Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
e1a9d563
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e1a9d563
编写于
6月 11, 2019
作者:
开心的小妮
提交者:
Tensor Tang
6月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[LITE][ARM] Add pool operator of arm cpu. test=develop
上级
e6c158fb
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
4209 addition
and
0 deletion
+4209
-0
paddle/fluid/lite/arm/math/CMakeLists.txt
paddle/fluid/lite/arm/math/CMakeLists.txt
+1
-0
paddle/fluid/lite/arm/math/pooling.cc
paddle/fluid/lite/arm/math/pooling.cc
+3347
-0
paddle/fluid/lite/arm/math/pooling.h
paddle/fluid/lite/arm/math/pooling.h
+111
-0
paddle/fluid/lite/kernels/arm/CMakeLists.txt
paddle/fluid/lite/kernels/arm/CMakeLists.txt
+3
-0
paddle/fluid/lite/kernels/arm/pool_compute.cc
paddle/fluid/lite/kernels/arm/pool_compute.cc
+170
-0
paddle/fluid/lite/kernels/arm/pool_compute.h
paddle/fluid/lite/kernels/arm/pool_compute.h
+40
-0
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
+276
-0
paddle/fluid/lite/kernels/arm/use_kernels.h
paddle/fluid/lite/kernels/arm/use_kernels.h
+1
-0
paddle/fluid/lite/operators/CMakeLists.txt
paddle/fluid/lite/operators/CMakeLists.txt
+4
-0
paddle/fluid/lite/operators/pool_op.cc
paddle/fluid/lite/operators/pool_op.cc
+88
-0
paddle/fluid/lite/operators/pool_op.h
paddle/fluid/lite/operators/pool_op.h
+82
-0
paddle/fluid/lite/operators/pool_op_test.cc
paddle/fluid/lite/operators/pool_op_test.cc
+86
-0
未找到文件。
paddle/fluid/lite/arm/math/CMakeLists.txt
浏览文件 @
e1a9d563
...
@@ -9,6 +9,7 @@ cc_library(math_arm SRCS
...
@@ -9,6 +9,7 @@ cc_library(math_arm SRCS
packed_sgemm.cc
packed_sgemm.cc
softmax.cc
softmax.cc
scale.cc
scale.cc
pooling.cc
elementwise.cc
elementwise.cc
sgemv.cc
sgemv.cc
type_trans.cpp
type_trans.cpp
...
...
paddle/fluid/lite/arm/math/pooling.cc
0 → 100644
浏览文件 @
e1a9d563
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/arm/math/pooling.h"
#include <algorithm>
#include <limits>
#include "paddle/fluid/lite/arm/math/funcs.h"
namespace
paddle
{
namespace
lite
{
namespace
arm
{
namespace
math
{
void
pooling_basic
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
// no need to pad input tensor, border is zero pad inside this function
int
kernel_h
=
ksize
[
0
];
int
kernel_w
=
ksize
[
1
];
int
stride_h
=
strides
[
0
];
int
stride_w
=
strides
[
1
];
int
pad_h
=
paddings
[
0
];
int
pad_w
=
paddings
[
1
];
int
size_channel_in
=
win
*
hin
;
int
size_channel_out
=
wout
*
hout
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
if
(
global_pooling
)
{
if
(
pooling_type
==
"max"
)
{
// Pooling_max
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
chout
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
chout
;
++
c
)
{
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
// in address
data_out_batch
[
c
]
=
data_in_channel
[
0
];
for
(
int
i
=
0
;
i
<
size_channel_in
;
++
i
)
{
data_out_batch
[
c
]
=
data_out_batch
[
c
]
>
data_in_channel
[
i
]
?
data_out_batch
[
c
]
:
data_in_channel
[
i
];
}
}
}
}
else
if
(
pooling_type
==
"avg"
)
{
// Pooling_average_include_padding
// Pooling_average_exclude_padding
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
chout
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
chout
;
++
c
)
{
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
// in address
float
sum
=
0.
f
;
for
(
int
i
=
0
;
i
<
size_channel_in
;
++
i
)
{
sum
+=
data_in_channel
[
i
];
}
data_out_batch
[
c
]
=
sum
/
size_channel_in
;
}
}
}
else
{
LOG
(
FATAL
)
<<
"not support"
;
}
return
;
}
if
(
pooling_type
==
"max"
)
{
// Pooling_max
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_channel
=
data_out
+
n
*
chout
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
#pragma omp parallel for
for
(
int
q
=
0
;
q
<
chout
;
q
++
)
{
float
*
data_out_row
=
data_out_channel
+
q
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
q
*
size_channel_in
;
for
(
int
i
=
0
;
i
<
hout
;
i
++
)
{
for
(
int
j
=
0
;
j
<
wout
;
j
++
)
{
int
hstart
=
i
*
stride_h
-
pad_h
;
int
wstart
=
j
*
stride_w
-
pad_w
;
int
hend
=
std
::
min
(
hstart
+
kernel_h
,
hin
+
pad_h
);
int
wend
=
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
);
hstart
=
std
::
max
(
hstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
hend
=
std
::
min
(
hend
,
hin
);
wend
=
std
::
min
(
wend
,
win
);
data_out_row
[
j
]
=
data_in_channel
[
hstart
*
win
+
wstart
];
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
data_out_row
[
j
]
=
data_out_row
[
j
]
>
data_in_channel
[
h
*
win
+
w
]
?
data_out_row
[
j
]
:
data_in_channel
[
h
*
win
+
w
];
}
}
}
data_out_row
+=
wout
;
}
}
}
}
else
if
(
pooling_type
==
"avg"
)
{
if
(
exclusive
==
false
)
{
// Pooling_average_include_padding
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
int
pool_size
=
kernel_w
*
kernel_h
;
// (hend - hstart) * (wend - wstart); // problem
float
*
data_out_channel
=
data_out
+
n
*
chout
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
#pragma omp parallel for
for
(
int
q
=
0
;
q
<
chout
;
q
++
)
{
float
*
data_out_row
=
data_out_channel
+
q
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
q
*
size_channel_in
;
for
(
int
i
=
0
;
i
<
hout
;
i
++
)
{
for
(
int
j
=
0
;
j
<
wout
;
j
++
)
{
int
hstart
=
i
*
stride_h
-
pad_h
;
int
wstart
=
j
*
stride_w
-
pad_w
;
int
hend
=
std
::
min
(
hstart
+
kernel_h
,
hin
+
pad_h
);
int
wend
=
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
);
hstart
=
std
::
max
(
hstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
hend
=
std
::
min
(
hend
,
hin
);
wend
=
std
::
min
(
wend
,
win
);
int
bh
=
kernel_h
;
int
bw
=
kernel_w
;
if
(
wend
==
win
)
{
bw
=
wstart
+
kernel_w
>=
win
+
pad_w
?
win
+
pad_w
:
wstart
+
kernel_w
;
bw
-=
wstart
;
}
if
(
hend
==
hin
)
{
bh
=
hstart
+
kernel_h
>=
hin
+
pad_h
?
hin
+
pad_h
:
hstart
+
kernel_h
;
bh
-=
hstart
;
}
pool_size
=
bh
*
bw
;
data_out_row
[
j
]
=
data_in_channel
[
hstart
*
win
+
wstart
];
float
sum
=
0.
f
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
sum
+=
data_in_channel
[
h
*
win
+
w
];
}
}
data_out_row
[
j
]
=
sum
/
pool_size
;
}
data_out_row
+=
wout
;
}
}
}
}
else
{
// exclusive == true, Pooling_average_exclude_padding
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_channel
=
data_out
+
n
*
chout
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
#pragma omp parallel for
for
(
int
q
=
0
;
q
<
chout
;
q
++
)
{
float
*
data_out_row
=
data_out_channel
+
q
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
q
*
size_channel_in
;
for
(
int
i
=
0
;
i
<
hout
;
i
++
)
{
for
(
int
j
=
0
;
j
<
wout
;
j
++
)
{
int
hstart
=
i
*
stride_h
-
pad_h
;
int
wstart
=
j
*
stride_w
-
pad_w
;
int
hend
=
std
::
min
(
hstart
+
kernel_h
,
hin
+
pad_h
);
int
wend
=
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
);
hstart
=
std
::
max
(
hstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
hend
=
std
::
min
(
hend
,
hin
);
wend
=
std
::
min
(
wend
,
win
);
data_out_row
[
j
]
=
data_in_channel
[
hstart
*
win
+
wstart
];
float
sum
=
0.
f
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
sum
+=
data_in_channel
[
h
*
win
+
w
];
}
}
int
pool_size
=
(
hend
-
hstart
)
*
(
wend
-
wstart
);
data_out_row
[
j
]
=
sum
/
pool_size
;
}
data_out_row
+=
wout
;
}
}
}
}
}
else
{
LOG
(
FATAL
)
<<
"not support"
;
}
}
void
pooling_global
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
int
size_channel_in
=
win
*
hin
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
cnt
=
size_channel_in
/
8
;
#if 0
LOG(INFO) << "size_channel_in:" << size_channel_in;
LOG(INFO) << "cnt:" << cnt;
LOG(INFO) << "num:" << num;
LOG(INFO) << "chout:" << chout;
LOG(INFO) << "hout:" << hout;
LOG(INFO) << "wout:" << wout;
LOG(INFO) << "chin:" << chin;
LOG(INFO) << "hin:" << hin;
LOG(INFO) << "win:" << win;
LOG(INFO) << "pooling_type " << pooling_type;
#endif
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
chout
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
if
(
pooling_type
==
"max"
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
chout
;
++
c
)
{
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
int
i
=
0
;
float
minval
=
std
::
numeric_limits
<
float
>::
lowest
();
float32x4_t
vmax
=
vdupq_n_f32
(
minval
);
#ifdef __aarch64__
for
(;
i
<
cnt
;
i
++
)
{
float32x4_t
vdin1
=
vld1q_f32
(
data_in_channel
);
vmax
=
vmaxq_f32
(
vdin1
,
vmax
);
float32x4_t
vdin2
=
vld1q_f32
(
data_in_channel
+
4
);
vmax
=
vmaxq_f32
(
vmax
,
vdin2
);
data_in_channel
+=
8
;
}
#else
int
num
=
cnt
;
if
(
num
>
0
)
{
asm
volatile
(
"max_loop: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[data_in_channel]]! @load q1, "
"data_in_channel
\n
"
"vmax.f32 %q[vmax], %q[vmax], q0 @max vmax, "
"vmax, data_in_channel
\n
"
"vld1.f32 {d2-d3}, [%[data_in_channel]]! @ load 2nd 4 "
"data"
"vmax.f32 %q[vmax], %q[vmax], q1 @ compare 2nd "
"4 datas
\n
"
"subs %[num], #1 @subs num, 1
\n
"
"bne max_loop @bne num
\n
"
:
[
data_in_channel
]
"+r"
(
data_in_channel
),
[
num
]
"+r"
(
num
),
[
vmax
]
"+w"
(
vmax
)
:
:
"cc"
,
"memory"
,
"q0"
,
"q1"
);
}
#endif // __aarch64__
float32x2_t
vmax_tmp
=
vmax_f32
(
vget_low_f32
(
vmax
),
vget_high_f32
(
vmax
));
float
tmp1
=
vget_lane_f32
(
vmax_tmp
,
0
);
float
tmp2
=
vget_lane_f32
(
vmax_tmp
,
1
);
float
max_tmp
=
tmp1
>
tmp2
?
tmp1
:
tmp2
;
for
(
i
=
cnt
*
8
;
i
<
size_channel_in
;
++
i
)
{
/* code */
max_tmp
=
max_tmp
>
data_in_channel
[
0
]
?
max_tmp
:
data_in_channel
[
0
];
data_in_channel
++
;
}
data_out_batch
[
c
]
=
max_tmp
;
}
}
else
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
chout
;
c
++
)
{
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
// in address
int
i
=
0
;
float32x4_t
vsum
=
vdupq_n_f32
(
0.0
f
);
#ifdef __aarch64__
for
(;
i
<
cnt
;
i
++
)
{
//
vsum
=
vaddq_f32
(
vld1q_f32
(
data_in_channel
),
vsum
);
data_in_channel
+=
4
;
}
#else
int
num
=
cnt
;
if
(
num
>
0
)
{
asm
volatile
(
"add_loop: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[data_in_channel]]! @load q1, "
"data_in_channel
\n
"
"vadd.f32 %q[vsum], %q[vsum], q0 @add vmax, "
"vmax, data_in_channel
\n
"
"subs %[num], #1 @subs num, 1
\n
"
"bne add_loop @bne num
\n
"
:
[
data_in_channel
]
"+r"
(
data_in_channel
),
[
num
]
"+r"
(
num
),
[
vsum
]
"+w"
(
vsum
)
:
:
"cc"
,
"memory"
,
"q0"
);
}
#endif // __aarch64__
float32x2_t
vsum_tmp
=
vadd_f32
(
vget_low_f32
(
vsum
),
vget_high_f32
(
vsum
));
float
sum
=
vget_lane_f32
(
vsum_tmp
,
0
)
+
vget_lane_f32
(
vsum_tmp
,
1
);
for
(
i
=
cnt
*
4
;
i
<
size_channel_in
;
i
++
)
{
sum
+=
data_in_channel
[
0
];
data_in_channel
++
;
}
data_out_batch
[
c
]
=
sum
/
size_channel_in
;
}
}
}
}
void
pooling2x2s2_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
int
size_channel_out
=
wout
*
hout
;
int
size_channel_in
=
win
*
hin
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
w_even
=
(
win
>>
1
)
<<
1
;
// int w_remains = w_in - w_even; // should be 0 or 1
int
h_even
=
(
hin
>>
1
)
<<
1
;
// int h_remains = h_in - h_even; // should be 0 or 1
int
w_unroll_size
=
(
w_even
>>
3
)
<<
3
;
// int w_unroll_remian = w_even - w_unroll_size;
int
w_in_2
=
win
<<
1
;
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
chout
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
chout
;
c
++
)
{
float
*
data_out_channel
=
data_out_batch
+
c
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
const
float
*
r0
=
data_in_channel
;
const
float
*
r1
=
r0
+
win
;
int
h
=
0
;
for
(;
h
<
h_even
;
h
+=
2
)
{
int
w
=
0
;
#ifdef __aarch64__
for
(;
w
<
w_unroll_size
;
w
+=
8
)
{
float32x4_t
dr00
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
dr01
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
dr10
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
dr11
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
dmax1
=
vmaxq_f32
(
dr00
,
dr10
);
float32x4_t
dmax2
=
vmaxq_f32
(
dr01
,
dr11
);
#ifdef __aarch64__
float32x4_t
dmax
=
vpmaxq_f32
(
dmax1
,
dmax2
);
#else
float32x2_t
dmaxl
=
vpmax_f32
(
vget_low_f32
(
dmax1
),
vget_high_f32
(
dmax1
));
float32x2_t
dmaxh
=
vpmax_f32
(
vget_low_f32
(
dmax2
),
vget_high_f32
(
dmax2
));
float32x4_t
dmax
=
vcombine_f32
(
dmaxl
,
dmaxh
);
#endif
vst1q_f32
(
&
data_out_channel
[
w
>>
1
],
dmax
);
}
#else
w
=
w_unroll_size
;
int
num
=
w_unroll_size
>>
3
;
float
*
dr0
=
reinterpret_cast
<
float
*>
(
r0
);
float
*
dr1
=
reinterpret_cast
<
float
*>
(
r1
);
float
*
dr_out
=
data_out_channel
;
if
(
num
>
0
)
{
asm
volatile
(
"s2_max_loop: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load q0, dr0
\n
"
"vld1.f32 {d4-d7}, [%[dr1]]! @load q1, dr1
\n
"
"vmax.f32 q0, q0, q2 @max q0, q0, "
"q2
\n
"
"vmax.f32 q1, q1, q3 @max q1, q1, "
"q2
\n
"
"vpmax.f32 d4, d0, d1 @max d4, d0, "
"d1
\n
"
"vpmax.f32 d5, d2, d3 @max d5, d2, "
"d3
\n
"
"vst1.f32 {d4-d5}, [%[dr_out]]! @vst1 q2, "
"dr_out
\n
"
"subs %[num], #1 @subs num, 1
\n
"
"bne s2_max_loop @bne num
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
num
]
"+r"
(
num
)
:
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
);
}
#endif // __aarch64__
for
(;
w
<
w_even
;
w
+=
2
)
{
data_out_channel
[
w
>>
1
]
=
std
::
max
(
std
::
max
(
r0
[
w
],
r0
[
w
+
1
]),
std
::
max
(
r1
[
w
],
r1
[
w
+
1
]));
}
for
(;
w
<
win
;
++
w
)
{
// run 0 or 1 time
data_out_channel
[
w
>>
1
]
=
std
::
max
(
r0
[
w
],
r1
[
w
]);
}
r0
+=
w_in_2
;
// << 1;
r1
+=
w_in_2
;
// << 1;
data_out_channel
+=
wout
;
}
// process remain row (odd, last row)
for
(;
h
<
hin
;
h
++
)
{
// run 0 or 1 time
int
w
=
0
;
#ifdef __aarch64__
for
(;
w
<
w_unroll_size
;
w
+=
8
)
{
float32x4_t
dr00
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
dr01
=
vld1q_f32
(
&
r0
[
w
+
4
]);
#ifdef __aarch64__
float32x4_t
dmax
=
vpmaxq_f32
(
dr00
,
dr01
);
#else
float32x2_t
dmaxl
=
vpmax_f32
(
vget_low_f32
(
dr00
),
vget_high_f32
(
dr00
));
float32x2_t
dmaxh
=
vpmax_f32
(
vget_low_f32
(
dr01
),
vget_high_f32
(
dr01
));
float32x4_t
dmax
=
vcombine_f32
(
dmaxl
,
dmaxh
);
#endif
float32x4_t
dmax_cmp_zero
=
vmaxq_f32
(
dmax
,
vzero
);
vst1q_f32
(
&
data_out_channel
[
w
>>
1
],
dmax_cmp_zero
);
}
#else
w
=
w_unroll_size
;
int
num
=
w_unroll_size
>>
3
;
float
*
dr0
=
reinterpret_cast
<
float
*>
(
r0
);
float
*
dr_out
=
data_out_channel
;
if
(
num
>
0
)
{
asm
volatile
(
"s2_max_loop1: @main "
"loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load q0, dr0
\n
"
"vpmax.f32 d4, d0, d1 @max d4, d0, "
"d1
\n
"
"vpmax.f32 d5, d2, d3 @max d5, d2, "
"d3
\n
"
"vst1.f32 {d4-d5}, [%[dr_out]]! @vst1 q2, "
"dr_out
\n
"
"subs %[num], #1 @subs num, 1
\n
"
"bne s2_max_loop1 @bne num
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr_out
]
"+r"
(
dr_out
),
[
num
]
"+r"
(
num
)
:
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
);
}
#endif // __aarch64__
for
(;
w
<
w_even
;
w
+=
2
)
{
data_out_channel
[
w
>>
1
]
=
std
::
max
(
std
::
max
(
r0
[
w
],
r0
[
w
+
1
]),
0.
f
);
}
for
(;
w
<
win
;
++
w
)
{
// run 0 or 1 time
data_out_channel
[
w
>>
1
]
=
std
::
max
(
r0
[
w
],
0.
