提交 e1a9d563 编写于 作者: 开心的小妮's avatar 开心的小妮 提交者: Tensor Tang

[LITE][ARM] Add pool operator of arm cpu. test=develop

上级 e6c158fb
......@@ -9,6 +9,7 @@ cc_library(math_arm SRCS
packed_sgemm.cc
softmax.cc
scale.cc
pooling.cc
elementwise.cc
sgemv.cc
type_trans.cpp
......
此差异已折叠。
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/lite/utils/cp_logging.h"
namespace paddle {
namespace lite {
namespace arm {
namespace math {
// !pooling fp32 Op
void pooling_basic(const void* din, void* dout, int num, int chout, int hout,
int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
void pooling_global(const void* din, void* dout, int num, int chout, int hout,
int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
void pooling2x2s2_max(const void* din, void* dout, int num, int chout, int hout,
int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
void pooling2x2s2_ave(const void* din, void* dout, int num, int chout, int hout,
int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
void pooling3x3s1p1_max(const void* din, void* dout, int num, int chout,
int hout, int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
void pooling3x3s1p1_ave(const void* din, void* dout, int num, int chout,
int hout, int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
void pooling3x3s2p1_max(const void* din, void* dout, int num, int chout,
int hout, int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
void pooling3x3s2p0_max(const void* din, void* dout, int num, int chout,
int hout, int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
void pooling3x3s2p1_ave(const void* din, void* dout, int num, int chout,
int hout, int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
void pooling3x3s2p0_ave(const void* din, void* dout, int num, int chout,
int hout, int wout, int chin, int hin, int win,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, bool global_pooling,
bool exclusive, bool adaptive, bool ceil_mode,
bool use_quantizer, const std::string& pooling_type);
} // namespace math
} // namespace arm
} // namespace lite
} // namespace paddle
......@@ -11,12 +11,14 @@ cc_library(scale_compute_arm SRCS scale_compute.cc DEPS ${lite_kernel_deps} math
cc_library(softmax_compute_arm SRCS softmax_compute.cc DEPS ${lite_kernel_deps} math_arm)
cc_library(conv_compute_arm SRCS conv_compute.cc DEPS ${lite_kernel_deps} math_arm)
cc_library(elementwise_add_compute_arm SRCS elementwise_add_compute.cc DEPS ${lite_kernel_deps} math_arm)
cc_library(pool_compute_arm SRCS pool_compute.cc DEPS ${lite_kernel_deps} math_arm)
lite_cc_test(test_fc_compute_arm SRCS fc_compute_test.cc DEPS fc_compute_arm math_arm)
lite_cc_test(test_scale_compute_arm SRCS scale_compute_test.cc DEPS scale_compute_arm)
lite_cc_test(test_softmax_compute_arm SRCS softmax_compute_test.cc DEPS softmax_compute_arm)
lite_cc_test(test_conv_compute_arm SRCS conv_compute_test.cc DEPS conv_compute_arm)
lite_cc_test(test_elementwise_add_compute_arm SRCS elementwise_add_compute_test.cc DEPS elementwise_add_compute_arm)
lite_cc_test(test_pool_compute_arm SRCS pool_compute_test.cc DEPS pool_compute_arm)
set(arm_kernels
fc_compute_arm
......@@ -26,6 +28,7 @@ set(arm_kernels
softmax_compute_arm
conv_compute_arm
elementwise_add_compute_arm
pool_compute_arm
)
set(arm_kernels "${arm_kernels}" CACHE INTERNAL "arm kernels")
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/pool_compute.h"
#include <string>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace arm {
