real_index
])
{
// we keep sparse var a single group
res
.
push_back
({
tensor_real_index
});
continue
;
}
const
auto
&
var_dtype
=
var
.
dtype
();
VLOG
(
3
)
<<
"var["
<<
var
.
name
()
<<
"] 's type is "
<<
var_dtype
;
auto
&
group_info
=
next_group
[
var_dtype
];
int64_t
var_size
=
-
1
;
if
(
var
.
is_dense_tensor
())
{
var_size
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
var
.
impl
())
->
numel
();
}
else
{
VLOG
(
3
)
<<
"var "
<<
var
.
name
()
<<
" is not tensor or selected_rows, so skip it"
;
continue
;
}
group_info
.
first
.
push_back
(
tensor_real_index
);
group_info
.
second
+=
experimental
::
SizeOf
(
var_dtype
)
*
var_size
;
// group_info.second += framework::SizeOfType(var_dtype) * var_size;
if
(
group_limit_index
.
find
(
var_dtype
)
==
group_limit_index
.
end
())
{
// means it is the first var of var_dtype
group_limit_index
[
var_dtype
]
=
0
;
}
auto
&
cur_limit_index
=
group_limit_index
[
var_dtype
];
if
(
group_info
.
second
>=
group_size_limits
[
cur_limit_index
])
{
// exceed group capacity and create a new group
res
.
emplace_back
(
std
::
move
(
group_info
.
first
));
group_info
=
std
::
pair
<
std
::
vector
<
size_t
>
,
size_t
>
();
cur_limit_index
=
(
std
::
min
)(
cur_limit_index
+
1
,
group_size_limits
.
size
()
-
1
);
}
}
// add the final groups
for
(
auto
&
e
:
next_group
)
{
auto
&
group_info
=
e
.
second
;
if
(
!
group_info
.
first
.
empty
())
{
res
.
emplace_back
(
std
::
move
(
group_info
.
first
));
}
}
for
(
const
auto
&
group_index
:
res
)
{
PADDLE_ENFORCE_NE
(
group_index
.
empty
(),
true
,
platform
::
errors
::
PreconditionNotMet
(
"AssignGroupBySize construct empty group, please check."
));
}
if
(
tensor_indices
.
empty
())
{
std
::
sort
(
res
.
begin
(),
res
.
end
(),
[](
const
std
::
vector
<
size_t
>
&
x
,
const
std
::
vector
<
size_t
>
&
y
)
{
return
x
.
front
()
<
y
.
front
();
});
}
return
res
;
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/reducer.h
0 → 100644
浏览文件 @
4da841e0
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <vector>
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/eager/api/utils/tensor_utils.h"
namespace
paddle
{
namespace
distributed
{
using
Tensor
=
paddle
::
experimental
::
Tensor
;
std
::
vector
<
std
::
vector
<
size_t
>>
Eager_AssignGroupBySize
(
const
std
::
vector
<
Tensor
>
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
const
std
::
vector
<
size_t
>&
group_size_limits
,
const
std
::
vector
<
int64_t
>&
tensor_indices
=
{});
}
// namespace distributed
}
// namespace paddle
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
4da841e0
...
...
@@ -81,7 +81,7 @@ set(PYBIND_SRCS
cuda_streams_py.cc
)
if
(
NOT ON_INFER
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup
eager_reducer
)
if
(
WITH_NCCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_nccl
)
endif
()
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
4da841e0
...
...
@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/Types.h"
#include "paddle/fluid/distributed/collective/reducer.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
...
...
@@ -143,6 +144,19 @@ void BindDistributed(py::module *m) {
[](
distributed
::
ProcessGroupStrategy
&
self
,
int
nrings
)
{
self
.
nrings_
=
nrings
;
});
m
->
def
(
"eager_assign_group_by_size"
,
[](
py
::
handle
py_tensors
,
std
::
vector
<
bool
>
is_sparse_gradient
,
std
::
vector
<
size_t
>
group_size_limits
,
std
::
vector
<
int64_t
>
tensor_indices
)
{
auto
tensors
=
CastPyArg2VectorOfTensor
(
py_tensors
.
ptr
(),
0
);
return
distributed
::
Eager_AssignGroupBySize
(
tensors
,
is_sparse_gradient
,
group_size_limits
,
tensor_indices
);
},
py
::
arg
(
"tensors"
),
py
::
arg
(
"is_sparse_gradient"
),
py
::
arg
(
"group_size_limits"
)
=
std
::
vector
<
size_t
>
{
25
*
1024
*
1024
},
py
::
arg
(
"tensor_indices"
)
=
std
::
vector
<
int64_t
>
{},
py
::
call_guard
<
py
::
gil_scoped_release
>
());
}
}
// end namespace pybind
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
4da841e0
...
...
@@ -560,13 +560,19 @@ class DataParallel(layers.Layer):
strategy
=
None
,
comm_buffer_size
=
25
,
last_comm_buffer_size
=
1
,
find_unused_parameters
=
False
):
find_unused_parameters
=
False
,
process_group
=
None
,
gradient_as_buffer_view
=
False
,
static_graph
=
False
):
super
(
DataParallel
,
self
).
__init__
(
layers
.
full_name
()
+
"_data_parallel"
)
self
.