f
);
}
}
}
}
}
void
pooling2x2s2_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
int
size_channel_out
=
wout
*
hout
;
int
size_channel_in
=
win
*
hin
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
w_even
=
(
win
>>
1
)
<<
1
;
// int w_remains = w_in - w_even; // should be 0 or 1
int
h_even
=
(
hin
>>
1
)
<<
1
;
// int h_remains = h_in - h_even; // should be 0 or 1
int
w_unroll_size
=
(
w_even
>>
3
)
<<
3
;
// int w_unroll_remian = w_even - w_unroll_size;
int
w_in_2
=
win
<<
1
;
float32x4_t
vcoef
=
vdupq_n_f32
(
0.25
f
);
// divided by 4
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
chout
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
chout
;
c
++
)
{
float
*
data_out_channel
=
data_out_batch
+
c
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
const
float
*
r0
=
data_in_channel
;
const
float
*
r1
=
r0
+
win
;
int
h
=
0
;
for
(;
h
<
h_even
;
h
+=
2
)
{
int
w
=
0
;
#ifdef __aarch64__
for
(;
w
<
w_unroll_size
;
w
+=
8
)
{
float32x4_t
dr00
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
dr01
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
dr10
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
dr11
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
dsum1
=
vaddq_f32
(
dr00
,
dr10
);
float32x4_t
dsum2
=
vaddq_f32
(
dr01
,
dr11
);
#ifdef __aarch64__
float32x4_t
dsum
=
vpaddq_f32
(
dsum1
,
dsum2
);
#else
float32x2_t
dsuml
=
vpadd_f32
(
vget_low_f32
(
dsum1
),
vget_high_f32
(
dsum1
));
float32x2_t
dsumh
=
vpadd_f32
(
vget_low_f32
(
dsum2
),
vget_high_f32
(
dsum2
));
float32x4_t
dsum
=
vcombine_f32
(
dsuml
,
dsumh
);
#endif
float32x4_t
res
=
vmulq_f32
(
dsum
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
w
>>
1
],
res
);
}
#else
w
=
w_unroll_size
;
int
num
=
w_unroll_size
>>
3
;
float
*
dr0
=
reinterpret_cast
<
float
*>
(
r0
);
float
*
dr1
=
reinterpret_cast
<
float
*>
(
r1
);
float
*
dr_out
=
data_out_channel
;
if
(
num
>
0
)
{
asm
volatile
(
"1: @ main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @ load q0, "
"dr0
\n
"
"vld1.f32 {d4-d7}, [%[dr1]]! @ load q1, "
"dr1
\n
"
"vadd.f32 q0, q0, q2 @ add q0, q0, "
"q2
\n
"
"vadd.f32 q1, q1, q3 @ add q1, q1, "
"q2
\n
"
"vpadd.f32 d4, d0, d1 @ add d4, d0, "
"d1
\n
"
"vpadd.f32 d5, d2, d3 @ add d5, d2, "
"d3
\n
"
"vmul.f32 q2, q2, %q[vcoef] @ mul q2, q2, "
"vcoef
\n
"
"vst1.f32 {d4-d5}, [%[dr_out]]! @ vst1 q2, "
"dr_out
\n
"
"subs %[num], #1 @ subs num, 1
\n
"
"bne 1b @ bne num
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
vcoef
]
"+w"
(
vcoef
),
[
num
]
"+r"
(
num
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
num
),
"w"
(
vcoef
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
);
}
#endif // __aarch64__
for
(;
w
<
w_even
;
w
+=
2
)
{
data_out_channel
[
w
>>
1
]
=
(
r0
[
w
]
+
r0
[
w
+
1
]
+
r1
[
w
]
+
r1
[
w
+
1
])
/
4.
f
;
}
for
(;
w
<
win
;
++
w
)
{
// run 0 or 1 time
data_out_channel
[
w
>>
1
]
=
(
r0
[
w
]
+
r1
[
w
])
/
4.
f
;
}
r0
+=
w_in_2
;
// << 1;
r1
+=
w_in_2
;
// << 1;
data_out_channel
+=
wout
;
}
// process remain row (odd, last row)
for
(;
h
<
hin
;
h
++
)
{
// run 0 or 1 time
int
w
=
0
;
#ifdef __aarch64__
for
(;
w
<
w_unroll_size
;
w
+=
8
)
{
float32x4_t
dr00
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
dr01
=
vld1q_f32
(
&
r0
[
w
+
4
]);
#ifdef __aarch64__
float32x4_t
dsum
=
vpaddq_f32
(
dr00
,
dr01
);
#else
float32x2_t
dsuml
=
vpadd_f32
(
vget_low_f32
(
dr00
),
vget_high_f32
(
dr00
));
float32x2_t
dsumh
=
vpadd_f32
(
vget_low_f32
(
dr01
),
vget_high_f32
(
dr01
));
float32x4_t
dsum
=
vcombine_f32
(
dsuml
,
dsumh
);
#endif
float32x4_t
res
=
vmulq_f32
(
dsum
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
w
>>
1
],
res
);
}
#else
w
=
w_unroll_size
;
int
num
=
w_unroll_size
>>
3
;
float
*
dr0
=
reinterpret_cast
<
float
*>
(
r0
);
float
*
dr_out
=
data_out_channel
;
if
(
num
>
0
)
{
asm
volatile
(
"1: @ main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @ load q0, "
"dr0
\n
"
"vpadd.f32 d4, d0, d1 @ add d4, d0, "
"d1
\n
"
"vpadd.f32 d5, d2, d3 @ add d5, d2, "
"d3
\n
"
"vmul.f32 q2, q2, %q[vcoef] @ mul q2, q2, "
"vcoef
\n
"
"vst1.f32 {d4-d5}, [%[dr_out]]! @ vst1 q2, "
"dr_out
\n
"
"subs %[num], #1 @ subs num, 1
\n
"
"bne 1b @ bne num
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr_out
]
"+r"
(
dr_out
),
[
vcoef
]
"+w"
(
vcoef
),
[
num
]
"+r"
(
num
)
:
"r"
(
dr0
),
"r"
(
dr_out
),
"r"
(
num
),
"w"
(
vcoef
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
);
}
#endif // __aarch64__
for
(;
w
<
w_even
;
w
+=
2
)
{
data_out_channel
[
w
>>
1
]
=
(
r0
[
w
]
+
r0
[
w
+
1
])
/
4.
f
;
}
for
(;
w
<
win
;
++
w
)
{
// run 0 or 1 time
data_out_channel
[
w
>>
1
]
=
r0
[
w
]
/
4.
f
;
}
}
}
}
}
void
pooling3x3s1p1_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
// no need to pad input tensor, pad_size is not used, default border is zero
// padded
int
ch_in
=
chin
;
int
h_in
=
hin
;
int
w_in
=
win
;
int
ch_out
=
chout
;
int
h_out
=
hout
;
int
w_out
=
wout
;
int
size_channel_out
=
w_out
*
h_out
;
int
size_channel_in
=
win
*
hin
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
w_even
=
(
w_in
>>
1
)
<<
1
;
// int w_remains = w_in - w_even; // should be 0 or 1
int
h_even
=
(
h_in
>>
1
)
<<
1
;
// int h_remains = h_in - h_even; // should be 0 or 1
// int w_unroll_size = (w_even >> 3) << 3;
// int w_unroll_remian = w_even - w_unroll_size;
int
w_in_2
=
w_in
<<
1
;
int
w_unroll_size
=
(
w_in
-
2
)
>>
2
;
int
w_unroll_remian
=
w_in
-
2
-
w_unroll_size
*
4
;
float
minval
=
std
::
numeric_limits
<
float
>::
lowest
();
float32x4_t
vzero
=
vdupq_n_f32
(
minval
);
// zero pad
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
ch_out
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
ch_in
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
ch_out
;
c
++
)
{
float
*
data_out_channel
=
data_out_batch
+
c
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
const
float
*
r0
=
data_in_channel
;
const
float
*
r1
=
r0
+
w_in
;
const
float
*
r2
=
r1
+
w_in
;
int
cnt_num
=
w_unroll_size
;
// w_in / 4
float
*
dr_out
=
data_out_channel
;
const
float
*
dr0
=
r0
;
const
float
*
dr1
=
r1
;
const
float
*
dr2
=
r2
;
int
w
=
0
;
int
cnt
=
1
;
// left
data_out_channel
[
0
]
=
std
::
max
(
std
::
max
(
r0
[
0
],
r0
[
1
]),
std
::
max
(
r1
[
0
],
r1
[
1
]));
// first row with zero pad
#ifdef __aarch64__
for
(;
w
<=
w_in
-
6
;
w
+=
4
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vmax_1234
=
vmaxq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vmax_5678
=
vmaxq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vmax_2345
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
1
);
float32x4_t
vmax_3456
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
2
);
float32x2_t
vmax_12_34
=
vpmax_f32
(
vget_low_f32
(
vmax_1234
),
vget_high_f32
(
vmax_1234
));
float32x2_t
vmax_23_45
=
vpmax_f32
(
vget_low_f32
(
vmax_2345
),
vget_high_f32
(
vmax_2345
));
float32x2_t
vmax_34_56
=
vpmax_f32
(
vget_low_f32
(
vmax_3456
),
vget_high_f32
(
vmax_3456
));
float32x2_t
vmax_123_345
=
vmax_f32
(
vmax_12_34
,
vmax_23_45
);
float32x2_t
vmax_234_456
=
vmax_f32
(
vmax_23_45
,
vmax_34_56
);
float32x4_t
vmax
=
vdupq_n_f32
(
vget_lane_f32
(
vmax_123_345
,
0
));
vmax
=
vsetq_lane_f32
(
vget_lane_f32
(
vmax_234_456
,
0
),
vmax
,
1
);
vmax
=
vsetq_lane_f32
(
vget_lane_f32
(
vmax_123_345
,
1
),
vmax
,
2
);
vmax
=
vsetq_lane_f32
(
vget_lane_f32
(
vmax_234_456
,
1
),
vmax
,
3
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vmax
);
cnt
+=
4
;
}
#else
dr_out
=
dr_out
+
1
;
if
(
cnt_num
>
0
)
{
asm
volatile
(
"1: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d4-d5}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d2}, [%[dr0]]! @load d0-d5, dr0
\n
"
"vld1.f32 {d6}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vmax.f32 q5, q0, q2 @max "
"r0_1234,r1_1234
\n
"
"vmax.f32 d12, d2, d6 @max "
"r0_5678,r1_5678
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q5, q6, #1 @vext max_2345
\n
"
"vext.f32 q2, q5, q6, #2 @vext max_3456
\n
"
"vpmax.f32 d2, d10, d11 @pmax d4, "
"max_1234, max_1234
\n
"
"vpmax.f32 d3, d0, d1 @pmax d4, "
"max_2345, max_2345
\n
"
"vpmax.f32 d6, d4, d5 @pmax d6, "
"max_3456, max_3456
\n
"
"vmax.f32 d8, d2, d3 @max d2, "
"vmax_12_34, vmax_23_45
\n
"
"vmax.f32 d9, d3, d6 @max d2, "
"vmax_23_45, vmax_34_56
\n
"
"sub %[dr0], #8 @sub w, 8
\n
"
"sub %[dr1], #8 @sub w, 8
\n
"
// swap
"vmov.f32 s0, s17 @mov
\n
"
"vmov.f32 s17, s18 @mov
\n
"
"vmov.f32 s18, s0 @mov
\n
"
"subs %[cnt_num], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"bne 1b @bne s1_max_loop
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
);
}
#endif
// remian
w
=
w_unroll_size
*
4
;
for
(
int
j
=
0
;
j
<
w_unroll_remian
;
j
++
)
{
float
tmp_max
=
std
::
max
(
r0
[
j
+
w
],
r1
[
j
+
w
]);
tmp_max
=
std
::
max
(
tmp_max
,
std
::
max
(
r0
[
j
+
w
+
1
],
r1
[
j
+
w
+
1
]));
tmp_max
=
std
::
max
(
tmp_max
,
std
::
max
(
r0
[
j
+
w
+
2
],
r1
[
j
+
w
+
2
]));
data_out_channel
[
j
+
w
+
1
]
=
tmp_max
;
}
// right
float
tmp
=
std
::
max
(
r0
[
w_in
-
2
],
r1
[
w_in
-
2
]);
tmp
=
std
::
max
(
tmp
,
std
::
max
(
r0
[
w_in
-
1
],
r1
[
w_in
-
1
]));
data_out_channel
[
w_out
-
1
]
=
tmp
;
// r0 = r1;
// r1 = r0 + w_in;
// r2 = r1 + w_in;
data_out_channel
+=
w_out
;
int
h
=
0
;
for
(;
h
<
h_in
-
2
;
h
+=
1
)
{
// deal with left pad
float
maxr0
=
std
::
max
(
r0
[
0
],
r0
[
1
]);
float
maxr1
=
std
::
max
(
r1
[
0
],
r1
[
1
]);
float
maxr2
=
std
::
max
(
r2
[
0
],
r2
[
1
]);
data_out_channel
[
0
]
=
std
::
max
(
std
::
max
(
maxr0
,
maxr1
),
maxr2
);
#ifdef __aarch64__
w
=
0
;
cnt
=
1
;
for
(;
w
<=
w_in
-
6
;
w
+=
4
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr2_1234
=
vld1q_f32
(
&
r2
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr2_5678
=
vld1q_f32
(
&
r2
[
w
+
4
]);
float32x4_t
vmax_1234
=
vmaxq_f32
(
vr0_1234
,
vr1_1234
);
vmax_1234
=
vmaxq_f32
(
vmax_1234
,
vr2_1234
);
float32x4_t
vmax_5678
=
vmaxq_f32
(
vr0_5678
,
vr1_5678
);
vmax_5678
=
vmaxq_f32
(
vmax_5678
,
vr2_5678
);
float32x4_t
vmax_2345
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
1
);
float32x4_t
vmax_3456
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
2
);
float32x2_t
vmax_12_34
=
vpmax_f32
(
vget_low_f32
(
vmax_1234
),
vget_high_f32
(
vmax_1234
));
float32x2_t
vmax_23_45
=
vpmax_f32
(
vget_low_f32
(
vmax_2345
),
vget_high_f32
(
vmax_2345
));
float32x2_t
vmax_34_56
=
vpmax_f32
(
vget_low_f32
(
vmax_3456
),
vget_high_f32
(
vmax_3456
));
float32x2_t
vmax_123_345
=
vmax_f32
(
vmax_12_34
,
vmax_23_45
);
float32x2_t
vmax_234_456
=
vmax_f32
(
vmax_23_45
,
vmax_34_56
);
float32x4_t
vmax
=
vdupq_n_f32
(
vget_lane_f32
(
vmax_123_345
,
0
));
vmax
=
vsetq_lane_f32
(
vget_lane_f32
(
vmax_234_456
,
0
),
vmax
,
1
);
vmax
=
vsetq_lane_f32
(
vget_lane_f32
(
vmax_123_345
,
1
),
vmax
,
2
);
vmax
=
vsetq_lane_f32
(
vget_lane_f32
(
vmax_234_456
,
1
),
vmax
,
3
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vmax
);
cnt
+=
4
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
r0
;
dr1
=
r1
;
dr2
=
r2
;
cnt_num
=
w_unroll_size
;
if
(
cnt_num
>
0
)
{
asm
volatile
(
"1: @main "
"loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d4-d5}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d8-d9}, [%[dr2]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d2}, [%[dr0]]! @load d0-d5, dr0
\n
"
"vld1.f32 {d6}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d10}, [%[dr2]]! @load d4-d7, dr1
\n
"
"vmax.f32 q7, q0, q2 @max "
"r0_1234,r1_1234
\n
"
"vmax.f32 d16, d2, d6 @max "
"r0_5678,r1_5678
\n
"
"vmax.f32 q3, q7, q4 @max "
"r0_1234,r1_1234
\n
"
"vmax.f32 d12, d16, d10 @max "
"r0_5678,r1_5678
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q3, q6, #1 @vext max_2345
\n
"
"vext.f32 q2, q3, q6, #2 @vext max_3456
\n
"
"vpmax.f32 d2, d6, d7 @pmax d4, "
"max_1234, max_1234
\n
"
"vpmax.f32 d3, d0, d1 @pmax d4, "
"max_2345, max_2345
\n
"
"vpmax.f32 d6, d4, d5 @pmax d6, "
"max_3456, max_3456
\n
"
"vmax.f32 d8, d2, d3 @max d2, "
"vmax_12_34, vmax_23_45
\n
"
"vmax.f32 d9, d3, d6 @max d2, "
"vmax_23_45, vmax_34_56
\n
"
"sub %[dr0], #8 @sub w, 8
\n
"
"sub %[dr1], #8 @sub w, 8
\n
"
"sub %[dr2], #8 @sub w, 8
\n
"
// swap
"vmov.f32 s0, s17 @mov
\n
"
"vmov.f32 s17, s18 @mov
\n
"
"vmov.f32 s18, s0 @mov
\n
"
"subs %[cnt_num], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"bne 1b @ bne "
"s1_max_loop
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr2
]
"+r"
(
dr2
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
);
}
#endif
// remian
w
=
w_unroll_size
*
4
;
for
(
int
j
=
0
;
j
<
w_unroll_remian
;
j
++
)
{
float
tmp_max
=
std
::
max
(
r0
[
j
+
w
],
r1
[
j
+
w
]);
tmp_max
=
std
::
max
(
tmp_max
,
std
::
max
(
r0
[
j
+
w
+
1
],
r1
[
j
+
w
+
1
]));
tmp_max
=
std
::
max
(
tmp_max
,
std
::
max
(
r0
[
j
+
w
+
2
],
r1
[
j
+
w
+
2
]));
tmp_max
=
std
::
max
(
tmp_max
,
std
::
max
(
r2
[
j
+
w
],
r2
[
j
+
w
+
1
]));
tmp_max
=
std
::
max
(
tmp_max
,
r2
[
j
+
w
+
2
]);
data_out_channel
[
j
+
w
+
1
]
=
tmp_max
;
}
// right
tmp
=
std
::
max
(
r0
[
w_in
-
2
],
r1
[
w_in
-
2
]);
tmp
=
std
::
max
(
tmp
,
std
::
max
(
r0
[
w_in
-
1
],
r1
[
w_in
-
1
]));
tmp
=
std
::
max
(
tmp
,
std
::
max
(
r2
[
w_in
-
2
],
r2
[
w_in
-
1
]));
data_out_channel
[
w_out
-
1
]
=
tmp
;
r0
=
r1
;
r1
=
r2
;
r2
=
r1
+
w_in
;
data_out_channel
+=
w_out
;
}
// the last two line
float
maxr0
=
std
::
max
(
r0
[
0
],
r0
[
1
]);
float
maxr1
=
std
::
max
(
r1
[
0
],
r1
[
1
]);
data_out_channel
[
0
]
=
std
::
max
(
maxr0
,
maxr1
);
#ifdef __aarch64__
w
=
0
;
cnt
=
1
;
for
(;
w
<=
w_in
-
6
;
w
+=
4
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vmax_1234
=
vmaxq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vmax_5678
=
vmaxq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vmax_2345
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
1
);
float32x4_t
vmax_3456
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
2
);
float32x2_t
vmax_12_34
=
vpmax_f32
(
vget_low_f32
(
vmax_1234
),
vget_high_f32
(
vmax_1234
));
float32x2_t
vmax_23_45
=
vpmax_f32
(
vget_low_f32
(
vmax_2345
),
vget_high_f32
(
vmax_2345
));
float32x2_t
vmax_34_56
=
vpmax_f32
(
vget_low_f32
(
vmax_3456
),
vget_high_f32
(
vmax_3456
));
float32x2_t
vmax_123_345
=
vmax_f32
(
vmax_12_34
,
vmax_23_45
);
float32x2_t
vmax_234_456
=
vmax_f32
(
vmax_23_45
,
vmax_34_56
);
float32x4_t
vmax
=
vdupq_n_f32
(
vget_lane_f32
(
vmax_123_345
,
0
));
vmax
=
vsetq_lane_f32
(
vget_lane_f32
(
vmax_234_456
,
0
),
vmax
,
1
);
vmax
=
vsetq_lane_f32
(
vget_lane_f32
(
vmax_123_345
,
1
),
vmax
,
2
);
vmax
=
vsetq_lane_f32
(
vget_lane_f32
(
vmax_234_456
,
1
),
vmax
,
3
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vmax
);
cnt
+=
4
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
r0
;
dr1
=
r1
;
cnt_num
=
w_unroll_size
;
if
(
cnt_num
>
0
)
{
asm
volatile
(
"1: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d4-d5}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d2}, [%[dr0]]! @load d0-d5, dr0
\n
"
"vld1.f32 {d6}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vmax.f32 q5, q0, q2 @max "
"r0_1234,r1_1234
\n
"
"vmax.f32 d12, d2, d6 @max "
"r0_5678,r1_5678
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q5, q6, #1 @vext max_2345
\n
"
"vext.f32 q2, q5, q6, #2 @vext max_3456
\n
"
"vpmax.f32 d2, d10, d11 @pmax d4, "
"max_1234, max_1234
\n
"
"vpmax.f32 d3, d0, d1 @pmax d4, "
"max_2345, max_2345
\n
"
"vpmax.f32 d6, d4, d5 @pmax d6, "
"max_3456, max_3456
\n
"
"vmax.f32 d8, d2, d3 @max d2, "
"vmax_12_34, vmax_23_45
\n
"
"vmax.f32 d9, d3, d6 @max d2, "
"vmax_23_45, vmax_34_56
\n
"
"sub %[dr0], #8 @sub w, 8
\n
"
"sub %[dr1], #8 @sub w, 8
\n
"
// swap
"vmov.f32 s0, s17 @mov
\n
"
"vmov.f32 s17, s18 @mov
\n
"
"vmov.f32 s18, s0 @mov
\n
"
"subs %[cnt_num], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"bne 1b @bne s1_max_loop
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
);
}
#endif
// remian
w
=
w_unroll_size
*
4
;
for
(
int
j
=
0
;
j
<
w_unroll_remian
;
j
++
)
{
float
tmp_max
=
std
::
max
(
r0
[
j
+
w
],
r1
[
j
+
w
]);
tmp_max
=
std
::
max
(
tmp_max
,
std
::
max
(
r0
[
j
+
w
+
1
],
r1
[
j
+
w
+
1
]));
tmp_max
=
std
::
max
(
tmp_max
,
std
::
max
(
r0
[
j
+
w
+
2
],
r1
[
j
+
w
+
2
]));
data_out_channel
[
j
+
w
+
1
]
=
tmp_max
;
}
tmp
=
std
::
max
(
r0
[
w_in
-
2
],
r1
[
w_in
-
2
]);
tmp
=
std
::
max
(
tmp
,
std
::
max
(
r0
[
w_in
-
1
],
r1
[
w_in
-
1
]));
data_out_channel
[
w_out
-
1
]
=
tmp
;
}
}
}
void
pooling3x3s1p1_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
int
w_in
=
win
;
int
h_in
=
hin
;
int
ch_in
=
chin
;
int
w_out
=
wout
;
int
h_out
=
hout
;
int
ch_out
=
chout
;
int
size_channel_out
=
w_out
*
h_out
;
int
size_channel_in
=
w_in
*
h_in
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
w_even
=
(
w_in
>>
1
)
<<
1
;
int
h_even
=
(
h_in
>>
1
)
<<
1
;
int
w_in_2
=
w_in
<<
1
;
int
w_unroll_size
=
(
w_in
-
2
)
>>
2
;
int
w_unroll_remian
=
w_in
-
2
-
w_unroll_size
*
4
;
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
// zero pad
float32x4_t
vcoef
=
vdupq_n_f32
(
1.