void PoolCompute::Run() {
auto& param = Param<operators::PoolParam>();
auto& in_dims = param.x->dims();
auto& out_dims = param.output->dims();
const float* din = param.x->data<float>();
float* dout = param.output->mutable_data<float>();
std::vector<int>& ksize = param.ksize;
std::vector<int>& strides = param.strides;
std::vector<int>& paddings = param.paddings;
std::string& pooling_type = param.pooling_type;
bool global_pooling = param.global_pooling;
bool exclusive = param.exclusive;
bool adaptive = param.adaptive;
bool ceil_mode = param.ceil_mode;
bool use_quantizer = param.use_quantizer;
std::string& data_format = param.data_format;
if (param.global_pooling) {
for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0;
ksize[i] = static_cast<int>(in_dims[i + 2]);
}
}
#if 0
for (int i = 0; i < in_dims.size(); ++i) {
LOG(INFO) << "in_dims[" << i << "]:" << in_dims[i];
}
for (int i = 0; i < out_dims.size(); ++i) {
LOG(INFO) << "out_dims[" << i << "]:" << out_dims[i];
}
for (int i = 0; i < ksize.size(); ++i) {
LOG(INFO) << "ksize[" << i << "]:" << ksize[i];
}
for (int i = 0; i < strides.size(); ++i) {
LOG(INFO) << "strides[" << i << "]:" << strides[i];
}
for (int i = 0; i < paddings.size(); ++i) {
LOG(INFO) << "paddings[" << i << "]:" << paddings[i];
}
LOG(INFO) << "global_pooling:" << global_pooling;
LOG(INFO) << "exclusive:" << exclusive;
LOG(INFO) << "adaptive:" << adaptive;
LOG(INFO) << "ceil_mode:" << ceil_mode;
LOG(INFO) << "use_quantizer:" << use_quantizer;
LOG(INFO) << "data_format:" << data_format;
LOG(INFO) << "din:" << din;
LOG(INFO) << "dout:" << dout;
#endif
// global
if (global_pooling == true) {
lite::arm::math::pooling_global(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
} else if (ksize[0] == 2 && ksize[0] == ksize[1] && strides[0] == 2 &&
strides[0] == strides[1]) {
if (pooling_type == "max") {
lite::arm::math::pooling2x2s2_max(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
} else if (pooling_type == "avg") {
lite::arm::math::pooling2x2s2_ave(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
}
} else if (ksize[0] == 3 && ksize[0] == ksize[1] && strides[0] == 1 &&
strides[0] == strides[1] && paddings[0] == 1) {
if (pooling_type == "max") {
lite::arm::math::pooling3x3s1p1_max(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
} else if (pooling_type == "avg") {
lite::arm::math::pooling3x3s1p1_ave(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
}
} else if (ksize[0] == 3 && ksize[0] == ksize[1] && strides[0] == 2 &&
strides[0] == strides[1] && paddings[0] == 0) {
if (pooling_type == "max") {
lite::arm::math::pooling3x3s2p0_max(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
} else if (pooling_type == "avg") {
lite::arm::math::pooling3x3s2p0_ave(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
}
} else if (ksize[0] == 3 && ksize[0] == ksize[1] && strides[0] == 2 &&
strides[0] == strides[1] && paddings[0] == 1) {
if (pooling_type == "max") {
lite::arm::math::pooling3x3s2p1_max(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
} else if (pooling_type == "avg") {
lite::arm::math::pooling3x3s2p1_ave(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
}
} else {
lite::arm::math::pooling_basic(
din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
pooling_type);
}
return;
}
TargetType PoolCompute::target() const { return TARGET(kARM); }
PrecisionType PoolCompute::precision() const { return PRECISION(kFloat); }
} // namespace arm