_layers
=
layers
self
.
find_unused_parameters
=
find_unused_parameters
self
.
grad_need_sync
=
True
self
.
process_group
=
process_group
self
.
gradient_as_buffer_view
=
gradient_as_buffer_view
self
.
static_graph
=
static_graph
# NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy.
# It just stores some environment variables, which can be constructed by
...
...
python/paddle/fluid/tests/unittests/test_imperative_group.py
浏览文件 @
4da841e0
...
...
@@ -26,159 +26,149 @@ import paddle.fluid.dygraph as dygraph
from
paddle.fluid.dygraph.nn
import
Linear
import
paddle.fluid.core
as
core
from
paddle.fluid.optimizer
import
SGDOptimizer
class
MLP
(
fluid
.
Layer
):
def
__init__
(
self
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MLP
,
self
).
__init__
()
self
.
_linear1
=
Linear
(
784
,
10
)
self
.
_linear2
=
Linear
(
10
,
10
)
def
forward
(
self
,
inputs
):
y
=
self
.
_linear1
(
inputs
)
y
=
self
.
_linear2
(
y
)
return
y
from
paddle.fluid.framework
import
_test_eager_guard
class
TestDataParallelGroup
(
unittest
.
TestCase
):
def
create_varbase
(
self
,
dtype
,
shape
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
):
return
core
.
VarBase
(
dtype
,
shape
,
""
,
type
,
True
)
def
create_varbase
(
self
,
dtype
,
shape
):
return
paddle
.
rand
(
shape
=
shape
,
dtype
=
dtype
)
def
assign_group_by_size
(
self
,
*
args
):
return
core
.
assign_group_by_size
(
*
args
)
def
test_construct_group0
(
self
):
# one dtype & one limit capability
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
100
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
res
=
core
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
],
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
100
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
25
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
],
[
400
])
self
.
assertEqual
([[
0
],
[
1
],
[
2
],
[
3
]],
res
)
def
test_construct_group1
(
self
):
# multi dtype & one limit capability
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
res
=
core
.
assign_group_by_size
(
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
,
False
,
False
],
[
400
])
self
.
assertEqual
([[
0
,
2
],
[
1
,
3
],
[
4
],
[
5
]],
res
)
def
test_construct_group2
(
self
):
# one dtype & multi limit capability
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
50
]))
res
=
core
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
],
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
50
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
],
[
400
,
800
])
self
.
assertEqual
([[
0
],
[
1
,
2
],
[
3
]],
res
)
def
test_construct_group3
(
self
):
# multi dtype & multi limit capability
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
res
=
core
.
assign_group_by_size
(
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
,
False
,
False
],
[
200
,
400
])
self
.
assertEqual
([[
0
],
[
1
],
[
2
,
4
],
[
3
,
5
]],
res
)
def
test_construct_group4
(
self
):
# multi dtype & zero limit capability
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
res
=
core
.
assign_group_by_size
(
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
,
False
,
False
],
[
0
])
self
.
assertEqual
([[
0
],
[
1
],
[
2
],
[
3
],
[
4
],
[
5
]],
res
)
def
test_construct_group5
(
self
):
# multi dtype & infinite capability
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
res
=
core
.
assign_group_by_size
(
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
,
False
,
False
],
[
10000
])
self
.
assertEqual
([[
0
,
2
,
4
],
[
1
,
3
,
5
]],
res
)
def
test_construct_group6
(
self
):
# multi dtype & limit capability & multi tensor type
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
],
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
],
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
))
res
=
core
.
assign_group_by_size
(
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
],
))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
True
,
False
,
False
,
False
,
False
,
True
],
[
400
])
self
.
assertEqual
([[
0
],
[
1
,
3
],
[
2
,
4
],
[
5
]],
res
)
def
test_construct_group7
(
self
):
# multi dtype & multi limit capability & multi tensor type
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
],
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP64
,
[
1
,
25
],
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
))
res
=
core
.
assign_group_by_size
(
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
1
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float64"
,
[
1
,
25
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
True
,
False
,
False
,
False
,
False
,
True
],
[
200
,
400
])
self
.
assertEqual
([[
0
],
[
1
],
[
2
],
[
3
],
[
4
],
[
5
]],
res
)
def
test_construct_group8
(
self
):
# one dtype & one limit capability & have tensor_indices
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
100
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
res
=
core
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
],
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
100
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
25
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
],
[
400
],
[
3
,
0
,
1
,
2
])
self
.
assertEqual
([[
3
,
0
],
[
1
],
[
2
]],
res
)
def
test_construct_group9
(
self
):
# one dtype & one limit capability & have tensor_indices
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
1000
]))
res
=
core
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
True
],
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
"float32"
,
[
2
,
1000
]))
res
=
self
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
True
],
[
300
],
[
1
,
0
,
2
,
3
])
self
.
assertEqual
([[
1
,
0
],
[
3
],
[
2
]],
res
)
class
TestDataParallelGroupEager
(
TestDataParallelGroup
):
def
create_varbase
(
self
,
dtype
,
shape
):
with
_test_eager_guard
():
return
paddle
.
rand
(
shape
=
shape
,
dtype
=
dtype
)
def
assign_group_by_size
(
self
,
*
args
):
return
core
.
eager_assign_group_by_size
(
*
args
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录