f
/
9.
f
);
// zero pad
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
ch_out
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
ch_in
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
ch_out
;
c
++
)
{
float
*
data_out_channel
=
data_out_batch
+
c
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
const
float
*
r0
=
data_in_channel
;
const
float
*
r1
=
r0
+
w_in
;
const
float
*
r2
=
r1
+
w_in
;
int
cnt_num
=
w_unroll_size
;
// w_in / 4
float
*
dr_out
=
data_out_channel
;
const
float
*
dr0
=
r0
;
const
float
*
dr1
=
r1
;
const
float
*
dr2
=
r2
;
int
w
=
0
;
int
cnt
=
1
;
// left
data_out_channel
[
0
]
=
(
r0
[
0
]
+
r0
[
1
]
+
r1
[
0
]
+
r1
[
1
])
/
9.
f
;
// first row with zero pad
#ifdef __aarch64__
for
(;
w
<=
w_in
-
6
;
w
+=
4
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vsum_1234
=
vaddq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vsum_5678
=
vaddq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vsum_2345
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
1
);
float32x4_t
vsum_3456
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
2
);
float32x4_t
vsum
=
vaddq_f32
(
vsum_1234
,
vsum_2345
);
vsum
=
vaddq_f32
(
vsum
,
vsum_3456
);
vsum
=
vmulq_f32
(
vsum
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vsum
);
cnt
+=
4
;
}
#else
dr_out
=
dr_out
+
1
;
if
(
cnt_num
>
0
)
{
asm
volatile
(
"1: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d4-d5}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d2}, [%[dr0]]! @load d0-d5, dr0
\n
"
"vld1.f32 {d6}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vadd.f32 q5, q0, q2 @max "
"r0_1234,r1_1234
\n
"
"vadd.f32 d12, d2, d6 @max "
"r0_5678,r1_5678
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q5, q6, #1 @vext max_2345
\n
"
"vext.f32 q2, q5, q6, #2 @vext max_3456
\n
"
"vadd.f32 q1, q5, q0 @add 1234 + 2345
\n
"
"vadd.f32 q1, q1, q2 @add + 3456
\n
"
"vmul.f32 q4, q1, %q[vcoef] @mul * 1/9.f
\n
"
"sub %[dr0], #8 @sub w, 8
\n
"
"sub %[dr1], #8 @sub w, 8
\n
"
"subs %[cnt_num], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"bne 1b @bne s1_max_loop
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
vcoef
]
"+w"
(
vcoef
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
);
}
#endif
// remian
w
=
w_unroll_size
*
4
;
for
(
int
j
=
0
;
j
<
w_unroll_remian
;
j
++
)
{
float
tmp_sum
=
r0
[
j
+
w
]
+
r1
[
j
+
w
];
tmp_sum
+=
(
r0
[
j
+
w
+
1
]
+
r1
[
j
+
w
+
1
]);
tmp_sum
+=
(
r0
[
j
+
w
+
2
]
+
r1
[
j
+
w
+
2
]);
data_out_channel
[
j
+
w
+
1
]
=
tmp_sum
/
9.
f
;
}
// right
float
tmp
=
r0
[
w_in
-
2
]
+
r1
[
w_in
-
2
];
tmp
+=
(
r0
[
w_in
-
1
]
+
r1
[
w_in
-
1
]);
data_out_channel
[
w_out
-
1
]
=
tmp
/
9.
f
;
// r0 = r1;
// r1 = r0 + w_in;
// r2 = r1 + w_in;
data_out_channel
+=
w_out
;
int
h
=
0
;
for
(;
h
<
h_in
-
2
;
h
+=
1
)
{
// deal with left pad
float
maxr0
=
r0
[
0
]
+
r0
[
1
];
float
maxr1
=
r1
[
0
]
+
r1
[
1
];
float
maxr2
=
r2
[
0
]
+
r2
[
1
];
data_out_channel
[
0
]
=
(
maxr0
+
maxr1
+
maxr2
)
/
9.
f
;
#ifdef __aarch64__
w
=
0
;
cnt
=
1
;
for
(;
w
<=
w_in
-
6
;
w
+=
4
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr2_1234
=
vld1q_f32
(
&
r2
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr2_5678
=
vld1q_f32
(
&
r2
[
w
+
4
]);
float32x4_t
vsum_1234
=
vaddq_f32
(
vr0_1234
,
vr1_1234
);
vsum_1234
=
vaddq_f32
(
vsum_1234
,
vr2_1234
);
float32x4_t
vsum_5678
=
vaddq_f32
(
vr0_5678
,
vr1_5678
);
vsum_5678
=
vaddq_f32
(
vsum_5678
,
vr2_5678
);
float32x4_t
vsum_2345
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
1
);
float32x4_t
vsum_3456
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
2
);
float32x4_t
vsum
=
vaddq_f32
(
vsum_1234
,
vsum_2345
);
vsum
=
vaddq_f32
(
vsum
,
vsum_3456
);
vsum
=
vmulq_f32
(
vsum
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vsum
);
cnt
+=
4
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
r0
;
dr1
=
r1
;
dr2
=
r2
;
cnt_num
=
w_unroll_size
;
if
(
cnt_num
>
0
)
{
asm
volatile
(
"1: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d4-d5}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d8-d9}, [%[dr2]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d2}, [%[dr0]]! @load d0-d5, dr0
\n
"
"vld1.f32 {d6}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d10}, [%[dr2]]! @load d4-d7, dr1
\n
"
"vadd.f32 q7, q0, q2 @max "
"r0_1234,r1_1234
\n
"
"vadd.f32 d16, d2, d6 @max "
"r0_5678,r1_5678
\n
"
"vadd.f32 q3, q7, q4 @max "
"r0_1234,r1_1234
\n
"
"vadd.f32 d12, d16, d10 @max "
"r0_5678,r1_5678
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q3, q6, #1 @vext max_2345
\n
"
"vext.f32 q2, q3, q6, #2 @vext max_3456
\n
"
"vadd.f32 q1, q3, q0 @add 1234 + "
"2345
\n
"
"vadd.f32 q1, q1, q2 @add + 3456
\n
"
"vmul.f32 q4, q1, %q[vcoef] @mul * 1/9.f
\n
"
"sub %[dr0], #8 @sub w, 8
\n
"
"sub %[dr1], #8 @sub w, 8
\n
"
"sub %[dr2], #8 @sub w, 8
\n
"
"subs %[cnt_num], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"bne 1b @bne "
"s1_max_loop
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr2
]
"+r"
(
dr2
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
vcoef
]
"+w"
(
vcoef
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
);
}
#endif
// remian
w
=
w_unroll_size
*
4
;
for
(
int
j
=
0
;
j
<
w_unroll_remian
;
j
++
)
{
float
tmp_sum
=
r0
[
j
+
w
]
+
r1
[
j
+
w
];
tmp_sum
+=
(
r0
[
j
+
w
+
1
]
+
r1
[
j
+
w
+
1
]);
tmp_sum
+=
(
r0
[
j
+
w
+
2
]
+
r1
[
j
+
w
+
2
]);
tmp_sum
+=
(
r2
[
j
+
w
+
1
]
+
r2
[
j
+
w
+
2
]);
tmp_sum
+=
r2
[
j
+
w
];
data_out_channel
[
j
+
w
+
1
]
=
tmp_sum
/
9.
f
;
}
// right
tmp
=
r0
[
w_in
-
2
]
+
r1
[
w_in
-
2
];
tmp
+=
(
r0
[
w_in
-
1
]
+
r1
[
w_in
-
1
]);
tmp
+=
(
r2
[
w_in
-
2
]
+
r2
[
w_in
-
1
]);
data_out_channel
[
w_out
-
1
]
=
tmp
/
9.
f
;
r0
=
r1
;
r1
=
r2
;
r2
=
r1
+
w_in
;
data_out_channel
+=
w_out
;
}
// the last two line
float
maxr0
=
(
r0
[
0
]
+
r0
[
1
]);
float
maxr1
=
(
r1
[
0
]
+
r1
[
1
]);
data_out_channel
[
0
]
=
(
maxr0
+
maxr1
)
/
9.
f
;
#ifdef __aarch64__
w
=
0
;
cnt
=
1
;
for
(;
w
<=
w_in
-
6
;
w
+=
4
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vsum_1234
=
vaddq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vsum_5678
=
vaddq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vsum_2345
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
1
);
float32x4_t
vsum_3456
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
2
);
float32x4_t
vsum
=
vaddq_f32
(
vsum_1234
,
vsum_2345
);
vsum
=
vaddq_f32
(
vsum
,
vsum_3456
);
vsum
=
vmulq_f32
(
vsum
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vsum
);
cnt
+=
4
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
r0
;
dr1
=
r1
;
cnt_num
=
w_unroll_size
;
if
(
cnt_num
>
0
)
{
asm
volatile
(
"1: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d4-d5}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d2}, [%[dr0]]! @load d0-d5, dr0
\n
"
"vld1.f32 {d6}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vadd.f32 q5, q0, q2 @max "
"r0_1234,r1_1234
\n
"
"vadd.f32 d12, d2, d6 @max "
"r0_5678,r1_5678
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q5, q6, #1 @vext max_2345
\n
"
"vext.f32 q2, q5, q6, #2 @vext max_3456
\n
"
"vadd.f32 q1, q5, q0 @add 1234 + 2345
\n
"
"vadd.f32 q1, q1, q2 @add + 3456
\n
"
"vmul.f32 q4, q1, %q[vcoef] @mul * 1/9.f
\n
"
"sub %[dr0], #8 @sub w, 8
\n
"
"sub %[dr1], #8 @sub w, 8
\n
"
"subs %[cnt_num], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"bne 1b @bne s1_max_loop
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
vcoef
]
"+w"
(
vcoef
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
);
}
#endif
// remian
w
=
w_unroll_size
*
4
;
for
(
int
j
=
0
;
j
<
w_unroll_remian
;
j
++
)
{
float
tmp_sum
=
r0
[
j
+
w
]
+
r1
[
j
+
w
];
tmp_sum
+=
(
r0
[
j
+
w
+
1
]
+
r1
[
j
+
w
+
1
]);
tmp_sum
+=
(
r0
[
j
+
w
+
2
]
+
r1
[
j
+
w
+
2
]);
data_out_channel
[
j
+
w
+
1
]
=
tmp_sum
/
9.
f
;
}
// right
tmp
=
r0
[
w_in
-
2
]
+
r1
[
w_in
-
2
];
tmp
+=
(
r0
[
w_in
-
1
]
+
r1
[
w_in
-
1
]);
data_out_channel
[
w_out
-
1
]
=
tmp
/
9.