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(pool, kARM, kFloat, kNCHW,
paddle::lite::kernels::arm::PoolCompute, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/operators/pool_op.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace arm {
class PoolCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
public:
using param_t = operators::PoolParam;
void Run() override;
TargetType target() const override;
PrecisionType precision() const override;
virtual ~PoolCompute() = default;
};
} // namespace arm
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/pool_compute.h"
#include <gtest/gtest.h>
#include <limits>
#include <string>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace arm {
void pool_compute_ref(const operators::PoolParam& param) {
auto& in_dims = param.x->dims();
auto& out_dims = param.output->dims();
const float* src_ptr = param.x->data<const float>();
float* dst_ptr = param.output->mutable_data<float>();
std::vector<int> ksize = param.ksize;
std::vector<int> strides = param.strides;
std::vector<int> paddings = param.paddings;
std::string pooling_type = param.pooling_type;
bool global_pooling = param.global_pooling;
bool exclusive = param.exclusive;
bool adaptive = param.adaptive;
bool ceil_mode = param.ceil_mode;
bool use_quantizer = param.use_quantizer;
std::string data_format = param.data_format;
int in_n = in_dims[0];
int in_c = in_dims[1];
int in_h = in_dims[2];
int in_w = in_dims[3];
int size_in_n = in_c * in_h * in_w;
int size_in_c = in_h * in_w;
int out_h = out_dims[2];
int out_w = out_dims[3];
int size_out_n = in_c * out_h * out_w;
int size_out_c = out_h * out_w;
int window_h = ksize[0];
int window_w = ksize[1];
int stride_h = strides[0];
int stride_w = strides[1];
int pad_h = paddings[0];
int pad_w = paddings[1];
if (global_pooling == true) {
ksize[0] = in_h;
ksize[1] = in_w;
}
#if 0
for (int i = 0; i < ksize.size(); ++i) {
LOG(INFO) << "ksize[" << i << "]:" << ksize[i];
}
for (int i = 0; i < strides.size(); ++i) {
LOG(INFO) << "strides[" << i << "]:" << strides[i];
}
for (int i = 0; i < paddings.size(); ++i) {
LOG(INFO) << "paddings[" << i << "]:" << paddings[i];
}
LOG(INFO) << "in nchw:" << in_n << ", " << in_c << ", " << in_h << ", "
<< in_w;
LOG(INFO) << "size_in_n:" << size_in_n;
LOG(INFO) << "size_out_c:" << size_out_c;
LOG(INFO) << "out_h:" << out_h;
LOG(INFO) << "out_w:" << out_w;
LOG(INFO) << "size_out_n:" << size_out_n;
LOG(INFO) << "size_out_c:" << size_out_c;
LOG(INFO) << "window_h:" << window_h;
LOG(INFO) << "window_w:" << window_w;
LOG(INFO) << "stride_h:" << stride_h;
LOG(INFO) << "stride_w:" << stride_w;
LOG(INFO) << "pad_h:" << pad_h;
LOG(INFO) << "pad_w:" << pad_w;
#endif
for (int ind_n = 0; ind_n < in_n; ++ind_n) {
for (int ind_c = 0; ind_c < in_c; ++ind_c) {
for (int ind_h = 0; ind_h < out_h; ++ind_h) {
int sh = ind_h * stride_h;
int eh = sh + window_h;
sh = (sh - pad_h) < 0 ? 0 : sh - pad_h;
eh = (eh - pad_h) > in_h ? in_h : eh - pad_h;
for (int ind_w = 0; ind_w < out_w; ++ind_w) {
int sw = ind_w * stride_w;
int ew = sw + window_w;
sw = (sw - pad_w) < 0 ? 0 : sw - pad_w;
ew = (ew - pad_w) > in_w ? in_w : ew - pad_w;
float result = static_cast<float>(0);
int dst_ind =
ind_n * size_out_n + ind_c * size_out_c + ind_h * out_w + ind_w;
for (int kh = sh; kh < eh; ++kh) {
for (int kw = sw; kw < ew; ++kw) {
int src_ind =
ind_n * size_in_n + ind_c * size_in_c + kh * in_w + kw;
if (kh == sh && kw == sw) {
result = src_ptr[src_ind];
} else {
if (pooling_type == "max") {
result =
result >= src_ptr[src_ind] ? result : src_ptr[src_ind];
}
if (pooling_type == "avg" && exclusive == false) {
// Pooling_average_include_padding
result += src_ptr[src_ind];
}
if (pooling_type == "avg" && exclusive == true) {
// Pooling_average_include_padding
result += src_ptr[src_ind];
}
}
}
}
if (pooling_type == "avg" && exclusive == false) {
// Pooling_average_include_padding
// result /= param.window_h * param.window_w;
// LOG(ERROR)<<"cpu"<<param.window_h * param.window_w;
int bh = window_h;
int bw = window_w;
if (ew == in_w) {
bw = sw + window_w >= in_w + pad_w ? in_w + pad_w : sw + window_w;
bw -= sw;
}
if (eh == in_h) {
bh = sh + window_h >= in_h + pad_h ? in_h + pad_h : sh + window_h;
bh -= sh;
}
result /= bh * bw;
}
if (pooling_type == "avg" && exclusive == true) {
// Pooling_average_exclude_padding
result /= (ew - sw) * (eh - sh);
}
dst_ptr[dst_ind] = result;
}
}
}
}
}
TEST(pool_arm, init) {
PoolCompute pool;
ASSERT_EQ(pool.precision(), PRECISION(kFloat));
ASSERT_EQ(pool.target(), TARGET(kARM));
}
TEST(pool_arm, compute) {
PoolCompute pool;
operators::PoolParam param;
lite::Tensor x;
lite::Tensor output;
lite::Tensor output_ref;
for (auto pooling_type : {"avg", "max"}) {
for (auto global_pooling : {true}) {
for (auto stride : {2}) {
for (auto pad : {0}) {
for (auto n : {1, 3, 4, 11}) {
for (auto c : {1, 3, 11, 4, 1024}) {
for (auto h : {3, 1, 11, 4, 1}) {
for (auto w : {1, 3, 4, 12, 1}) {
LOG(INFO) << "n:" << n << " c:" << c << " h:" << h
<< " w:" << w << " stride:" << stride
<< " pad:" << pad
<< " pooling_type:" << pooling_type
<< " global_pooling:" << global_pooling;
// init x, output
x.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
output.Resize(DDim(std::vector<int64_t>({n, c, 1, 1})));
output_ref.Resize(DDim(std::vector<int64_t>({n, c, 1, 1})));
auto* x_data = x.mutable_data<float>();
for (int i = 0; i < x.dims().production(); ++i) {
x_data[i] = i;
}
// fill param
param.x = &x;
param.output = &output;
param.pooling_type = pooling_type;
param.ksize = {h, w};
param.global_pooling = global_pooling;
param.strides = {stride, stride};
param.paddings = {pad, pad};
param.exclusive = true;
param.adaptive = false;
param.ceil_mode = false;
param.use_quantizer = false;
// compute
pool.SetParam(param);
pool.Run();
#if 0
LOG(INFO) << "n:" << n << " c:" << c << " h:" << h << " w:" << w
<< " end";
std::cout << "n:" << n << " c:" << c << " h:" << h << " w:" << w
<< " end" << std::endl;
for (int i = 0; i < param.ksize.size(); ++i) {
std::cout << " ksize[" << i << "]:" << param.ksize[i];
}
std::cout << "\n";
for (int i = 0; i < param.strides.size(); ++i) {
std::cout << " strides[" << i << "]:" << param.strides[i];
}
std::cout << "\n";
for (int i = 0; i < param.paddings.size(); ++i) {
std::cout << " paddings[" << i << "]:" << param.paddings[i];
}
std::cout << "\n";
#endif
// compute ref
// output_ref.Resize(output.dims());
param.output = &output_ref;
pool_compute_ref(param);
LOG(INFO) << "pool_compute_ref(param) end";
// compare
auto* output_data = output.mutable_data<float>();
auto* output_ref_data = output_ref.mutable_data<float>();
for (int i = 0; i < output.dims().production(); i++) {
EXPECT_NEAR(output_data[i], output_ref_data[i],
1); // 1e-5);
}
LOG(INFO) << "compare pass";
}
}
}
}
} // pad
} // stride
} // global_pooling
} // pooling_type
}
TEST(pool, retrive_op) {
auto pool =
KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>("pool");
ASSERT_FALSE(pool.empty());