f
;
}
}
}
void
pooling3x3s2p1_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
int
size_channel_out
=
wout
*
hout
;
int
size_channel_in
=
win
*
hin
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
kernel_h
=
ksize
[
0
];
int
kernel_w
=
ksize
[
1
];
int
stride_h
=
strides
[
0
];
int
stride_w
=
strides
[
1
];
int
pad_h
=
paddings
[
0
];
int
pad_w
=
paddings
[
1
];
int
pad_top
=
pad_h
;
int
pad_left
=
pad_w
;
int
w_needed
=
wout
*
2
+
1
;
int
h_needed
=
hout
*
2
+
1
;
int
pad_right
=
w_needed
-
win
-
pad_left
;
int
pad_bottom
=
h_needed
-
hin
-
pad_top
;
int
w_even
=
(
win
>>
1
)
<<
1
;
int
h_even
=
(
hin
>>
1
)
<<
1
;
int
w_in_2
=
win
<<
1
;
float
minval
=
std
::
numeric_limits
<
float
>::
lowest
();
float32x4_t
vzero
=
vdupq_n_f32
(
minval
);
// zero pad
int
cnt_col
=
(
win
-
1
)
/
8
;
// remain
int
remain
=
((
win
-
1
)
%
8
)
/
2
;
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
chout
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
chout
;
c
++
)
{
float
*
data_out_channel
=
data_out_batch
+
c
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
const
float
*
r0
=
data_in_channel
;
const
float
*
r1
=
r0
+
win
;
const
float
*
r2
=
r1
+
win
;
float
*
dr_out
=
data_out_channel
;
const
float
*
dr0
=
r0
;
const
float
*
dr1
=
r1
;
const
float
*
dr2
=
r2
;
int
w
=
1
;
int
cnt
=
1
;
int
cnt_num
=
cnt_col
;
int
cnt_num1
=
remain
;
data_out_channel
[
0
]
=
std
::
max
(
std
::
max
(
r0
[
0
],
r0
[
1
]),
std
::
max
(
r1
[
0
],
r1
[
1
]));
// first row with zero pad
#ifdef __aarch64__
for
(;
w
<
win
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vmax_1234
=
vmaxq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vmax_5678
=
vmaxq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vmax_9101112
=
vmaxq_f32
(
vr0_9101112
,
vr1_9101112
);
float32x4_t
vmax_2345
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
1
);
float32x4_t
vmax_6789
=
vextq_f32
(
vmax_5678
,
vmax_9101112
,
1
);
float32x2_t
vmax_12_34
=
vpmax_f32
(
vget_low_f32
(
vmax_1234
),
vget_high_f32
(
vmax_1234
));
float32x2_t
vmax_23_45
=
vpmax_f32
(
vget_low_f32
(
vmax_2345
),
vget_high_f32
(
vmax_2345
));
float32x2_t
vmax_56_78
=
vpmax_f32
(
vget_low_f32
(
vmax_5678
),
vget_high_f32
(
vmax_5678
));
float32x2_t
vmax_67_89
=
vpmax_f32
(
vget_low_f32
(
vmax_6789
),
vget_high_f32
(
vmax_6789
));
float32x2_t
vmax_123_345
=
vmax_f32
(
vmax_12_34
,
vmax_23_45
);
float32x2_t
vmax_567_789
=
vmax_f32
(
vmax_56_78
,
vmax_67_89
);
vst1_f32
(
&
data_out_channel
[
cnt
],
vmax_123_345
);
vst1_f32
(
&
data_out_channel
[
cnt
+
2
],
vmax_567_789
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
vr0
=
vsetq_lane_f32
(
minval
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
minval
,
vr1
,
3
);
float32x4_t
vmax1
=
vmaxq_f32
(
vr0
,
vr1
);
float32x2_t
vmax2
=
vpmax_f32
(
vget_low_f32
(
vmax1
),
vget_high_f32
(
vmax1
));
vmax2
=
vpmax_f32
(
vmax2
,
vmax2
);
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vmax2
,
0
);
cnt
++
;
}
#else
dr0
=
dr0
+
1
;
dr1
=
dr1
+
1
;
dr_out
=
dr_out
+
1
;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, 0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d10-d11}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vmax.f32 q6, q0, q3 @max "
"r0_1234,r1_1234
\n
"
"vmax.f32 q7, q1, q4 @max "
"r0_5678,r1_5678
\n
"
"vmax.f32 q8, q2, q5 @max "
"r0_9101112,r1_9101112
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q6, q7, #1 @vext max_2345
\n
"
"vext.f32 q1, q7, q8, #1 @vext max_6789
\n
"
"vpmax.f32 d4, d12, d13 @pmax d4, "
"vmax_1234, vmax_1234
\n
"
"vpmax.f32 d6, d14, d15 @pmax d6, "
"vmax_5678, vmax_5678
\n
"
"vpmax.f32 d5, d0, d1 @pmax d5, "
"vmax_2345, vmax_2345
\n
"
"vpmax.f32 d7, d2, d3 @pmax d7, "
"vmax_6789, vmax_6789
\n
"
"vmax.f32 d8, d4, d5 @max d2, "
"vmax_12_34, vmax_23_45
\n
"
"vmax.f32 d9, d6, d7 @max d2, "
"vmax_56_78, vmax_67_89
\n
"
"sub %[dr0], #16 @add w, 8
\n
"
"sub %[dr1], #16 @add w, 8
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"bne 1b @bne s3_max_loop
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp cnt_num, "
"0
\n
"
"ble 4f @ble exit
\n
"
"2: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vmov.f32 s3,s2 @movs3, s2
\n
"
"vmov.f32 s7,s6 @movs7, s6
\n
"
"vmax.f32 q0, q0, q1 @max q0, q0, q1
\n
"
"vpmax.f32 d0, d0, d1 @pmax d0, d0,d1
\n
"
"vpmax.f32 d0, d0, d0 @pmax d0, d0, d0
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs "
"cnt_num, #1
\n
"
"bne 2b @bne "
"s3_max_loop_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
);
}
// printf("cnt_num: %d, cnt_num1: %d \n",cnt_num, cnt_num1);
#endif
// int w = w_even - 1;
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
),
win
);
float
tmp
=
r0
[
wstart
];
// std::numeric_limits<float>::min();
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
// only run 1 or 2 times
tmp
=
std
::
max
(
tmp
,
std
::
max
(
r0
[
i
],
r1
[
i
]));
}
data_out_channel
[
w_even
>>
1
]
=
tmp
;
// cnt ++;
}
r0
=
r1
;
r1
=
r0
+
win
;
r2
=
r1
+
win
;
data_out_channel
+=
wout
;
int
h
=
2
;
for
(;
h
<
h_even
;
h
+=
2
)
{
// deal with left pad
float
maxr0
=
std
::
max
(
r0
[
0
],
r0
[
1
]);
float
maxr1
=
std
::
max
(
r1
[
0
],
r1
[
1
]);
float
maxr2
=
std
::
max
(
r2
[
0
],
r2
[
1
]);
data_out_channel
[
0
]
=
std
::
max
(
std
::
max
(
maxr0
,
maxr1
),
maxr2
);
#ifdef __aarch64__
w
=
1
;
cnt
=
1
;
for
(;
w
<
win
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vr2_1234
=
vld1q_f32
(
&
r2
[
w
]);
float32x4_t
vr2_5678
=
vld1q_f32
(
&
r2
[
w
+
4
]);
float32x4_t
vr2_9101112
=
vld1q_f32
(
&
r2
[
w
+
8
]);
float32x4_t
vmax_1234
=
vmaxq_f32
(
vr0_1234
,
vr1_1234
);
vmax_1234
=
vmaxq_f32
(
vmax_1234
,
vr2_1234
);
float32x4_t
vmax_5678
=
vmaxq_f32
(
vr0_5678
,
vr1_5678
);
vmax_5678
=
vmaxq_f32
(
vmax_5678
,
vr2_5678
);
float32x4_t
vmax_9101112
=
vmaxq_f32
(
vr0_9101112
,
vr1_9101112
);
vmax_9101112
=
vmaxq_f32
(
vmax_9101112
,
vr2_9101112
);
float32x4_t
vmax_2345
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
1
);
float32x4_t
vmax_6789
=
vextq_f32
(
vmax_5678
,
vmax_9101112
,
1
);
float32x2_t
vmax_12_34
=
vpmax_f32
(
vget_low_f32
(
vmax_1234
),
vget_high_f32
(
vmax_1234
));
float32x2_t
vmax_23_45
=
vpmax_f32
(
vget_low_f32
(
vmax_2345
),
vget_high_f32
(
vmax_2345
));
float32x2_t
vmax_56_78
=
vpmax_f32
(
vget_low_f32
(
vmax_5678
),
vget_high_f32
(
vmax_5678
));
float32x2_t
vmax_67_89
=
vpmax_f32
(
vget_low_f32
(
vmax_6789
),
vget_high_f32
(
vmax_6789
));
float32x2_t
vmax_123_345
=
vmax_f32
(
vmax_12_34
,
vmax_23_45
);
float32x2_t
vmax_567_789
=
vmax_f32
(
vmax_56_78
,
vmax_67_89
);
vst1_f32
(
&
data_out_channel
[
cnt
],
vmax_123_345
);
vst1_f32
(
&
data_out_channel
[
cnt
+
2
],
vmax_567_789
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr2
=
vld1q_f32
(
&
r2
[
w
]);
vr0
=
vsetq_lane_f32
(
minval
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
minval
,
vr1
,
3
);
vr2
=
vsetq_lane_f32
(
minval
,
vr2
,
3
);
float32x4_t
vmax1
=
vmaxq_f32
(
vr0
,
vr1
);
vmax1
=
vmaxq_f32
(
vmax1
,
vr2
);
float32x2_t
vmax2
=
vpmax_f32
(
vget_low_f32
(
vmax1
),
vget_high_f32
(
vmax1
));
float32x2_t
vmax
=
vpmax_f32
(
vmax2
,
vmax2
);
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vmax
,
0
);
cnt
++
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
(
r0
+
1
);
dr1
=
(
r1
+
1
);
dr2
=
(
r2
+
1
);
cnt_num
=
cnt_col
;
cnt_num1
=
remain
;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d12-d15}, [%[dr2]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d10-d11}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d16-d17}, [%[dr2]]! @load d4-d7, "
"dr1
\n
"
"vmax.f32 q9, q0, q3 @max q0,q0,q2
\n
"
"vmax.f32 q10, q1, q4 @max q1,q1,q3
\n
"
"vmax.f32 q11, q2, q5 @max q1,q1,q3
\n
"
"vmax.f32 q0, q9, q6 @max q0,q0,q2 "
"1234
\n
"
"vmax.f32 q3, q10, q7 @max q1,q1,q3 "
"5678
\n
"
"vmax.f32 q1, q11, q8 @max q1,q1,q3 "
"9101112
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q4, q0, q3, #1 @vext 2345
\n
"
"vext.f32 q2, q3, q1, #1 @vext 6789
\n
"
"vpmax.f32 d10, d0, d1 @pmax d10, "
"vmax_1234, vmax_1234
\n
"
"vpmax.f32 d12, d6, d7 @pmax d12, "
"vmax_5678, vmax_5678
\n
"
"vpmax.f32 d11, d8, d9 @pmax d11, "
"vmax_2345, vmax_2345
\n
"
"vpmax.f32 d13, d4, d5 @pmax d13, "
"vmax_6789, vmax_6789
\n
"
"vmax.f32 d0, d10, d11 @pmax d0, "
"vmax_12_34, vmax_23_45
\n
"
"vmax.f32 d1, d12, d13 @pmax d1, "
"vmax_56_78, vmax_67_89
\n
"
"sub %[dr0], #16 @add w, 8
\n
"
"sub %[dr1], #16 @add w, 8
\n
"
"sub %[dr2], #16 @add w, 8
\n
"
"vst1.f32 d0, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d1, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"bne 1b @bne "
"s3_max_loop_mid
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble 4f @ble exit1
\n
"
"2: @mid loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr2]]! @load d2-d3, "
"dr1
\n
"
"vmov.f32 s3,s2 @movs3, s2
\n
"
"vmov.f32 s7,s6 @movs7, s6
\n
"
"vmov.f32 s11,s10 @movs11, s10
\n
"
"vmax.f32 q0, q0, q1 @max q0, q0, "
"q1
\n
"
"vmax.f32 q0, q0, q2 @max q0, q0, "
"q2
\n
"
"vpmax.f32 d0, d0, d1 @pmax d0, "
"d0,d1
\n
"
"vpmax.f32 d0, d0, d0 @pmax d0, d0, "
"d0
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"sub %[dr2], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs cnt_num, "
"#1
\n
"
"bne 2b @bne "
"s3_max_loop_mid_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr2
]
"+r"
(
dr2
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr2
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
),
win
);
float
tmp
=
r0
[
wstart
];
// std::numeric_limits<float>::min();
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
tmp
=
std
::
max
(
tmp
,
std
::
max
(
r0
[
i
],
r1
[
i
]));
tmp
=
std
::
max
(
tmp
,
r2
[
i
]);
}
data_out_channel
[
w_even
>>
1
]
=
tmp
;
// cnt ++;
}
r0
=
r2
;
r1
=
r0
+
win
;
r2
=
r1
+
win
;
data_out_channel
+=
wout
;
}
if
(
pad_bottom
)
{
// deal with bottom pad
// first row with zero pad
int
hstart
=
(
h
>>
1
)
*
stride_h
-
pad_h
;
int
hend
=
std
::
min
(
std
::
min
(
hstart
+
kernel_h
,
hin
+
pad_h
),
hin
);
if
(
hstart
==
hend
-
1
)
{
// only one lline
data_out_channel
[
0
]
=
std
::
max
(
r0
[
0
],
r0
[
1
]);
#ifdef __aarch64__
w
=
1
;
cnt
=
1
;
for
(;
w
<
win
-
8
;
w
+=
8
)
{
float32x4_t
vmax_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vmax_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vmax_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vmax_2345
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
1
);
float32x4_t
vmax_6789
=
vextq_f32
(
vmax_5678
,
vmax_9101112
,
1
);
float32x2_t
vmax_12_34
=
vpmax_f32
(
vget_low_f32
(
vmax_1234
),
vget_high_f32
(
vmax_1234
));
float32x2_t
vmax_23_45
=
vpmax_f32
(
vget_low_f32
(
vmax_2345
),
vget_high_f32
(
vmax_2345
));
float32x2_t
vmax_56_78
=
vpmax_f32
(
vget_low_f32
(
vmax_5678
),
vget_high_f32
(
vmax_5678
));
float32x2_t
vmax_67_89
=
vpmax_f32
(
vget_low_f32
(
vmax_6789
),
vget_high_f32
(
vmax_6789
));
float32x2_t
vmax_123_345
=
vmax_f32
(
vmax_12_34
,
vmax_23_45
);
float32x2_t
vmax_567_789
=
vmax_f32
(
vmax_56_78
,
vmax_67_89
);
vst1_f32
(
&
data_out_channel
[
cnt
],
vmax_123_345
);
vst1_f32
(
&
data_out_channel
[
cnt
+
2
],
vmax_567_789
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
vr0
=
vsetq_lane_f32
(
minval
,
vr0
,
3
);
float32x2_t
vmax
=
vpmax_f32
(
vget_low_f32
(
vr0
),
vget_high_f32
(
vr0
));
vmax
=
vpmax_f32
(
vmax
,
vmax
);
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vmax
,
0
);
cnt
++
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
(
r0
+
1
);
cnt_num
=
cnt_col
;
cnt_num1
=
remain
;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d3, "
"dr0
\n
"
"vld1.f32 {d4-d5}, [%[dr0]]! @load d0-d3, "
"dr0
\n
"
"vext.f32 q4, q0, q1, #1 @vext q4, q0, "
"q1, 1 2345
\n
"
"vext.f32 q5, q1, q2, #1 @vext q5, q0, "
"q1, 1 6789
\n
"
"vpmax.f32 d12, d0, d1 @pmax d12, "
"vmax_1234, vmax_1234
\n
"
"vpmax.f32 d14, d2, d3 @pmax d14, "
"vmax_5678, vmax_5678
\n
"
"vpmax.f32 d13, d8, d9 @pmax d13, "
"vmax_2345, vmax_2345
\n
"
"vpmax.f32 d15, d10, d11 @pmax d15, "
"vmax_6789, vmax_6789
\n
"
"vmax.f32 d0, d12, d13 @max d0, "
"vmax_12_34,vmax_23_45
\n
"
"vmax.f32 d1, d14, d15 @pmax d2, "
"vmax_56_78, vmax_67_89
\n
"
"sub %[dr0], #16 @add w, 6
\n
"
"vst1.f32 d0, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d1, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"bne 1b @bne "
"s3_max_loop_bot
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble 4f @ble exit
\n
"
"2: @bot loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vmov.f32 s3,s2 @movs3, s2
\n
"
"vpmax.f32 d0, d0, d1 @pmax d0, "
"d0,d1
\n
"
"vpmax.f32 d0, d0, d0 @pmax d0, d0, "
"d0
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"sub %[dr0], #8 @add w, 2
\n
"
"subs %[cnt_num1], #1 @subs "
"cnt_num, #1
\n
"
"bne 2b @bne "
"s3_max_loop_bot_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
),
win
);
float
tmp
=
r0
[
wstart
];
// std::numeric_limits<float>::min();
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
tmp
=
std
::
max
(
tmp
,
r0
[
i
]);
}
data_out_channel
[
w_even
>>
1
]
=
tmp
;
}
}
else
{
// two lines
data_out_channel
[
0
]
=
std
::
max
(
std
::
max
(
r0
[
0
],
r0
[
1
]),
std
::
max
(
r1
[
0
],
r1
[
1
]));
#ifdef __aarch64__
w
=
1
;
cnt
=
1
;
for
(;
w
<
win
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vmax_1234
=
vmaxq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vmax_5678
=
vmaxq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vmax_9101112
=
vmaxq_f32
(
vr0_9101112
,
vr1_9101112
);
float32x4_t
vmax_2345
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
1
);
float32x4_t
vmax_6789
=
vextq_f32
(
vmax_5678
,
vmax_9101112
,
1
);
float32x2_t
vmax_12_34
=
vpmax_f32
(
vget_low_f32
(
vmax_1234
),
vget_high_f32
(
vmax_1234
));
float32x2_t
vmax_23_45
=
vpmax_f32
(
vget_low_f32
(
vmax_2345
),
vget_high_f32
(
vmax_2345
));
float32x2_t
vmax_56_78
=
vpmax_f32
(
vget_low_f32
(
vmax_5678
),
vget_high_f32
(
vmax_5678
));
float32x2_t
vmax_67_89
=
vpmax_f32
(
vget_low_f32
(
vmax_6789
),
vget_high_f32
(
vmax_6789
));
float32x2_t
vmax_123_345
=
vmax_f32
(
vmax_12_34
,
vmax_23_45
);
float32x2_t
vmax_567_789
=
vmax_f32
(
vmax_56_78
,
vmax_67_89
);
vst1_f32
(
&
data_out_channel
[
cnt
],
vmax_123_345
);
vst1_f32
(
&
data_out_channel
[
cnt
+
2
],
vmax_567_789
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
vr0
=
vsetq_lane_f32
(
minval
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
minval
,
vr1
,
3
);
float32x4_t
vmax1
=
vmaxq_f32
(
vr0
,
vr1
);
float32x2_t
vmax2
=
vpmax_f32
(
vget_low_f32
(
vmax1
),
vget_high_f32
(
vmax1
));
vmax2
=
vpmax_f32
(
vmax2
,
vmax2
);
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vmax2
,
0
);
cnt
++
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
(
r0
+
1
);
dr1
=
(
r1
+
1
);
cnt_num
=
cnt_col
;
cnt_num1
=
remain
;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr0]]! @load d0-d3, "
"dr0
\n
"
"vld1.f32 {d10-d11}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vmax.f32 q6, q0, q3 @max q0,q0,q2 "
"1234
\n
"
"vmax.f32 q7, q1, q4 @max q1,q1,q3 "
"5678
\n
"
"vmax.f32 q8, q2, q5 @max q1,q1,q3 "
"9101112
\n
"
//"vmov.f32 s7,s6 @mov s7,
// s6\n"
"vext.f32 q0, q6, q7, #1 @vext q0, "
"2345
\n
"
"vext.f32 q1, q7, q8, #1 @vext q1, "
"6789
\n
"
"vpmax.f32 d4, d12, d13 @pmax d4, "
"vmax_1234, vmax_1234
\n
"
"vpmax.f32 d6, d14, d15 @pmax d6, "
"vmax_5678, vmax_5678
\n
"
"vpmax.f32 d5, d0, d1 @pmax d5, "
"vmax_2345, vmax_2345
\n
"
"vpmax.f32 d7, d2, d3 @pmax d7, "
"vmax_6789, vmax_6789
\n
"
"vmax.f32 d8, d4, d5 @max d2, "
"vmax_12_34, vmax_23_45
\n
"
"vmax.f32 d9, d6, d7 @max d2, "
"vmax_56_78, vmax_67_89
\n
"
"sub %[dr0], #16 @add w, 8
\n
"
"sub %[dr1], #16 @add w, 8
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"bne 1b @bne "
"s3_max_loop_bot
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble 4f @ble exit
\n
"
"2: @bot loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vmov.f32 s3,s2 @movs3, s2
\n
"
"vmov.f32 s7,s6 @movs7, s6
\n
"
"vmax.f32 q0, q0, q1 @max q0, q0, "
"q1
\n
"
"vpmax.f32 d0, d0, d1 @pmax d0, "
"d0,d1
\n
"
"vpmax.f32 d0, d0, d0 @pmax d0, d0, "
"d0
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs "
"cnt_num, #1
\n
"
"bne 2b @bne "
"s3_max_loop_bot_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
),
win
);
float
tmp
=
r0
[
wstart
];
// std::numeric_limits<float>::min();
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
// only run 1 or 2 times
tmp
=
std
::
max
(
tmp
,
std
::
max
(
r0
[
i
],
r1
[
i
]));
}
data_out_channel
[
w_even
>>
1
]
=
tmp
;
}
}
}
}
}
}
void
pooling3x3s2p1_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
int
size_channel_out
=
wout
*
hout
;
int
size_channel_in
=
win
*
hin
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
kernel_h
=
ksize
[
0
];
int
kernel_w
=
ksize
[
1
];
int
stride_h
=
strides
[
0
];
int
stride_w
=
strides
[
1
];
int
pad_h
=
paddings
[
0
];
int
pad_w
=
paddings
[
1
];
int
pad_top
=
pad_h
;
int
pad_left
=
pad_w
;
int
w_needed
=
wout
*
2
+
1
;
int
h_needed
=
hout
*
2
+
1
;
int
pad_right
=
w_needed
-
win
-
pad_left
;
int
pad_bottom
=
h_needed
-
hin
-
pad_top
;
int
w_even
=
(
win
>>
1
)
<<
1
;
int
h_even
=
(
hin
>>
1
)
<<
1
;
int
w_in_2
=
win
<<
1
;
int
w_unroll_size
=
(
win
-
1
)
/
8
;
// remain
int
w_unroll_remian
=
((
win
-
1
)
%
8
)
/
2
;
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
chout
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
chin
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
chout
;
c
++
)
{
float
*
data_out_channel
=
data_out_batch
+
c
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
const
float
*
r0
=
data_in_channel
;
const
float
*
r1
=
r0
+
win
;
const
float
*
r2
=
r1
+
win
;
int
cnt_num
=
w_unroll_size
;
int
cnt_num1
=
w_unroll_remian
;
float
*
dr_out
=
data_out_channel
;
const
float
*
dr0
=
r0
;
const
float
*
dr1
=
r1
;
const
float
*
dr2
=
r2
;
int
w
=
1
;
int
cnt
=
1
;
float32x4_t
vcoef
=
vdupq_n_f32
(
1.
f
/
9.
f
);
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
data_out_channel
[
0
]
=
(
r0
[
0
]
+
r0
[
1
]
+
r1
[
0
]
+
r1
[
1
])
/
9.
f
;
// first row with zero pad
#ifdef __aarch64__
for
(;
w
<
win
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vsum_1234
=
vaddq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vsum_5678
=
vaddq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vsum_9101112
=
vaddq_f32
(
vr0_9101112
,
vr1_9101112
);
float32x4_t
vsum_2345
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
1
);
float32x4_t
vsum_3456
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
2
);
float32x4_t
vsum_4567
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
3
);
float32x4_t
vsum_6789
=
vextq_f32
(
vsum_5678
,
vsum_9101112
,
1
);
float32x4_t
vsum_123_345
=
vaddq_f32
(
vsum_1234
,
vsum_2345
);
vsum_123_345
=
vaddq_f32
(
vsum_123_345
,
vsum_3456
);
float32x4_t
vsum_567_789
=
vaddq_f32
(
vsum_4567
,
vsum_5678
);
vsum_567_789
=
vaddq_f32
(
vsum_567_789
,
vsum_6789
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_123_345
,
2
),
vsum_123_345
,
1
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
1
),
vsum_123_345
,
2
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
3
),
vsum_123_345
,
3
);
float32x4_t
vrst
=
vmulq_f32
(
vsum_123_345
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vrst
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
vr0
=
vsetq_lane_f32
(
0.
f
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
0.