ASSERT_TRUE(pool.front());
}
} // namespace arm
} // namespace kernels
} // namespace lite
} // namespace paddle
USE_LITE_KERNEL(pool, kARM, kFloat, kNCHW, def);
......@@ -19,5 +19,6 @@ USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(mul, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(scale, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(softmax, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(pool, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(feed, kARM, kAny, kAny, def);
USE_LITE_KERNEL(fetch, kARM, kAny, kAny, def);
......@@ -18,6 +18,7 @@ cc_library(fill_constant_op_lite SRCS fill_constant_op.cc DEPS ${op_DEPS})
cc_library(op_params_lite SRCS op_params.cc DEPS ${tensor_lite} any_lite framework_proto_lite)
cc_library(dropout_op_lite SRCS dropout_op.cc DEPS ${op_DEPS})
cc_library(concat_op_lite SRCS concat_op.cc DEPS ${op_DEPS})
cc_library(pool_op_lite SRCS pool_op.cc DEPS ${op_DEPS})
set(ops_lite
conv_op_lite
......@@ -46,3 +47,6 @@ lite_cc_test(test_scale_op_lite SRCS scale_op_test.cc DEPS scale_op_lite memory_
lite_cc_test(test_softmax_op_lite SRCS softmax_op_test.cc DEPS softmax_op_lite memory_lite)
lite_cc_test(test_reshape_op_lite SRCS reshape_op_test.cc DEPS reshape_op_lite memory_lite)
lite_cc_test(test_concat_op_lite SRCS concat_op_test.cc DEPS concat_op_lite memory_lite)
lite_cc_test(test_pool_op_lite SRCS pool_op_test.cc
DEPS pool_op_lite memory_lite
ARM_DEPS pool_compute_arm)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/pool_op.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace operators {
bool PoolOpLite::CheckShape() const {
CHECK_OR_FALSE(param_.x);
CHECK_OR_FALSE(param_.output);
const auto& x_dims = param_.x->dims();
const auto& ksize = param_.ksize;
const auto& strides = param_.strides;
const auto& paddings = param_.paddings;
// "Pooling intput should be 4-D or 5-D tensor."
CHECK_OR_FALSE(x_dims.size() == 4 || x_dims.size() == 5);
// Input size and pooling size should be consistent.
CHECK_OR_FALSE(x_dims.size() - ksize.size() == 2U);
// Strides size and pooling size should be the same.
CHECK_OR_FALSE(ksize.size() == strides.size());
// Paddings size and pooling size should be the same.
CHECK_OR_FALSE(ksize.size() == paddings.size());
return true;
}
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
bool ceil_mode) {
int output_size;
if (!ceil_mode) {
output_size = (input_size - filter_size + 2 * padding) / stride + 1;
} else {
output_size =
(input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
}
return output_size;
}
bool PoolOpLite::InferShape() const {
const auto x_dims = param_.x->dims();
std::vector<int>& ksize = param_.ksize;
if (param_.global_pooling) {
ksize.resize(static_cast<size_t>(x_dims.size()) - 2);
for (size_t i = 0; i < ksize.size(); ++i) {
param_.paddings[i] = 0;
ksize[i] = static_cast<int>(x_dims[i + 2]);
}
}
std::vector<int64_t> output_shape({x_dims[0], x_dims[1]});
if (param_.adaptive) {
output_shape.insert(output_shape.end(), param_.ksize.begin(),
param_.ksize.end());
} else {
for (size_t i = 0; i < param_.ksize.size(); ++i) {
output_shape.push_back(
PoolOutputSize(x_dims[i + 2], param_.ksize[i], param_.paddings[i],
param_.strides[i], param_.ceil_mode));
}
}
param_.output->Resize(lite::DDim(output_shape));
// ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
// ctx->ShareLoD("X", "Out");
return true;
}
} // namespace operators
} // namespace lite
} // namespace paddle