f
,
vr1
,
3
);
float32x4_t
vsum1
=
vaddq_f32
(
vr0
,
vr1
);
float32x2_t
vsum2
=
vpadd_f32
(
vget_low_f32
(
vsum1
),
vget_high_f32
(
vsum1
));
vsum2
=
vpadd_f32
(
vsum2
,
vsum2
);
float32x2_t
vrst
=
vmul_f32
(
vsum2
,
vget_low_f32
(
vcoef
));
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vrst
,
0
);
cnt
++
;
}
#else
dr0
=
dr0
+
1
;
dr1
=
dr1
+
1
;
dr_out
=
dr_out
+
1
;
// printf("cnt_num: %d, cnt_num1: %d \n",cnt_num, cnt_num1);
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, 0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d10-d11}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vadd.f32 q6, q0, q3 @max "
"r0_1234,r1_1234
\n
"
"vadd.f32 q7, q1, q4 @max "
"r0_5678,r1_5678
\n
"
"vadd.f32 q8, q2, q5 @max "
"r0_9101112,r1_9101112
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q6, q7, #1 @vext max_2345
\n
"
"vext.f32 q1, q6, q7, #3 @vext max_4567
\n
"
"vext.f32 q2, q6, q7, #2 @vext max_3456
\n
"
"vext.f32 q3, q7, q8, #1 @vext max_6789
\n
"
"vadd.f32 q4, q6, q0 @add 1234, 2345
\n
"
"vadd.f32 q5, q7, q1 @add 5678, 4567
\n
"
"vadd.f32 q4, q4, q2 @add 3456, sum1
\n
"
"vadd.f32 q5, q5, q3 @add 6789, sum2
\n
"
"vmov.f32 s17, s18 @mov
\n
"
"vmov.f32 s18, s21 @mov
\n
"
"vmov.f32 s19, s23 @mov
\n
"
"vmul.f32 q4, q4, %q[vcoef] @mul
\n
"
"sub %[dr0], #16 @add w, 8
\n
"
"sub %[dr1], #16 @add w, 8
\n
"
"subs %[cnt_num], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, dr_out
\n
"
"bne 1b @bne s3_max_loop
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp cnt_num, "
"0
\n
"
"ble 4f @ble exit
\n
"
"2: @main loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vext.f32 q0, %q[vzero], q0, #3 @ ext v0_0123
\n
"
"vext.f32 q1, %q[vzero], q1, #3 @ ext v1_0123
\n
"
"vadd.f32 q0, q0, q1 @add q0, q0, q1
\n
"
"vpadd.f32 d0, d0, d1 @padd d0, d0,d1
\n
"
"vpadd.f32 d0, d0, d0 @padd d0, d0, d0
\n
"
"vmul.f32 d0, d0, %e[vcoef] @mul
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"bne 2b @bne s3_max_loop_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
),
[
vcoef
]
"+w"
(
vcoef
),
[
vzero
]
"+w"
(
vzero
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
);
}
// printf("cnt_num: %d, cnt_num1: %d \n",cnt_num, cnt_num1);
#endif
// int w = w_even - 1;
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
),
win
);
float
tmp
=
0.
f
;
// std::numeric_limits<float>::min();
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
// only run 1 or 2 times
tmp
+=
(
r0
[
i
]
+
r1
[
i
]);
}
data_out_channel
[
w_even
>>
1
]
=
tmp
/
9.
f
;
// cnt ++;
}
r0
=
r1
;
r1
=
r0
+
win
;
r2
=
r1
+
win
;
data_out_channel
+=
wout
;
int
h
=
2
;
for
(;
h
<
h_even
;
h
+=
2
)
{
// deal with left pad
float
sum0
=
r0
[
0
]
+
r0
[
1
];
float
sum1
=
r1
[
0
]
+
r1
[
1
];
float
sum2
=
r2
[
0
]
+
r2
[
1
];
data_out_channel
[
0
]
=
(
sum0
+
sum1
+
sum2
)
/
9.
f
;
#ifdef __aarch64__
w
=
1
;
cnt
=
1
;
for
(;
w
<
win
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vr2_1234
=
vld1q_f32
(
&
r2
[
w
]);
float32x4_t
vr2_5678
=
vld1q_f32
(
&
r2
[
w
+
4
]);
float32x4_t
vr2_9101112
=
vld1q_f32
(
&
r2
[
w
+
8
]);
float32x4_t
vsum_1234
=
vaddq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vsum_5678
=
vaddq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vsum_9101112
=
vaddq_f32
(
vr0_9101112
,
vr1_9101112
);
vsum_1234
=
vaddq_f32
(
vsum_1234
,
vr2_1234
);
vsum_5678
=
vaddq_f32
(
vsum_5678
,
vr2_5678
);
vsum_9101112
=
vaddq_f32
(
vsum_9101112
,
vr2_9101112
);
float32x4_t
vsum_2345
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
1
);
float32x4_t
vsum_3456
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
2
);
float32x4_t
vsum_4567
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
3
);
float32x4_t
vsum_6789
=
vextq_f32
(
vsum_5678
,
vsum_9101112
,
1
);
float32x4_t
vsum_123_345
=
vaddq_f32
(
vsum_1234
,
vsum_2345
);
vsum_123_345
=
vaddq_f32
(
vsum_123_345
,
vsum_3456
);
float32x4_t
vsum_567_789
=
vaddq_f32
(
vsum_4567
,
vsum_5678
);
vsum_567_789
=
vaddq_f32
(
vsum_567_789
,
vsum_6789
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_123_345
,
2
),
vsum_123_345
,
1
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
1
),
vsum_123_345
,
2
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
3
),
vsum_123_345
,
3
);
float32x4_t
vrst
=
vmulq_f32
(
vsum_123_345
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vrst
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr2
=
vld1q_f32
(
&
r2
[
w
]);
vr0
=
vsetq_lane_f32
(
0.
f
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
0.
f
,
vr1
,
3
);
vr2
=
vsetq_lane_f32
(
0.
f
,
vr2
,
3
);
float32x4_t
vsum1
=
vaddq_f32
(
vr0
,
vr1
);
vsum1
=
vaddq_f32
(
vsum1
,
vr2
);
float32x2_t
vsum2
=
vpadd_f32
(
vget_low_f32
(
vsum1
),
vget_high_f32
(
vsum1
));
float32x2_t
vsum
=
vpadd_f32
(
vsum2
,
vsum2
);
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vsum
,
0
)
/
9.
f
;
cnt
++
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
(
r0
+
1
);
dr1
=
(
r1
+
1
);
dr2
=
(
r2
+
1
);
cnt_num
=
w_unroll_size
;
cnt_num1
=
w_unroll_remian
;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d12-d15}, [%[dr2]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d10-d11}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d16-d17}, [%[dr2]]! @load d4-d7, "
"dr1
\n
"
"vadd.f32 q9, q0, q3 @max q0,q0,q2
\n
"
"vadd.f32 q10, q1, q4 @max q1,q1,q3
\n
"
"vadd.f32 q11, q2, q5 @max q1,q1,q3
\n
"
"vadd.f32 q6, q9, q6 @max q0,q0,q2 "
"1234
\n
"
"vadd.f32 q7, q10, q7 @max q1,q1,q3 "
"5678
\n
"
"vadd.f32 q8, q11, q8 @max q1,q1,q3 "
"9101112
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q6, q7, #1 @vext max_2345
\n
"
"vext.f32 q1, q6, q7, #3 @vext max_4567
\n
"
"vext.f32 q2, q6, q7, #2 @vext max_3456
\n
"
"vext.f32 q3, q7, q8, #1 @vext max_6789
\n
"
"vadd.f32 q4, q6, q0 @add 1234, 2345 "
"
\n
"
"vadd.f32 q5, q7, q1 @add 5678, 4567 "
"
\n
"
"vadd.f32 q4, q4, q2 @add 3456, sum1 "
"
\n
"
"vadd.f32 q5, q5, q3 @add 6789, sum2 "
"
\n
"
"vmov.f32 s17, s18 @mov
\n
"
"vmov.f32 s18, s21 @mov
\n
"
"vmov.f32 s19, s23 @mov
\n
"
"vmul.f32 q4, q4, %q[vcoef] @mul
\n
"
"sub %[dr0], #16 @add w, 8
\n
"
"sub %[dr1], #16 @add w, 8
\n
"
"sub %[dr2], #16 @add w, 8
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"bne 1b @bne s3_max_loop_mid
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble 4f @ble exit1
\n
"
"2: @mid loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr2]]! @load d2-d3, "
"dr1
\n
"
"vext.f32 q0, %q[vzero], q0, #3 @ ext v0_0123
\n
"
"vext.f32 q1, %q[vzero], q1, #3 @ ext v1_0123
\n
"
"vext.f32 q2, %q[vzero], q2, #3 @ ext v1_0123
\n
"
"vadd.f32 q0, q0, q1 @add q0, q0, "
"q1
\n
"
"vadd.f32 q0, q0, q2 @add q0, q0, "
"q1
\n
"
"vpadd.f32 d0, d0, d1 @padd d0, "
"d0,d1
\n
"
"vpadd.f32 d0, d0, d0 @padd d0, d0, "
"d0
\n
"
"vmul.f32 d0, d0, %e[vcoef] @mul
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"sub %[dr2], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"bne 2b @bne s3_max_loop_mid_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr2
]
"+r"
(
dr2
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
),
[
vcoef
]
"+w"
(
vcoef
),
[
vzero
]
"+w"
(
vzero
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr2
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
),
win
);
float
tmp
=
0.
f
;
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
tmp
+=
(
r0
[
i
]
+
r1
[
i
]
+
r2
[
i
]);
}
data_out_channel
[
w_even
>>
1
]
=
tmp
/
9.
f
;
// cnt ++;
}
r0
=
r2
;
r1
=
r0
+
win
;
r2
=
r1
+
win
;
data_out_channel
+=
wout
;
}
if
(
pad_bottom
)
{
// deal with bottom pad
// first row with zero pad
int
hstart
=
(
h
>>
1
)
*
stride_h
-
pad_h
;
int
hend
=
std
::
min
(
std
::
min
(
hstart
+
kernel_h
,
hin
+
pad_h
),
hin
);
if
(
hstart
==
hend
-
1
)
{
// only one lline
data_out_channel
[
0
]
=
(
r0
[
0
]
+
r0
[
1
])
/
9.
f
;
#ifdef __aarch64__
w
=
1
;
cnt
=
1
;
for
(;
w
<
win
-
8
;
w
+=
8
)
{
float32x4_t
vsum_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vsum_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vsum_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vsum_2345
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
1
);
float32x4_t
vsum_3456
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
2
);
float32x4_t
vsum_4567
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
3
);
float32x4_t
vsum_6789
=
vextq_f32
(
vsum_5678
,
vsum_9101112
,
1
);
float32x4_t
vsum_123_345
=
vaddq_f32
(
vsum_1234
,
vsum_2345
);
vsum_123_345
=
vaddq_f32
(
vsum_123_345
,
vsum_3456
);
float32x4_t
vsum_567_789
=
vaddq_f32
(
vsum_4567
,
vsum_5678
);
vsum_567_789
=
vaddq_f32
(
vsum_567_789
,
vsum_6789
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_123_345
,
2
),
vsum_123_345
,
1
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
1
),
vsum_123_345
,
2
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
3
),
vsum_123_345
,
3
);
float32x4_t
vrst
=
vmulq_f32
(
vsum_123_345
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vrst
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
vr0
=
vsetq_lane_f32
(
0.
f
,
vr0
,
3
);
float32x2_t
vsum
=
vpadd_f32
(
vget_low_f32
(
vr0
),
vget_high_f32
(
vr0
));
vsum
=
vpadd_f32
(
vsum
,
vsum
);
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vsum
,
0
)
/
9.
f
;
cnt
++
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
(
r0
+
1
);
cnt_num
=
w_unroll_size
;
cnt_num1
=
w_unroll_remian
;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d12-d15}, [%[dr0]]! @load "
"d0-d3, dr0
\n
"
"vld1.f32 {d16-d17}, [%[dr0]]! @load "
"d0-d3, dr0
\n
"
"vext.f32 q0, q6, q7, #1 @vext "
"max_2345
\n
"
"vext.f32 q1, q6, q7, #3 @vext "
"max_4567
\n
"
"vext.f32 q2, q6, q7, #2 @vext "
"max_3456
\n
"
"vext.f32 q3, q7, q8, #1 @vext "
"max_6789
\n
"
"vadd.f32 q4, q6, q0 @add 1234, "
"2345
\n
"
"vadd.f32 q5, q7, q1 @add 5678, "
"4567
\n
"
"vadd.f32 q4, q4, q2 @add 3456, "
"sum1
\n
"
"vadd.f32 q5, q5, q3 @add 6789, "
"sum2
\n
"
"vmov.f32 s17, s18 @mov
\n
"
"vmov.f32 s18, s21 @mov
\n
"
"vmov.f32 s19, s23 @mov
\n
"
"vmul.f32 q4, q4, %q[vcoef] @mul
\n
"
"sub %[dr0], #16 @add w, 6
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"bne 1b @bne s3_max_loop_bot
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble 4f @ble exit
\n
"
"2: @bot loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vext.f32 q0, %q[vzero], q0, #3 @ ext "
"v0_0123
\n
"
"vpadd.f32 d0, d0, d1 @padd d0, "
"d0,d1
\n
"
"vpadd.f32 d0, d0, d0 @padd d0, d0, "
"d0
\n
"
"vmul.f32 d0, d0, %e[vcoef] @mul
\n
"
"sub %[dr0], #8 @add w, 2
\n
"
"subs %[cnt_num1], #1 @subs "
"cnt_num, #1
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"bne 2b @bne s3_max_loop_bot_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
),
[
vcoef
]
"+w"
(
vcoef
),
[
vzero
]
"+w"
(
vzero
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
),
win
);
float
tmp
=
0.
f
;
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
tmp
+=
r0
[
i
];
}
data_out_channel
[
w_even
>>
1
]
=
tmp
/
9.
f
;
}
}
else
{
// two lines
data_out_channel
[
0
]
=
(
r0
[
0
]
+
r0
[
1
]
+
r1
[
0
]
+
r1
[
1
])
/
9.
f
;
#ifdef __aarch64__
w
=
1
;
cnt
=
1
;
for
(;
w
<
win
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vsum_1234
=
vaddq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vsum_5678
=
vaddq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vsum_9101112
=
vaddq_f32
(
vr0_9101112
,
vr1_9101112
);
float32x4_t
vsum_2345
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
1
);
float32x4_t
vsum_3456
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
2
);
float32x4_t
vsum_4567
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
3
);
float32x4_t
vsum_6789
=
vextq_f32
(
vsum_5678
,
vsum_9101112
,
1
);
float32x4_t
vsum_123_345
=
vaddq_f32
(
vsum_1234
,
vsum_2345
);
vsum_123_345
=
vaddq_f32
(
vsum_123_345
,
vsum_3456
);
float32x4_t
vsum_567_789
=
vaddq_f32
(
vsum_4567
,
vsum_5678
);
vsum_567_789
=
vaddq_f32
(
vsum_567_789
,
vsum_6789
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_123_345
,
2
),
vsum_123_345
,
1
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
1
),
vsum_123_345
,
2
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
3
),
vsum_123_345
,
3
);
float32x4_t
vrst
=
vmulq_f32
(
vsum_123_345
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vrst
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
vr0
=
vsetq_lane_f32
(
0.
f
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
0.
f
,
vr1
,
3
);
float32x4_t
vsum1
=
vaddq_f32
(
vr0
,
vr1
);
float32x2_t
vsum2
=
vpadd_f32
(
vget_low_f32
(
vsum1
),
vget_high_f32
(
vsum1
));
vsum2
=
vpadd_f32
(
vsum2
,
vsum2
);
float32x2_t
vrst
=
vmul_f32
(
vsum2
,
vget_low_f32
(
vcoef
));
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vrst
,
0
);
cnt
++
;
}
#else
dr_out
=
data_out_channel
+
1
;
dr0
=
(
r0
+
1
);
dr1
=
(
r1
+
1
);
cnt_num
=
w_unroll_size
;
cnt_num1
=
w_unroll_remian
;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr0]]! @load d0-d3, "
"dr0
\n
"
"vld1.f32 {d10-d11}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vmax.f32 q6, q0, q3 @max q0,q0,q2 "
"1234
\n
"
"vmax.f32 q7, q1, q4 @max q1,q1,q3 "
"5678
\n
"
"vmax.f32 q8, q2, q5 @max q1,q1,q3 "
"9101112
\n
"
//"vmov.f32 s7,s6 @mov s7,
// s6\n"
"vext.f32 q0, q6, q7, #1 @vext "
"max_2345
\n
"
"vext.f32 q1, q6, q7, #3 @vext "
"max_4567
\n
"
"vext.f32 q2, q6, q7, #2 @vext "
"max_3456
\n
"
"vext.f32 q3, q7, q8, #1 @vext "
"max_6789
\n
"
"vadd.f32 q4, q6, q0 @add 1234, "
"2345
\n
"
"vadd.f32 q5, q7, q1 @add 5678, "
"4567
\n
"
"vadd.f32 q4, q4, q2 @add 3456, "
"sum1
\n
"
"vadd.f32 q5, q5, q3 @add 6789, "
"sum2
\n
"
"vmov.f32 s17, s18 @mov
\n
"
"vmov.f32 s18, s21 @mov
\n
"
"vmov.f32 s19, s23 @mov
\n
"
"vmul.f32 q4, q4, %q[vcoef] @mul
\n
"
"sub %[dr0], #16 @add w, 8
\n
"
"sub %[dr1], #16 @add w, 8
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"bne 1b @bne s3_max_loop_bot
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble 4f @ble exit
\n
"
"2: @bot loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vext.f32 q0, %q[vzero], q0, #3 @ ext "
"v0_0123
\n
"
"vext.f32 q1, %q[vzero], q1, #3 @ ext "
"v1_0123
\n
"
"vadd.f32 q0, q0, q1 @add q0, q0, "
"q1
\n
"
"vpadd.f32 d0, d0, d1 @padd d0, "
"d0,d1
\n
"
"vpadd.f32 d0, d0, d0 @padd d0, d0, "
"d0
\n
"
"vmul.f32 d0, d0, %e[vcoef] @mul
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs "
"cnt_num, #1
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"bne 2b @bne s3_max_loop_bot_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
),
[
vcoef
]
"+w"
(
vcoef
),
[
vzero
]
"+w"
(
vzero
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
win
+
pad_w
),
win
);
float
tmp
=
0.
f
;
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
// only run 1 or 2 times
tmp
+=
(
r0
[
i
]
+
r1
[
i
]);
}
data_out_channel
[
w_even
>>
1
]
=
tmp
/
9.
f
;
}
}
}
}
}
}
void
pooling3x3s2p0_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
int
w_in
=
win
;
int
h_in
=
hin
;
int
ch_in
=
chin
;
int
w_out
=
wout
;
int
h_out
=
hout
;
int
ch_out
=
chout
;
int
kernel_h
=
ksize
[
0
];
int
kernel_w
=
ksize
[
1
];
int
stride_h
=
strides
[
0
];
int
stride_w
=
strides
[
1
];
int
pad_h
=
paddings
[
0
];
int
pad_w
=
paddings
[
1
];
int
size_channel_out
=
w_out
*
h_out
;
int
size_channel_in
=
w_in
*
h_in
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
pad_top
=
pad_h
;
int
pad_left
=
pad_w
;
int
w_needed
=
w_out
*
2
+
1
;
int
h_needed
=
h_out
*
2
+
1
;
int
pad_right
=
w_needed
-
w_in
-
pad_left
;
int
pad_bottom
=
h_needed
-
h_in
-
pad_top
;
int
w_even
=
((
w_in
-
1
)
>>
1
)
<<
1
;
// int w_remains = w_in - w_even; // should be 0 or 1
int
h_even
=
((
h_in
-
1
)
>>
1
)
<<
1
;
// int h_remains = h_in - h_even; // should be 0 or 1
int
w_unroll_size
=
w_in
>>
3
;
int
w_unroll_remian
=
(
w_in
-
w_unroll_size
*
8
-
1
)
/
2
;
int
w_in_2
=
w_in
<<
1
;
float
minval
=
std
::
numeric_limits
<
float
>::
lowest
();
float32x4_t
vzero
=
vdupq_n_f32
(
minval
);
// zero pad
// printf("minval: %.2f\n", minval);
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
ch_out
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
ch_in
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
ch_out
;
c
++
)
{
float
*
data_out_channel
=
data_out_batch
+
c
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
const
float
*
r0
=
data_in_channel
;
const
float
*
r1
=
r0
+
w_in
;
const
float
*
r2
=
r1
+
w_in
;
int
cnt_num
=
w_unroll_size
;
// w = w_in - 8;
int
cnt_num1
=
w_unroll_remian
;
float
*
dr_out
=
data_out_channel
;
const
float
*
dr0
=
r0
;
const
float
*
dr1
=
r1
;
const
float
*
dr2
=
r2
;
int
w
=
0
;
int
cnt
=
0
;
// data_out_channel[0] = std::max(std::max(r0[0], r0[1]), std::max(r1[0],
// r1[1]));
// first row with zero pad
// r0 = r1;
// r1 = r0 + w_in;
// r2 = r1 + w_in;
// data_out_channel += w_out;
int
h
=
0
;
for
(;
h
<
h_even
;
h
+=
2
)
{
// deal with left pad
float
maxr0
=
std
::
max
(
r0
[
0
],
r0
[
1
]);
float
maxr1
=
std
::
max
(
r1
[
0
],
r1
[
1
]);
float
maxr2
=
std
::
max
(
r2
[
0
],
r2
[
1
]);
// data_out_channel[0] = std::max(std::max(maxr0, maxr1), maxr2);
#ifdef __aarch64__
w
=
0
;
cnt
=
0
;
for
(;
w
<
w_in
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vr2_1234
=
vld1q_f32
(
&
r2
[
w
]);
float32x4_t
vr2_5678
=
vld1q_f32
(
&
r2
[
w
+
4
]);
float32x4_t
vr2_9101112
=
vld1q_f32
(
&
r2
[
w
+
8
]);
float32x4_t
vmax_1234
=
vmaxq_f32
(
vr0_1234
,
vr1_1234
);
vmax_1234
=
vmaxq_f32
(
vmax_1234
,
vr2_1234
);
float32x4_t
vmax_5678
=
vmaxq_f32
(
vr0_5678
,
vr1_5678
);
vmax_5678
=
vmaxq_f32
(
vmax_5678
,
vr2_5678
);
float32x4_t
vmax_9101112
=
vmaxq_f32
(
vr0_9101112
,
vr1_9101112
);
vmax_9101112
=
vmaxq_f32
(
vmax_9101112
,
vr2_9101112
);
float32x4_t
vmax_2345
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
1
);
float32x4_t
vmax_6789
=
vextq_f32
(
vmax_5678
,
vmax_9101112
,
1
);
float32x2_t
vmax_12_34
=
vpmax_f32
(
vget_low_f32
(
vmax_1234
),
vget_high_f32
(
vmax_1234
));
float32x2_t
vmax_23_45
=
vpmax_f32
(
vget_low_f32
(
vmax_2345
),
vget_high_f32
(
vmax_2345
));
float32x2_t
vmax_56_78
=
vpmax_f32
(
vget_low_f32
(
vmax_5678
),
vget_high_f32
(
vmax_5678
));
float32x2_t
vmax_67_89
=
vpmax_f32
(
vget_low_f32
(
vmax_6789
),
vget_high_f32
(
vmax_6789
));
float32x2_t
vmax_123_345
=
vmax_f32
(
vmax_12_34
,
vmax_23_45
);
float32x2_t
vmax_567_789
=
vmax_f32
(
vmax_56_78
,
vmax_67_89
);
vst1_f32
(
&
data_out_channel
[
cnt
],
vmax_123_345
);
vst1_f32
(
&
data_out_channel
[
cnt
+
2
],
vmax_567_789
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr2
=
vld1q_f32
(
&
r2
[
w
]);
vr0
=
vsetq_lane_f32
(
minval
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
minval
,
vr1
,
3
);
vr2
=
vsetq_lane_f32
(
minval
,
vr2
,
3
);
float32x4_t
vmax1
=
vmaxq_f32
(
vr0
,
vr1
);
vmax1
=
vmaxq_f32
(
vmax1
,
vr2
);
float32x2_t
vmax2
=
vpmax_f32
(
vget_low_f32
(
vmax1
),
vget_high_f32
(
vmax1
));
float32x2_t
vmax
=
vpmax_f32
(
vmax2
,
vmax2
);
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vmax
,
0
);
cnt
++
;
}
#else
dr_out
=
data_out_channel
;
// + 1;
dr0
=
r0
;
// (r0 + 1);
dr1
=
r1
;
// (r1 + 1);
dr2
=
r2
;
// (r2 + 1);
cnt_num
=
w_unroll_size
;
cnt_num1
=
w_unroll_remian
;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d12-d15}, [%[dr2]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d4}, [%[dr0]]! @load d0-d5, dr0
\n
"
"vld1.f32 {d10}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d16}, [%[dr2]]! @load d4-d7, dr1
\n
"
"vmax.f32 q9, q0, q3 @max q0,q0,q2
\n
"
"vmax.f32 q10, q1, q4 @max q1,q1,q3
\n
"
"vmax.f32 d22, d4, d10 @max q1,q1,q3
\n
"
"vmax.f32 q0, q9, q6 @max q0,q0,q2 "
"1234
\n
"
"vmax.f32 q3, q10, q7 @max q1,q1,q3 "
"5678
\n
"
"vmax.f32 d2, d22, d16 @max q1,q1,q3 "
"9101112
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q4, q0, q3, #1 @vext 2345
\n
"
"vext.f32 q2, q3, q1, #1 @vext 6789
\n
"
"vpmax.f32 d10, d0, d1 @pmax d10, "
"vmax_1234, vmax_1234
\n
"
"vpmax.f32 d12, d6, d7 @pmax d12, "
"vmax_5678, vmax_5678
\n
"
"vpmax.f32 d11, d8, d9 @pmax d11, "
"vmax_2345, vmax_2345
\n
"
"vpmax.f32 d13, d4, d5 @pmax d13, "
"vmax_6789, vmax_6789
\n
"
"vmax.f32 d0, d10, d11 @pmax d0, "
"vmax_12_34, vmax_23_45
\n
"
"vmax.f32 d1, d12, d13 @pmax d1, "
"vmax_56_78, vmax_67_89
\n
"
"sub %[dr0], #8 @add w, 8
\n
"
"sub %[dr1], #8 @add w, 8
\n
"
"sub %[dr2], #8 @add w, 8
\n
"
"vst1.f32 d0, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d1, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"bne 1b @bne s3_max_loop_mid
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble 4f @ble exit1
\n
"
"2: @mid loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr2]]! @load d2-d3, "
"dr1
\n
"
"vmov.f32 s3,s2 @movs3, s2
\n
"
"vmov.f32 s7,s6 @movs7, s6
\n
"
"vmov.f32 s11,s10 @movs11, s10
\n
"
"vmax.f32 q0, q0, q1 @max q0, q0, "
"q1
\n
"
"vmax.f32 q0, q0, q2 @max q0, q0, "
"q2
\n
"
"vpmax.f32 d0, d0, d1 @pmax d0, "
"d0,d1
\n
"
"vpmax.f32 d0, d0, d0 @pmax d0, d0, "
"d0
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"sub %[dr2], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs cnt_num, "
"#1
\n
"
"bne 2b @bne s3_max_loop_mid_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr2
]
"+r"
(
dr2
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr2
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
w_in
+
pad_w
),
w_in
);
float
tmp
=
r0
[
wstart
];
// std::numeric_limits<float>::min();
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
tmp
=
std
::
max
(
tmp
,
std
::
max
(
r0
[
i
],
r1
[
i
]));
tmp
=
std
::
max
(
tmp
,
r2
[
i
]);
}
data_out_channel
[
w_even
>>
1
]
=
tmp
;
// cnt ++;
}
r0
=
r2
;
r1
=
r0
+
w_in
;
r2
=
r1
+
w_in
;
data_out_channel
+=
w_out
;
}
if
(
pad_bottom
)
{
// deal with bottom pad
// first row with zero pad
// int hstart = (h >> 1) * stride_h - pad_h;
// int hend = std::min(std::min(hstart + kernel_h, h_in + pad_h),h_in);
// data_out_channel[0] = std::max(std::max(r0[0], r0[1]), std::max(r1[0],
// r1[1]));
#ifdef __aarch64__
w
=
0
;
cnt
=
0
;
for
(;
w
<
w_in
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vmax_1234
=
vmaxq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vmax_5678
=
vmaxq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vmax_9101112
=
vmaxq_f32
(
vr0_9101112
,
vr1_9101112
);
float32x4_t
vmax_2345
=
vextq_f32
(
vmax_1234
,
vmax_5678
,
1
);
float32x4_t
vmax_6789
=
vextq_f32
(
vmax_5678
,
vmax_9101112
,
1
);
float32x2_t
vmax_12_34
=
vpmax_f32
(
vget_low_f32
(
vmax_1234
),
vget_high_f32
(
vmax_1234
));
float32x2_t
vmax_23_45
=
vpmax_f32
(
vget_low_f32
(
vmax_2345
),
vget_high_f32
(
vmax_2345
));
float32x2_t
vmax_56_78
=
vpmax_f32
(
vget_low_f32
(
vmax_5678
),
vget_high_f32
(
vmax_5678
));
float32x2_t
vmax_67_89
=
vpmax_f32
(
vget_low_f32
(
vmax_6789
),
vget_high_f32
(
vmax_6789
));
float32x2_t
vmax_123_345
=
vmax_f32
(
vmax_12_34
,
vmax_23_45
);
float32x2_t
vmax_567_789
=
vmax_f32
(
vmax_56_78
,
vmax_67_89
);
vst1_f32
(
&
data_out_channel
[
cnt
],
vmax_123_345
);
vst1_f32
(
&
data_out_channel
[
cnt
+
2
],
vmax_567_789
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
vr0
=
vsetq_lane_f32
(
minval
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
minval
,
vr1
,
3
);
float32x4_t
vmax1
=
vmaxq_f32
(
vr0
,
vr1
);
float32x2_t
vmax2
=
vpmax_f32
(
vget_low_f32
(
vmax1
),
vget_high_f32
(
vmax1
));
vmax2
=
vpmax_f32
(
vmax2
,
vmax2
);
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vmax2
,
0
);
cnt
++
;
}
#else
dr_out
=
data_out_channel
;
// + 1;
dr0
=
r0
;
// (r0 + 1);
dr1
=
r1
;
// (r1 + 1);
cnt_num
=
w_unroll_size
;
cnt_num1
=
w_unroll_remian
;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble 3f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d4}, [%[dr0]]! @load d0-d3, dr0
\n
"
"vld1.f32 {d10}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vmax.f32 q6, q0, q3 @max q0,q0,q2 "
"1234
\n
"
"vmax.f32 q7, q1, q4 @max q1,q1,q3 "
"5678
\n
"
"vmax.f32 d16, d4, d10 @max q1,q1,q3 "
"9101112
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q6, q7, #1 @vext q0, 2345
\n
"
"vext.f32 q1, q7, q8, #1 @vext q1, 6789
\n
"
"vpmax.f32 d4, d12, d13 @pmax d4, "
"vmax_1234, vmax_1234
\n
"
"vpmax.f32 d6, d14, d15 @pmax d6, "
"vmax_5678, vmax_5678
\n
"
"vpmax.f32 d5, d0, d1 @pmax d5, "
"vmax_2345, vmax_2345
\n
"
"vpmax.f32 d7, d2, d3 @pmax d7, "
"vmax_6789, vmax_6789
\n
"
"vmax.f32 d8, d4, d5 @max d2, "
"vmax_12_34, vmax_23_45
\n
"
"vmax.f32 d9, d6, d7 @max d2, "
"vmax_56_78, vmax_67_89
\n
"
"sub %[dr0], #8 @add w, 8
\n
"
"sub %[dr1], #8 @add w, 8
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"bne 1b @bne s3_max_loop_bot
\n
"
"3: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble 4f @ble exit
\n
"
"2: @bot loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vmov.f32 s3,s2 @movs3, s2
\n
"
"vmov.f32 s7,s6 @movs7, s6
\n
"
"vmax.f32 q0, q0, q1 @max q0, q0, "
"q1
\n
"
"vpmax.f32 d0, d0, d1 @pmax d0, "
"d0,d1
\n
"
"vpmax.f32 d0, d0, d0 @pmax d0, d0, "
"d0
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs "
"cnt_num, #1
\n
"
"bne 2b @bne s3_max_loop_bot_1
\n
"
"4: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
w_in
+
pad_w
),
w_in
);
float
tmp
=
r0
[
wstart
];
// std::numeric_limits<float>::min();
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
// only run 1 or 2 times
tmp
=
std
::
max
(
tmp
,
std
::
max
(
r0
[
i
],
r1
[
i
]));
}
data_out_channel
[
w_even
>>
1
]
=
tmp
;
}
}
}
}
}
void
pooling3x3s2p0_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
)
{
int
w_in
=
win
;
int
h_in
=
hin
;
int
ch_in
=
chin
;
int
w_out
=
wout
;
int
h_out
=
hout
;
int
ch_out
=
chout
;
int
kernel_h
=
ksize
[
0
];
int
kernel_w
=
ksize
[
1
];
int
stride_h
=
strides
[
0
];
int
stride_w
=
strides
[
1
];
int
pad_h
=
paddings
[
0
];
int
pad_w
=
paddings
[
1
];
int
size_channel_out
=
w_out
*
h_out
;
int
size_channel_in
=
w_in
*
h_in
;
float
*
data_out
=
static_cast
<
float
*>
(
dout
);
const
float
*
data_in
=
static_cast
<
const
float
*>
(
din
);
int
pad_top
=
pad_h
;
int
pad_left
=
pad_w
;
int
w_needed
=
w_out
*
2
+
1
;
int
h_needed
=
h_out
*
2
+
1
;
int
pad_right
=
w_needed
-
w_in
-
pad_left
;
int
pad_bottom
=
h_needed
-
h_in
-
pad_top
;
int
w_even
=
((
w_in
-
1
)
>>
1
)
<<
1
;
int
h_even
=
((
h_in
-
1
)
>>
1
)
<<
1
;
int
w_in_2
=
w_in
<<
1
;
int
w_unroll_size
=
w_in
>>
3
;
int
w_unroll_remian
=
(
w_even
-
w_unroll_size
*
8
-
1
)
/
2
;
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
float
*
data_out_batch
=
data_out
+
n
*
ch_out
*
size_channel_out
;
const
float
*
data_in_batch
=
data_in
+
n
*
ch_in
*
size_channel_in
;
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
ch_out
;
c
++
)
{
float
*
data_out_channel
=
data_out_batch
+
c
*
size_channel_out
;
const
float
*
data_in_channel
=
data_in_batch
+
c
*
size_channel_in
;
const
float
*
r0
=
data_in_channel
;
const
float
*
r1
=
r0
+
w_in
;
const
float
*
r2
=
r1
+
w_in
;
int
cnt_num
=
w_unroll_size
;
// w = w_in - 8;
int
cnt_num1
=
w_unroll_remian
;
float
*
dr_out
=
data_out_channel
;
const
float
*
dr0
=
r0
;
const
float
*
dr1
=
r1
;
const
float
*
dr2
=
r2
;
float32x4_t
vcoef
=
vdupq_n_f32
(
1.
f
/
9.
f
);
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
int
h
=
0
;
for
(;
h
<
h_even
;
h
+=
2
)
{
// LOG(INFO) << "h: " << h<<", dr0:" << r0 <<", dr1: "<<r1 << ",dr2: "<<r2;
// deal with left pad
// float sum0 = r0[0] + r0[1];
// float sum1 = r1[0] + r1[1];
// float sum2 = r2[0] + r2[1];
// data_out_channel[0] = (sum0 + sum1 + sum2) / 9.f;
#if 1 // def __aarch64__
int
w
=
0
;
int
cnt
=
0
;
for
(;
w
<
w_in
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vr2_1234
=
vld1q_f32
(
&
r2
[
w
]);
float32x4_t
vr2_5678
=
vld1q_f32
(
&
r2
[
w
+
4
]);
float32x4_t
vr2_9101112
=
vld1q_f32
(
&
r2
[
w
+
8
]);
float32x4_t
vsum_1234
=
vaddq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vsum_5678
=
vaddq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vsum_9101112
=
vaddq_f32
(
vr0_9101112
,
vr1_9101112
);
vsum_1234
=
vaddq_f32
(
vsum_1234
,
vr2_1234
);
vsum_5678
=
vaddq_f32
(
vsum_5678
,
vr2_5678
);
vsum_9101112
=
vaddq_f32
(
vsum_9101112
,
vr2_9101112
);
float32x4_t
vsum_2345
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
1
);
float32x4_t
vsum_3456
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
2
);
float32x4_t
vsum_4567
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
3
);
float32x4_t
vsum_6789
=
vextq_f32
(
vsum_5678
,
vsum_9101112
,
1
);
float32x4_t
vsum_123_345
=
vaddq_f32
(
vsum_1234
,
vsum_2345
);
vsum_123_345
=
vaddq_f32
(
vsum_123_345
,
vsum_3456
);
float32x4_t
vsum_567_789
=
vaddq_f32
(
vsum_4567
,
vsum_5678
);
vsum_567_789
=
vaddq_f32
(
vsum_567_789
,
vsum_6789
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_123_345
,
2
),
vsum_123_345
,
1
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
1
),
vsum_123_345
,
2
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
3
),
vsum_123_345
,
3
);
float32x4_t
vrst
=
vmulq_f32
(
vsum_123_345
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vrst
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr2
=
vld1q_f32
(
&
r2
[
w
]);
vr0
=
vsetq_lane_f32
(
0.
f
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
0.
f
,
vr1
,
3
);
vr2
=
vsetq_lane_f32
(
0.
f
,
vr2
,
3
);
float32x4_t
vsum1
=
vaddq_f32
(
vr0
,
vr1
);
vsum1
=
vaddq_f32
(
vsum1
,
vr2
);
float32x2_t
vsum2
=
vpadd_f32
(
vget_low_f32
(
vsum1
),
vget_high_f32
(
vsum1
));
float32x2_t
vsum
=
vpadd_f32
(
vsum2
,
vsum2
);
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vsum
,
0
)
/
9.