REGISTER_LITE_OP(pool, paddle::lite::operators::PoolOpLite);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"
namespace paddle {
namespace lite {
namespace operators {
class PoolOpLite : public OpLite {
public:
PoolOpLite() {}
explicit PoolOpLite(const std::string &type) : OpLite(type) {}
bool CheckShape() const override;
bool InferShape() const override;
/*
bool Run() override {
CHECK(kernel_);
kernel_->Run();
return true;
}
*/
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) override {
auto x = op_desc.Input("X").front();
auto out = op_desc.Output("Out").front();
CHECK(scope->FindVar(x));
CHECK(scope->FindVar(out));
param_.x = scope->FindVar(x)->GetMutable<lite::Tensor>();
param_.output = scope->FindVar(out)->GetMutable<lite::Tensor>();
param_.pooling_type = op_desc.GetAttr<std::string>("pooling_type");
param_.ksize = op_desc.GetAttr<std::vector<int>>("ksize");
param_.global_pooling = op_desc.GetAttr<bool>("global_pooling");
param_.strides = op_desc.GetAttr<std::vector<int>>("strides");
param_.paddings = op_desc.GetAttr<std::vector<int>>("paddings");
param_.exclusive = op_desc.GetAttr<bool>("exclusive");
param_.adaptive = op_desc.GetAttr<bool>("adaptive");
param_.ceil_mode = op_desc.GetAttr<bool>("ceil_mode");
param_.use_quantizer = op_desc.GetAttr<bool>("use_quantizer");
// param_.data_format = op_desc.GetAttr<bool>("data_format");
return true;
}
void AttachKernel(KernelBase *kernel) override { kernel->SetParam(param_); }
std::string DebugString() const override { return "pool"; }
private:
mutable PoolParam param_;
};
} // namespace operators
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/pool_op.h"
#include <gtest/gtest.h>
#include "paddle/fluid/lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace operators {
TEST(pool_op_lite, test) {
// prepare variables
Scope scope;
auto* x = scope.Var("x")->GetMutable<Tensor>();
auto* output = scope.Var("output")->GetMutable<Tensor>();
x->Resize(DDim(std::vector<int64_t>({1, 3, 224, 224})));
output->Resize(DDim(std::vector<int64_t>{1, 3, 112, 112}));
// set data
for (int i = 0; i < 1 * 3 * 224 * 224; i++) {
x->mutable_data<float>()[i] = i;
}
for (int i = 0; i < 1 * 3 * 112 * 112; i++) {
output->mutable_data<float>()[i] = 0.;
}
// prepare op desc
cpp::OpDesc desc;
desc.SetType("pool");
desc.SetInput("X", {"x"});
desc.SetOutput("Out", {"output"});
std::string pooling_type("max");
desc.SetAttr("pooling_type", pooling_type);
// desc.SetAttr("ksize", static_cast<std::vector<int>>({2, 2}));
std::vector<int> ksize{2, 2};
desc.SetAttr("ksize", ksize);
bool global_pooling{false};
desc.SetAttr("global_pooling", global_pooling);
std::vector<int> strides{1, 1};
desc.SetAttr("strides", strides);
std::vector<int> paddings{0, 0};
desc.SetAttr("paddings", paddings);
bool exclusive{true};
desc.SetAttr("exclusive", exclusive);
bool adaptive{false};
desc.SetAttr("adaptive", adaptive);
bool ceil_mode{false};
desc.SetAttr("ceil_mode", ceil_mode);
bool use_quantizer{false};
desc.SetAttr("use_quantizer", use_quantizer);
PoolOpLite pool("pool");
pool.SetValidPlaces({Place{TARGET(kARM), PRECISION(kFloat)}});
pool.Attach(desc, &scope);
auto kernels = pool.CreateKernels({Place{TARGET(kARM), PRECISION(kFloat)}});
LOG(INFO) << "kernels.size(): " << kernels.size();
ASSERT_FALSE(kernels.empty());
}
} // namespace operators
} // namespace lite
} // namespace paddle
#ifdef LITE_WITH_ARM
USE_LITE_KERNEL(pool, kARM, kFloat, kNCHW, def);
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册