f
;
cnt
++
;
}
#else
dr_out
=
data_out_channel
;
// + 1;
dr0
=
r0
;
// (r0 + 1);
dr1
=
r1
;
// (r1 + 1);
dr2
=
r2
;
// (r2 + 1);
cnt_num
=
w_unroll_size
;
cnt_num1
=
w_unroll_remian
;
// LOG(INFO) << "cnt_num: " << cnt_num <<"cnt_num1: "<< cnt_num1;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble loop3_ave_p0 @ble "
"exit
\n
"
"s3_ave_loop_mid_p0: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d12-d15}, [%[dr2]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d4}, [%[dr0]]! @load d0-d5, dr0
\n
"
"vld1.f32 {d10}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vld1.f32 {d16}, [%[dr2]]! @load d4-d7, dr1
\n
"
"vadd.f32 q9, q0, q3 @max q0,q0,q2
\n
"
"vadd.f32 q10, q1, q4 @max q1,q1,q3
\n
"
"vadd.f32 d22, d4, d10 @max q1,q1,q3
\n
"
"vadd.f32 q6, q9, q6 @max q0,q0,q2 "
"1234
\n
"
"vadd.f32 q7, q10, q7 @max q1,q1,q3 "
"5678
\n
"
"vadd.f32 d16, d22, d16 @max q1,q1,q3 "
"9101112
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q6, q7, #1 @vext max_2345
\n
"
"vext.f32 q1, q6, q7, #3 @vext max_4567
\n
"
"vext.f32 q2, q6, q7, #2 @vext max_3456
\n
"
"vext.f32 q3, q7, q8, #1 @vext max_6789
\n
"
"vadd.f32 q4, q6, q0 @add 1234, 2345 "
"
\n
"
"vadd.f32 q5, q7, q1 @add 5678, 4567 "
"
\n
"
"vadd.f32 q4, q4, q2 @add 3456, sum1 "
"
\n
"
"vadd.f32 q5, q5, q3 @add 6789, sum2 "
"
\n
"
"vmov.f32 s17, s18 @mov
\n
"
"vmov.f32 s18, s21 @mov
\n
"
"vmov.f32 s19, s23 @mov
\n
"
"vmul.f32 q4, q4, %q[vcoef] @mul
\n
"
"sub %[dr0], #8 @add w, 8
\n
"
"sub %[dr1], #8 @add w, 8
\n
"
"sub %[dr2], #8 @add w, 8
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"bne s3_ave_loop_mid_p0 @bne "
"s3_max_loop_mid
\n
"
"loop3_ave_p0: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble exit1_ave_p0 @ble "
"exit1
\n
"
"s3_ave_loop_mid_1_p0: @mid loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vld1.f32 {d4-d5}, [%[dr2]]! @load d2-d3, "
"dr1
\n
"
"vext.f32 q0, %q[vzero], q0, #3 @ ext v0_0123
\n
"
"vext.f32 q1, %q[vzero], q1, #3 @ ext v1_0123
\n
"
"vext.f32 q2, %q[vzero], q2, #3 @ ext v1_0123
\n
"
"vadd.f32 q0, q0, q1 @add q0, q0, "
"q1
\n
"
"vadd.f32 q0, q0, q2 @add q0, q0, "
"q1
\n
"
"vpadd.f32 d0, d0, d1 @padd d0, "
"d0,d1
\n
"
"vpadd.f32 d0, d0, d0 @padd d0, d0, "
"d0
\n
"
"vmul.f32 d0, d0, %e[vcoef] @mul
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"sub %[dr2], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs cnt_num, "
"#1
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"bne s3_ave_loop_mid_1_p0 @bne "
"s3_max_loop_mid_1
\n
"
"exit1_ave_p0: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr2
]
"+r"
(
dr2
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
),
[
vcoef
]
"+w"
(
vcoef
),
[
vzero
]
"+w"
(
vzero
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr2
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
w_in
+
pad_w
),
w_in
);
float
tmp
=
0.
f
;
int
pool_size
=
3
*
(
wend
-
wstart
);
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
tmp
+=
(
r0
[
i
]
+
r1
[
i
]
+
r2
[
i
]);
}
data_out_channel
[
w_even
>>
1
]
=
tmp
/
pool_size
;
// cnt ++;
}
r0
=
r2
;
r1
=
r0
+
w_in
;
r2
=
r1
+
w_in
;
data_out_channel
+=
w_out
;
}
if
(
pad_bottom
)
{
// deal with bottom pad
// first row with zero pad
// int hstart = (h >> 1) * stride_h - pad_h;
// int hend = std::min(std::min(hstart + kernel_h, h_in + pad_h),h_in);
// data_out_channel[0] =(r0[0] + r0[1] + r1[0] + r1[1]) / 9.f;
#if 1 // def __aarch64__
int
w
=
0
;
int
cnt
=
0
;
vcoef
=
vdupq_n_f32
(
1.
f
/
6.
f
);
for
(;
w
<
w_in
-
8
;
w
+=
8
)
{
float32x4_t
vr0_1234
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr0_5678
=
vld1q_f32
(
&
r0
[
w
+
4
]);
float32x4_t
vr0_9101112
=
vld1q_f32
(
&
r0
[
w
+
8
]);
float32x4_t
vr1_1234
=
vld1q_f32
(
&
r1
[
w
]);
float32x4_t
vr1_5678
=
vld1q_f32
(
&
r1
[
w
+
4
]);
float32x4_t
vr1_9101112
=
vld1q_f32
(
&
r1
[
w
+
8
]);
float32x4_t
vsum_1234
=
vaddq_f32
(
vr0_1234
,
vr1_1234
);
float32x4_t
vsum_5678
=
vaddq_f32
(
vr0_5678
,
vr1_5678
);
float32x4_t
vsum_9101112
=
vaddq_f32
(
vr0_9101112
,
vr1_9101112
);
float32x4_t
vsum_2345
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
1
);
float32x4_t
vsum_3456
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
2
);
float32x4_t
vsum_4567
=
vextq_f32
(
vsum_1234
,
vsum_5678
,
3
);
float32x4_t
vsum_6789
=
vextq_f32
(
vsum_5678
,
vsum_9101112
,
1
);
float32x4_t
vsum_123_345
=
vaddq_f32
(
vsum_1234
,
vsum_2345
);
vsum_123_345
=
vaddq_f32
(
vsum_123_345
,
vsum_3456
);
float32x4_t
vsum_567_789
=
vaddq_f32
(
vsum_4567
,
vsum_5678
);
vsum_567_789
=
vaddq_f32
(
vsum_567_789
,
vsum_6789
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_123_345
,
2
),
vsum_123_345
,
1
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
1
),
vsum_123_345
,
2
);
vsum_123_345
=
vsetq_lane_f32
(
vgetq_lane_f32
(
vsum_567_789
,
3
),
vsum_123_345
,
3
);
float32x4_t
vrst
=
vmulq_f32
(
vsum_123_345
,
vcoef
);
vst1q_f32
(
&
data_out_channel
[
cnt
],
vrst
);
cnt
+=
4
;
}
for
(;
w
<
w_even
-
1
;
w
+=
2
)
{
float32x4_t
vr0
=
vld1q_f32
(
&
r0
[
w
]);
float32x4_t
vr1
=
vld1q_f32
(
&
r1
[
w
]);
vr0
=
vsetq_lane_f32
(
0.
f
,
vr0
,
3
);
vr1
=
vsetq_lane_f32
(
0.
f
,
vr1
,
3
);
float32x4_t
vsum1
=
vaddq_f32
(
vr0
,
vr1
);
float32x2_t
vsum2
=
vpadd_f32
(
vget_low_f32
(
vsum1
),
vget_high_f32
(
vsum1
));
vsum2
=
vpadd_f32
(
vsum2
,
vsum2
);
float32x2_t
vrst
=
vmul_f32
(
vsum2
,
vget_low_f32
(
vcoef
));
data_out_channel
[
cnt
]
=
vget_lane_f32
(
vrst
,
0
);
cnt
++
;
}
#else
dr_out
=
data_out_channel
;
// + 1;
dr0
=
r0
;
// (r0 + 1);
dr1
=
r1
;
// (r1 + 1);
cnt_num
=
w_unroll_size
;
cnt_num1
=
w_unroll_remian
;
// LOG(INFO) << "dr0:" << dr0 <<", dr1: "<<dr1 << ",dr2: "<<dr2;
if
(
cnt_num
>
0
||
cnt_num1
>
0
)
{
asm
volatile
(
"cmp %[cnt_num], #0 @cmp cnt_num, "
"0
\n
"
"ble 2f @ble exit
\n
"
"1: @main loop
\n
"
"vld1.f32 {d0-d3}, [%[dr0]]! @load d0-d5, "
"dr0
\n
"
"vld1.f32 {d6-d9}, [%[dr1]]! @load d4-d7, "
"dr1
\n
"
"vld1.f32 {d4}, [%[dr0]]! @load d0-d3, dr0
\n
"
"vld1.f32 {d10}, [%[dr1]]! @load d4-d7, dr1
\n
"
"vadd.f32 q6, q0, q3 @max q0,q0,q2 "
"1234
\n
"
"vadd.f32 q7, q1, q4 @max q1,q1,q3 "
"5678
\n
"
"vadd.f32 d16, d4, d10 @max q1,q1,q3 "
"9101112
\n
"
//"vmov.f32 s7,s6 @mov s7, s6\n"
"vext.f32 q0, q6, q7, #1 @vext max_2345
\n
"
"vext.f32 q1, q6, q7, #3 @vext max_4567
\n
"
"vext.f32 q2, q6, q7, #2 @vext max_3456
\n
"
"vext.f32 q3, q7, q8, #1 @vext max_6789
\n
"
"vadd.f32 q4, q6, q0 @add 1234, 2345 "
"
\n
"
"vadd.f32 q5, q7, q1 @add 5678, 4567 "
"
\n
"
"vadd.f32 q4, q4, q2 @add 3456, sum1 "
"
\n
"
"vadd.f32 q5, q5, q3 @add 6789, sum2 "
"
\n
"
"vmov.f32 s17, s18 @mov
\n
"
"vmov.f32 s18, s21 @mov
\n
"
"vmov.f32 s19, s23 @mov
\n
"
"vmul.f32 q4, q4, %q[vcoef] @mul
\n
"
"sub %[dr0], #8 @add w, 8
\n
"
"sub %[dr1], #8 @add w, 8
\n
"
"subs %[cnt_num], #1 @subs "
"cnt_num, #1
\n
"
"vst1.f32 d8, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"vst1.f32 d9, [%[dr_out]]! @vst1 d0, "
"dr_out
\n
"
"bne 1b @bne s3_max_loop_bot
\n
"
"2: @loop
\n
"
"cmp %[cnt_num1], #0 @cmp "
"cnt_num, 0
\n
"
"ble 3f @ble exit
\n
"
"4: @bot loop
\n
"
"vld1.f32 {d0-d1}, [%[dr0]]! @load d0-d1, "
"dr0
\n
"
"vld1.f32 {d2-d3}, [%[dr1]]! @load d2-d3, "
"dr1
\n
"
"vext.f32 q0, %q[vzero], q0, #3 @ ext v0_0123
\n
"
"vext.f32 q1, %q[vzero], q1, #3 @ ext v1_0123
\n
"
"vadd.f32 q0, q0, q1 @add q0, q0, "
"q1
\n
"
"vpadd.f32 d0, d0, d1 @padd d0, "
"d0,d1
\n
"
"vpadd.f32 d0, d0, d0 @padd d0, d0, "
"d0
\n
"
"vmul.f32 d0, d0, %e[vcoef] @mul
\n
"
"sub %[dr0], #8 @add w, 6
\n
"
"sub %[dr1], #8 @add w, 6
\n
"
"subs %[cnt_num1], #1 @subs "
"cnt_num, #1
\n
"
"vst1.f32 d0[0], [%[dr_out]]! @vst d0[0], "
"dr_out
\n
"
"bne 4b @bne s3_max_loop_bot_1
\n
"
"3: @exit
\n
"
:
[
dr0
]
"+r"
(
dr0
),
[
dr1
]
"+r"
(
dr1
),
[
dr_out
]
"+r"
(
dr_out
),
[
cnt_num
]
"+r"
(
cnt_num
),
[
cnt_num1
]
"+r"
(
cnt_num1
),
[
vcoef
]
"+w"
(
vcoef
),
[
vzero
]
"+w"
(
vzero
)
:
"r"
(
dr0
),
"r"
(
dr1
),
"r"
(
dr_out
),
"r"
(
cnt_num
),
"r"
(
cnt_num1
)
:
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
);
}
#endif
if
(
pad_right
)
{
// deal with right pad
int
wstart
=
(
w_even
>>
1
)
*
stride_w
-
pad_w
;
int
wend
=
std
::
min
(
std
::
min
(
wstart
+
kernel_w
,
w_in
+
pad_w
),
w_in
);
float
tmp
=
0.
f
;
int
pool_size
=
2
*
(
wend
-
wstart
);
for
(
int
i
=
wstart
;
i
<
wend
;
i
++
)
{
// only run 1 or 2 times
tmp
+=
(
r0
[
i
]
+
r1
[
i
]);
}
data_out_channel
[
w_even
>>
1
]
=
tmp
/
pool_size
;
}
}
}
}
}
}
// namespace math
}
// namespace arm
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/arm/math/pooling.h
0 → 100644
浏览文件 @
e1a9d563
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/lite/utils/cp_logging.h"
namespace
paddle
{
namespace
lite
{
namespace
arm
{
namespace
math
{
// !pooling fp32 Op
void
pooling_basic
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling_global
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling2x2s2_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling2x2s2_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s1p1_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s1p1_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s2p1_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s2p0_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s2p1_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s2p0_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
}
// namespace math
}
// namespace arm
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/arm/CMakeLists.txt
浏览文件 @
e1a9d563
...
@@ -11,12 +11,14 @@ cc_library(scale_compute_arm SRCS scale_compute.cc DEPS ${lite_kernel_deps} math
...
@@ -11,12 +11,14 @@ cc_library(scale_compute_arm SRCS scale_compute.cc DEPS ${lite_kernel_deps} math
cc_library
(
softmax_compute_arm SRCS softmax_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
softmax_compute_arm SRCS softmax_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
conv_compute_arm SRCS conv_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
conv_compute_arm SRCS conv_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
elementwise_add_compute_arm SRCS elementwise_add_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
elementwise_add_compute_arm SRCS elementwise_add_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
pool_compute_arm SRCS pool_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
lite_cc_test
(
test_fc_compute_arm SRCS fc_compute_test.cc DEPS fc_compute_arm math_arm
)
lite_cc_test
(
test_fc_compute_arm SRCS fc_compute_test.cc DEPS fc_compute_arm math_arm
)
lite_cc_test
(
test_scale_compute_arm SRCS scale_compute_test.cc DEPS scale_compute_arm
)
lite_cc_test
(
test_scale_compute_arm SRCS scale_compute_test.cc DEPS scale_compute_arm
)
lite_cc_test
(
test_softmax_compute_arm SRCS softmax_compute_test.cc DEPS softmax_compute_arm
)
lite_cc_test
(
test_softmax_compute_arm SRCS softmax_compute_test.cc DEPS softmax_compute_arm
)
lite_cc_test
(
test_conv_compute_arm SRCS conv_compute_test.cc DEPS conv_compute_arm
)
lite_cc_test
(
test_conv_compute_arm SRCS conv_compute_test.cc DEPS conv_compute_arm
)
lite_cc_test
(
test_elementwise_add_compute_arm SRCS elementwise_add_compute_test.cc DEPS elementwise_add_compute_arm
)
lite_cc_test
(
test_elementwise_add_compute_arm SRCS elementwise_add_compute_test.cc DEPS elementwise_add_compute_arm
)
lite_cc_test
(
test_pool_compute_arm SRCS pool_compute_test.cc DEPS pool_compute_arm
)
set
(
arm_kernels
set
(
arm_kernels
fc_compute_arm
fc_compute_arm
...
@@ -26,6 +28,7 @@ set(arm_kernels
...
@@ -26,6 +28,7 @@ set(arm_kernels
softmax_compute_arm
softmax_compute_arm
conv_compute_arm
conv_compute_arm
elementwise_add_compute_arm
elementwise_add_compute_arm
pool_compute_arm
)
)
set
(
arm_kernels
"
${
arm_kernels
}
"
CACHE INTERNAL
"arm kernels"
)
set
(
arm_kernels
"
${
arm_kernels
}
"
CACHE INTERNAL
"arm kernels"
)
...
...
paddle/fluid/lite/kernels/arm/pool_compute.cc
0 → 100644
浏览文件 @
e1a9d563
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/pool_compute.h"
#include <string>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
void
PoolCompute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
PoolParam
>
();
auto
&
in_dims
=
param
.
x
->
dims
();
auto
&
out_dims
=
param
.
output
->
dims
();
const
float
*
din
=
param
.
x
->
data
<
float
>
();
float
*
dout
=
param
.
output
->
mutable_data
<
float
>
();
std
::
vector
<
int
>&
ksize
=
param
.
ksize
;
std
::
vector
<
int
>&
strides
=
param
.
strides
;
std
::
vector
<
int
>&
paddings
=
param
.
paddings
;
std
::
string
&
pooling_type
=
param
.
pooling_type
;
bool
global_pooling
=
param
.
global_pooling
;
bool
exclusive
=
param
.
exclusive
;
bool
adaptive
=
param
.
adaptive
;
bool
ceil_mode
=
param
.
ceil_mode
;
bool
use_quantizer
=
param
.
use_quantizer
;
std
::
string
&
data_format
=
param
.
data_format
;
if
(
param
.
global_pooling
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_dims
[
i
+
2
]);
}
}
#if 0
for (int i = 0; i < in_dims.size(); ++i) {
LOG(INFO) << "in_dims[" << i << "]:" << in_dims[i];
}
for (int i = 0; i < out_dims.size(); ++i) {
LOG(INFO) << "out_dims[" << i << "]:" << out_dims[i];
}
for (int i = 0; i < ksize.size(); ++i) {
LOG(INFO) << "ksize[" << i << "]:" << ksize[i];
}
for (int i = 0; i < strides.size(); ++i) {
LOG(INFO) << "strides[" << i << "]:" << strides[i];
}
for (int i = 0; i < paddings.size(); ++i) {
LOG(INFO) << "paddings[" << i << "]:" << paddings[i];
}
LOG(INFO) << "global_pooling:" << global_pooling;
LOG(INFO) << "exclusive:" << exclusive;
LOG(INFO) << "adaptive:" << adaptive;
LOG(INFO) << "ceil_mode:" << ceil_mode;
LOG(INFO) << "use_quantizer:" << use_quantizer;
LOG(INFO) << "data_format:" << data_format;
LOG(INFO) << "din:" << din;
LOG(INFO) << "dout:" << dout;
#endif
// global
if
(
global_pooling
==
true
)
{
lite
::
arm
::
math
::
pooling_global
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
else
if
(
ksize
[
0
]
==
2
&&
ksize
[
0
]
==
ksize
[
1
]
&&
strides
[
0
]
==
2
&&
strides
[
0
]
==
strides
[
1
])
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling2x2s2_max
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
else
if
(
pooling_type
==
"avg"
)
{
lite
::
arm
::
math
::
pooling2x2s2_ave
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
}
else
if
(
ksize
[
0
]
==
3
&&
ksize
[
0
]
==
ksize
[
1
]
&&
strides
[
0
]
==
1
&&
strides
[
0
]
==
strides
[
1
]
&&
paddings
[
0
]
==
1
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s1p1_max
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
else
if
(
pooling_type
==
"avg"
)
{
lite
::
arm
::
math
::
pooling3x3s1p1_ave
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
}
else
if
(
ksize
[
0
]
==
3
&&
ksize
[
0
]
==
ksize
[
1
]
&&
strides
[
0
]
==
2
&&
strides
[
0
]
==
strides
[
1
]
&&
paddings
[
0
]
==
0
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s2p0_max
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
else
if
(
pooling_type
==
"avg"
)
{
lite
::
arm
::
math
::
pooling3x3s2p0_ave
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
}
else
if
(
ksize
[
0
]
==
3
&&
ksize
[
0
]
==
ksize
[
1
]
&&
strides
[
0
]
==
2
&&
strides
[
0
]
==
strides
[
1
]
&&
paddings
[
0
]
==
1
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s2p1_max
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
else
if
(
pooling_type
==
"avg"
)
{
lite
::
arm
::
math
::
pooling3x3s2p1_ave
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
}
else
{
lite
::
arm
::
math
::
pooling_basic
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
return
;
}
TargetType
PoolCompute
::
target
()
const
{
return
TARGET
(
kARM
);
}
PrecisionType
PoolCompute
::
precision
()
const
{
return
PRECISION
(
kFloat
);
}
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
pool
,
kARM
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
PoolCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
paddle/fluid/lite/kernels/arm/pool_compute.h
0 → 100644
浏览文件 @
e1a9d563
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/operators/pool_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
class
PoolCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
PoolParam
;
void
Run
()
override
;
TargetType
target
()
const
override
;
PrecisionType
precision
()
const
override
;
virtual
~
PoolCompute
()
=
default
;
};
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
0 → 100644
浏览文件 @
e1a9d563
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/pool_compute.h"
#include <gtest/gtest.h>
#include <limits>
#include <string>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
void
pool_compute_ref
(
const
operators
::
PoolParam
&
param
)
{
auto
&
in_dims
=
param
.
x
->
dims
();
auto
&
out_dims
=
param
.
output
->
dims
();
const
float
*
src_ptr
=
param
.
x
->
data
<
const
float
>
();
float
*
dst_ptr
=
param
.
output
->
mutable_data
<
float
>
();
std
::
vector
<
int
>
ksize
=
param
.
ksize
;
std
::
vector
<
int
>
strides
=
param
.
strides
;
std
::
vector
<
int
>
paddings
=
param
.
paddings
;
std
::
string
pooling_type
=
param
.
pooling_type
;
bool
global_pooling
=
param
.
global_pooling
;
bool
exclusive
=
param
.
exclusive
;
bool
adaptive
=
param
.
adaptive
;
bool
ceil_mode
=
param
.
ceil_mode
;
bool
use_quantizer
=
param
.
use_quantizer
;
std
::
string
data_format
=
param
.
data_format
;
int
in_n
=
in_dims
[
0
];
int
in_c
=
in_dims
[
1
];
int
in_h
=
in_dims
[
2
];
int
in_w
=
in_dims
[
3
];
int
size_in_n
=
in_c
*
in_h
*
in_w
;
int
size_in_c
=
in_h
*
in_w
;
int
out_h
=
out_dims
[
2
];
int
out_w
=
out_dims
[
3
];
int
size_out_n
=
in_c
*
out_h
*
out_w
;
int
size_out_c
=
out_h
*
out_w
;
int
window_h
=
ksize
[
0
];
int
window_w
=
ksize
[
1
];
int
stride_h
=
strides
[
0
];
int
stride_w
=
strides
[
1
];
int
pad_h
=
paddings
[
0
];
int
pad_w
=
paddings
[
1
];
if
(
global_pooling
==
true
)
{
ksize
[
0
]
=
in_h
;
ksize
[
1
]
=
in_w
;
}
#if 0
for (int i = 0; i < ksize.size(); ++i) {
LOG(INFO) << "ksize[" << i << "]:" << ksize[i];
}
for (int i = 0; i < strides.size(); ++i) {
LOG(INFO) << "strides[" << i << "]:" << strides[i];
}
for (int i = 0; i < paddings.size(); ++i) {
LOG(INFO) << "paddings[" << i << "]:" << paddings[i];
}
LOG(INFO) << "in nchw:" << in_n << ", " << in_c << ", " << in_h << ", "
<< in_w;
LOG(INFO) << "size_in_n:" << size_in_n;
LOG(INFO) << "size_out_c:" << size_out_c;
LOG(INFO) << "out_h:" << out_h;
LOG(INFO) << "out_w:" << out_w;
LOG(INFO) << "size_out_n:" << size_out_n;
LOG(INFO) << "size_out_c:" << size_out_c;
LOG(INFO) << "window_h:" << window_h;
LOG(INFO) << "window_w:" << window_w;
LOG(INFO) << "stride_h:" << stride_h;
LOG(INFO) << "stride_w:" << stride_w;
LOG(INFO) << "pad_h:" << pad_h;
LOG(INFO) << "pad_w:" << pad_w;
#endif
for
(
int
ind_n
=
0
;
ind_n
<
in_n
;
++
ind_n
)
{
for
(
int
ind_c
=
0
;
ind_c
<
in_c
;
++
ind_c
)
{
for
(
int
ind_h
=
0
;
ind_h
<
out_h
;
++
ind_h
)
{
int
sh
=
ind_h
*
stride_h
;
int
eh
=
sh
+
window_h
;
sh
=
(
sh
-
pad_h
)
<
0
?
0
:
sh
-
pad_h
;
eh
=
(
eh
-
pad_h
)
>
in_h
?
in_h
:
eh
-
pad_h
;
for
(
int
ind_w
=
0
;
ind_w
<
out_w
;
++
ind_w
)
{
int
sw
=
ind_w
*
stride_w
;
int
ew
=
sw
+
window_w
;
sw
=
(
sw
-
pad_w
)
<
0
?
0
:
sw
-
pad_w
;
ew
=
(
ew
-
pad_w
)
>
in_w
?
in_w
:
ew
-
pad_w
;
float
result
=
static_cast
<
float
>
(
0
);
int
dst_ind
=
ind_n
*
size_out_n
+
ind_c
*
size_out_c
+
ind_h
*
out_w
+
ind_w
;
for
(
int
kh
=
sh
;
kh
<
eh
;
++
kh
)
{
for
(
int
kw
=
sw
;
kw
<
ew
;
++
kw
)
{
int
src_ind
=
ind_n
*
size_in_n
+
ind_c
*
size_in_c
+
kh
*
in_w
+
kw
;
if
(
kh
==
sh
&&
kw
==
sw
)
{
result
=
src_ptr
[
src_ind
];
}
else
{
if
(
pooling_type
==
"max"
)
{
result
=
result
>=
src_ptr
[
src_ind
]
?
result
:
src_ptr
[
src_ind
];
}
if
(
pooling_type
==
"avg"
&&
exclusive
==
false
)
{
// Pooling_average_include_padding
result
+=
src_ptr
[
src_ind
];
}
if
(
pooling_type
==
"avg"
&&
exclusive
==
true
)
{
// Pooling_average_include_padding
result
+=
src_ptr
[
src_ind
];
}
}
}
}
if
(
pooling_type
==
"avg"
&&
exclusive
==
false
)
{
// Pooling_average_include_padding
// result /= param.window_h * param.window_w;
// LOG(ERROR)<<"cpu"<<param.window_h * param.window_w;
int
bh
=
window_h
;
int
bw
=
window_w
;
if
(
ew
==
in_w
)
{
bw
=
sw
+
window_w
>=
in_w
+
pad_w
?
in_w
+
pad_w
:
sw
+
window_w
;
bw
-=
sw
;
}
if
(
eh
==
in_h
)
{
bh
=
sh
+
window_h
>=
in_h
+
pad_h
?
in_h
+
pad_h
:
sh
+
window_h
;
bh
-=
sh
;
}
result
/=
bh
*
bw
;
}
if
(
pooling_type
==
"avg"
&&
exclusive
==
true
)
{
// Pooling_average_exclude_padding
result
/=
(
ew
-
sw
)
*
(
eh
-
sh
);
}
dst_ptr
[
dst_ind
]
=
result
;
}
}
}
}
}
TEST
(
pool_arm
,
init
)
{
PoolCompute
pool
;
ASSERT_EQ
(
pool
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
pool
.
target
(),
TARGET
(
kARM
));
}
TEST
(
pool_arm
,
compute
)
{
PoolCompute
pool
;
operators
::
PoolParam
param
;
lite
::
Tensor
x
;
lite
::
Tensor
output
;
lite
::
Tensor
output_ref
;
for
(
auto
pooling_type
:
{
"avg"
,
"max"
})
{
for
(
auto
global_pooling
:
{
true
})
{
for
(
auto
stride
:
{
2
})
{
for
(
auto
pad
:
{
0
})
{
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
c
:
{
1
,
3
,
11
,
4
,
1024
})
{
for
(
auto
h
:
{
3
,
1
,
11
,
4
,
1
})
{
for
(
auto
w
:
{
1
,
3
,
4
,
12
,
1
})
{
LOG
(
INFO
)
<<
"n:"
<<
n
<<
" c:"
<<
c
<<
" h:"
<<
h
<<
" w:"
<<
w
<<
" stride:"
<<
stride
<<
" pad:"
<<
pad
<<
" pooling_type:"
<<
pooling_type
<<
" global_pooling:"
<<
global_pooling
;
// init x, output
x
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
output
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
1
,
1
})));
output_ref
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
1
,
1
})));
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
++
i
)
{
x_data
[
i
]
=
i
;
}
// fill param
param
.
x
=
&
x
;
param
.
output
=
&
output
;
param
.
pooling_type
=
pooling_type
;
param
.
ksize
=
{
h
,
w
};
param
.
global_pooling
=
global_pooling
;
param
.
strides
=
{
stride
,
stride
};
param
.
paddings
=
{
pad
,
pad
};
param
.
exclusive
=
true
;
param
.
adaptive
=
false
;
param
.
ceil_mode
=
false
;
param
.
use_quantizer
=
false
;
// compute
pool
.
SetParam
(
param
);
pool
.
Run
();
#if 0
LOG(INFO) << "n:" << n << " c:" << c << " h:" << h << " w:" << w
<< " end";
std::cout << "n:" << n << " c:" << c << " h:" << h << " w:" << w
<< " end" << std::endl;
for (int i = 0; i < param.ksize.size(); ++i) {
std::cout << " ksize[" << i << "]:" << param.ksize[i];
}
std::cout << "\n";
for (int i = 0; i < param.strides.size(); ++i) {
std::cout << " strides[" << i << "]:" << param.strides[i];
}
std::cout << "\n";
for (int i = 0; i < param.paddings.size(); ++i) {
std::cout << " paddings[" << i << "]:" << param.paddings[i];
}
std::cout << "\n";
#endif
// compute ref
// output_ref.Resize(output.dims());
param
.
output
=
&
output_ref
;
pool_compute_ref
(
param
);
LOG
(
INFO
)
<<
"pool_compute_ref(param) end"
;
// compare
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1
);
// 1e-5);
}
LOG
(
INFO
)
<<
"compare pass"
;
}
}
}
}
}
// pad
}
// stride
}
// global_pooling
}
// pooling_type
}
TEST
(
pool
,
retrive_op
)
{
auto
pool
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
(
"pool"
);
ASSERT_FALSE
(
pool
.
empty
());
ASSERT_TRUE
(
pool
.
front
());
}
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
pool
,
kARM
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/arm/use_kernels.h
浏览文件 @
e1a9d563
...
@@ -19,5 +19,6 @@ USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def);
...
@@ -19,5 +19,6 @@ USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL
(
mul
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
mul
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
scale
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
scale
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
softmax
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
softmax
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
pool
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
feed
,
kARM
,
kAny
,
kAny
,
def
);
USE_LITE_KERNEL
(
feed
,
kARM
,
kAny
,
kAny
,
def
);
USE_LITE_KERNEL
(
fetch
,
kARM
,
kAny
,
kAny
,
def
);
USE_LITE_KERNEL
(
fetch
,
kARM
,
kAny
,
kAny
,
def
);
paddle/fluid/lite/operators/CMakeLists.txt
浏览文件 @
e1a9d563
...
@@ -18,6 +18,7 @@ cc_library(fill_constant_op_lite SRCS fill_constant_op.cc DEPS ${op_DEPS})
...
@@ -18,6 +18,7 @@ cc_library(fill_constant_op_lite SRCS fill_constant_op.cc DEPS ${op_DEPS})
cc_library
(
op_params_lite SRCS op_params.cc DEPS
${
tensor_lite
}
any_lite framework_proto_lite
)
cc_library
(
op_params_lite SRCS op_params.cc DEPS
${
tensor_lite
}
any_lite framework_proto_lite
)
cc_library
(
dropout_op_lite SRCS dropout_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
dropout_op_lite SRCS dropout_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
concat_op_lite SRCS concat_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
concat_op_lite SRCS concat_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
pool_op_lite SRCS pool_op.cc DEPS
${
op_DEPS
}
)
set
(
ops_lite
set
(
ops_lite
conv_op_lite
conv_op_lite
...
@@ -46,3 +47,6 @@ lite_cc_test(test_scale_op_lite SRCS scale_op_test.cc DEPS scale_op_lite memory_
...
@@ -46,3 +47,6 @@ lite_cc_test(test_scale_op_lite SRCS scale_op_test.cc DEPS scale_op_lite memory_
lite_cc_test
(
test_softmax_op_lite SRCS softmax_op_test.cc DEPS softmax_op_lite memory_lite
)
lite_cc_test
(
test_softmax_op_lite SRCS softmax_op_test.cc DEPS softmax_op_lite memory_lite
)
lite_cc_test
(
test_reshape_op_lite SRCS reshape_op_test.cc DEPS reshape_op_lite memory_lite
)
lite_cc_test
(
test_reshape_op_lite SRCS reshape_op_test.cc DEPS reshape_op_lite memory_lite
)
lite_cc_test
(
test_concat_op_lite SRCS concat_op_test.cc DEPS concat_op_lite memory_lite
)
lite_cc_test
(
test_concat_op_lite SRCS concat_op_test.cc DEPS concat_op_lite memory_lite
)
lite_cc_test
(
test_pool_op_lite SRCS pool_op_test.cc
DEPS pool_op_lite memory_lite
ARM_DEPS pool_compute_arm
)
paddle/fluid/lite/operators/pool_op.cc
0 → 100644
浏览文件 @
e1a9d563
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/pool_op.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
PoolOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
output
);
const
auto
&
x_dims
=
param_
.
x
->
dims
();
const
auto
&
ksize
=
param_
.
ksize
;
const
auto
&
strides
=
param_
.
strides
;
const
auto
&
paddings
=
param_
.
paddings
;
// "Pooling intput should be 4-D or 5-D tensor."
CHECK_OR_FALSE
(
x_dims
.
size
()
==
4
||
x_dims
.
size
()
==
5
);
// Input size and pooling size should be consistent.
CHECK_OR_FALSE
(
x_dims
.
size
()
-
ksize
.
size
()
==
2U
);
// Strides size and pooling size should be the same.
CHECK_OR_FALSE
(
ksize
.
size
()
==
strides
.
size
());
// Paddings size and pooling size should be the same.
CHECK_OR_FALSE
(
ksize
.
size
()
==
paddings
.
size
());
return
true
;
}
int
PoolOutputSize
(
int
input_size
,
int
filter_size
,
int
padding
,
int
stride
,
bool
ceil_mode
)
{
int
output_size
;
if
(
!
ceil_mode
)
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
)
/
stride
+
1
;
}
else
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
return
output_size
;
}
bool
PoolOpLite
::
InferShape
()
const
{
const
auto
x_dims
=
param_
.
x
->
dims
();
std
::
vector
<
int
>&
ksize
=
param_
.
ksize
;
if
(
param_
.
global_pooling
)
{
ksize
.
resize
(
static_cast
<
size_t
>
(
x_dims
.
size
())
-
2
);
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
param_
.
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
x_dims
[
i
+
2
]);
}
}
std
::
vector
<
int64_t
>
output_shape
({
x_dims
[
0
],
x_dims
[
1
]});
if
(
param_
.
adaptive
)
{
output_shape
.
insert
(
output_shape
.
end
(),
param_
.
ksize
.
begin
(),
param_
.
ksize
.
end
());
}
else
{
for
(
size_t
i
=
0
;
i
<
param_
.
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
PoolOutputSize
(
x_dims
[
i
+
2
],
param_
.
ksize
[
i
],
param_
.
paddings
[
i
],
param_
.
strides
[
i
],
param_
.
ceil_mode
));
}
}
param_
.
output
->
Resize
(
lite
::
DDim
(
output_shape
));
// ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
// ctx->ShareLoD("X", "Out");
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
pool
,
paddle
::
lite
::
operators
::
PoolOpLite
);
paddle/fluid/lite/operators/pool_op.h
0 → 100644
浏览文件 @
e1a9d563
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
PoolOpLite
:
public
OpLite
{
public:
PoolOpLite
()
{}
explicit
PoolOpLite
(
const
std
::
string
&
type
)
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
/*
bool Run() override {
CHECK(kernel_);
kernel_->Run();
return true;
}
*/
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
{
auto
x
=
op_desc
.
Input
(
"X"
).
front
();
auto
out
=
op_desc
.
Output
(
"Out"
).
front
();
CHECK
(
scope
->
FindVar
(
x
));
CHECK
(
scope
->
FindVar
(
out
));
param_
.
x
=
scope
->
FindVar
(
x
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
output
=
scope
->
FindVar
(
out
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
pooling_type
=
op_desc
.
GetAttr
<
std
::
string
>
(
"pooling_type"
);
param_
.
ksize
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"ksize"
);
param_
.
global_pooling
=
op_desc
.
GetAttr
<
bool
>
(
"global_pooling"
);
param_
.
strides
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
param_
.
paddings
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
param_
.
exclusive
=
op_desc
.
GetAttr
<
bool
>
(
"exclusive"
);
param_
.
adaptive
=
op_desc
.
GetAttr
<
bool
>
(
"adaptive"
);
param_
.
ceil_mode
=
op_desc
.
GetAttr
<
bool
>
(
"ceil_mode"
);
param_
.
use_quantizer
=
op_desc
.
GetAttr
<
bool
>
(
"use_quantizer"
);
// param_.data_format = op_desc.GetAttr<bool>("data_format");
return
true
;
}
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"pool"
;
}
private:
mutable
PoolParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/operators/pool_op_test.cc
0 → 100644
浏览文件 @
e1a9d563
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/pool_op.h"
#include <gtest/gtest.h>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
TEST
(
pool_op_lite
,
test
)
{
// prepare variables
Scope
scope
;
auto
*
x
=
scope
.
Var
(
"x"
)
->
GetMutable
<
Tensor
>
();
auto
*
output
=
scope
.
Var
(
"output"
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
1
,
3
,
224
,
224
})));
output
->
Resize
(
DDim
(
std
::
vector
<
int64_t
>
{
1
,
3
,
112
,
112
}));
// set data
for
(
int
i
=
0
;
i
<
1
*
3
*
224
*
224
;
i
++
)
{
x
->
mutable_data
<
float
>
()[
i
]
=
i
;
}
for
(
int
i
=
0
;
i
<
1
*
3
*
112
*
112
;
i
++
)
{
output
->
mutable_data
<
float
>
()[
i
]
=
0.
;
}
// prepare op desc
cpp
::
OpDesc
desc
;
desc
.
SetType
(
"pool"
);
desc
.
SetInput
(
"X"
,
{
"x"
});
desc
.
SetOutput
(
"Out"
,
{
"output"
});
std
::
string
pooling_type
(
"max"
);
desc
.
SetAttr
(
"pooling_type"
,
pooling_type
);
// desc.SetAttr("ksize", static_cast<std::vector<int>>({2, 2}));
std
::
vector
<
int
>
ksize
{
2
,
2
};
desc
.
SetAttr
(
"ksize"
,
ksize
);
bool
global_pooling
{
false
};
desc
.
SetAttr
(
"global_pooling"
,
global_pooling
);
std
::
vector
<
int
>
strides
{
1
,
1
};
desc
.
SetAttr
(
"strides"
,
strides
);
std
::
vector
<
int
>
paddings
{
0
,
0
};
desc
.
SetAttr
(
"paddings"
,
paddings
);
bool
exclusive
{
true
};
desc
.
SetAttr
(
"exclusive"
,
exclusive
);
bool
adaptive
{
false
};
desc
.
SetAttr
(
"adaptive"
,
adaptive
);
bool
ceil_mode
{
false
};
desc
.
SetAttr
(
"ceil_mode"
,
ceil_mode
);
bool
use_quantizer
{
false
};
desc
.
SetAttr
(
"use_quantizer"
,
use_quantizer
);
PoolOpLite
pool
(
"pool"
);
pool
.
SetValidPlaces
({
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)}});
pool
.
Attach
(
desc
,
&
scope
);
auto
kernels
=
pool
.
CreateKernels
({
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)}});
LOG
(
INFO
)
<<
"kernels.size(): "
<<
kernels
.
size
();
ASSERT_FALSE
(
kernels
.
empty
());
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
#ifdef LITE_WITH_ARM
USE_LITE_KERNEL
(
pool
,
kARM
,
kFloat
,
kNCHW
,
def
);
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录