未验证 提交 d4d8f742 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #5485 from luotao1/image

add doc for image.py
...@@ -2,112 +2,9 @@ ...@@ -2,112 +2,9 @@
Data Reader Interface and DataSets Data Reader Interface and DataSets
================================== ==================================
.. toctree::
:maxdepth: 1
DataTypes data/data_reader.rst
========= data/image.rst
data/dataset.rst
.. automodule:: paddle.v2.data_type
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.v2.reader
:members:
:noindex:
.. automodule:: paddle.v2.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:
Dataset
=======
.. automodule:: paddle.v2.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.v2.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.v2.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.v2.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.v2.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.v2.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.v2.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.v2.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:
=====================
Data Reader Interface
=====================
DataTypes
=========
.. automodule:: paddle.v2.data_type
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.v2.reader
:members:
:noindex:
.. automodule:: paddle.v2.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:
Dataset
=======
.. automodule:: paddle.v2.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.v2.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.v2.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.v2.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.v2.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.v2.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.v2.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.v2.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:
Image Interface
===============
.. automodule:: paddle.v2.image
:members:
import numpy as np
try:
import cv2
except ImportError:
cv2 = None
import os
import tarfile
import cPickle
__all__ = [
"load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop",
"random_crop", "left_right_flip", "simple_transform", "load_and_transform",
"batch_images_from_tar"
]
""" """
This file contains some common interfaces for image preprocess. This file contains some common interfaces for image preprocess.
Many users are confused about the image layout. We introduce Many users are confused about the image layout. We introduce
the image layout as follows. the image layout as follows.
- CHW Layout - CHW Layout
- The abbreviations: C=channel, H=Height, W=Width - The abbreviations: C=channel, H=Height, W=Width
- The default layout of image opened by cv2 or PIL is HWC. - The default layout of image opened by cv2 or PIL is HWC.
PaddlePaddle only supports the CHW layout. And CHW is simply PaddlePaddle only supports the CHW layout. And CHW is simply
a transpose of HWC. It must transpose the input image. a transpose of HWC. It must transpose the input image.
- Color format: RGB or BGR - Color format: RGB or BGR
OpenCV use BGR color format. PIL use RGB color format. Both OpenCV use BGR color format. PIL use RGB color format. Both
formats can be used for training. Noted that, the format should formats can be used for training. Noted that, the format should
be keep consistent between the training and inference peroid. be keep consistent between the training and inference peroid.
""" """
import numpy as np
try:
import cv2
except ImportError:
cv2 = None
import os
import tarfile
import cPickle
__all__ = [
"load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop",
"random_crop", "left_right_flip", "simple_transform", "load_and_transform",
"batch_images_from_tar"
]
def batch_images_from_tar(data_file, def batch_images_from_tar(data_file,
...@@ -36,17 +38,18 @@ def batch_images_from_tar(data_file, ...@@ -36,17 +38,18 @@ def batch_images_from_tar(data_file,
num_per_batch=1024): num_per_batch=1024):
""" """
Read images from tar file and batch them into batch file. Read images from tar file and batch them into batch file.
param data_file: path of image tar file
type data_file: string :param data_file: path of image tar file
param dataset_name: 'train','test' or 'valid' :type data_file: string
type dataset_name: string :param dataset_name: 'train','test' or 'valid'
param img2label: a dic with image file name as key :type dataset_name: string
:param img2label: a dic with image file name as key
and image's label as value and image's label as value
type img2label: dic :type img2label: dic
param num_per_batch: image number per batch file :param num_per_batch: image number per batch file
type num_per_batch: int :type num_per_batch: int
return: path of list file containing paths of batch file :return: path of list file containing paths of batch file
rtype: string :rtype: string
""" """
batch_dir = data_file + "_batch" batch_dir = data_file + "_batch"
out_path = "%s/%s" % (batch_dir, dataset_name) out_path = "%s/%s" % (batch_dir, dataset_name)
...@@ -99,14 +102,16 @@ def load_image_bytes(bytes, is_color=True): ...@@ -99,14 +102,16 @@ def load_image_bytes(bytes, is_color=True):
Example usage: Example usage:
.. code-block:: python .. code-block:: python
with open('cat.jpg') as f: with open('cat.jpg') as f:
im = load_image_bytes(f.read()) im = load_image_bytes(f.read())
:param bytes: the input image bytes array. :param bytes: the input image bytes array.
:type file: str :type bytes: str
:param is_color: If set is_color True, it will load and :param is_color: If set is_color True, it will load and
return a color image. Otherwise, it will return a color image. Otherwise, it will
load and return a gray image. load and return a gray image.
:type is_color: bool
""" """
flag = 1 if is_color else 0 flag = 1 if is_color else 0
file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8) file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8)
...@@ -121,6 +126,7 @@ def load_image(file, is_color=True): ...@@ -121,6 +126,7 @@ def load_image(file, is_color=True):
Example usage: Example usage:
.. code-block:: python .. code-block:: python
im = load_image('cat.jpg') im = load_image('cat.jpg')
:param file: the input image path. :param file: the input image path.
...@@ -128,6 +134,7 @@ def load_image(file, is_color=True): ...@@ -128,6 +134,7 @@ def load_image(file, is_color=True):
:param is_color: If set is_color True, it will load and :param is_color: If set is_color True, it will load and
return a color image. Otherwise, it will return a color image. Otherwise, it will
load and return a gray image. load and return a gray image.
:type is_color: bool
""" """
# cv2.IMAGE_COLOR for OpenCV3 # cv2.IMAGE_COLOR for OpenCV3
# cv2.CV_LOAD_IMAGE_COLOR for older OpenCV Version # cv2.CV_LOAD_IMAGE_COLOR for older OpenCV Version
...@@ -147,6 +154,7 @@ def resize_short(im, size): ...@@ -147,6 +154,7 @@ def resize_short(im, size):
Example usage: Example usage:
.. code-block:: python .. code-block:: python
im = load_image('cat.jpg') im = load_image('cat.jpg')
im = resize_short(im, 256) im = resize_short(im, 256)
...@@ -175,6 +183,7 @@ def to_chw(im, order=(2, 0, 1)): ...@@ -175,6 +183,7 @@ def to_chw(im, order=(2, 0, 1)):
Example usage: Example usage:
.. code-block:: python .. code-block:: python
im = load_image('cat.jpg') im = load_image('cat.jpg')
im = resize_short(im, 256) im = resize_short(im, 256)
im = to_chw(im) im = to_chw(im)
...@@ -196,6 +205,7 @@ def center_crop(im, size, is_color=True): ...@@ -196,6 +205,7 @@ def center_crop(im, size, is_color=True):
Example usage: Example usage:
.. code-block:: python .. code-block:: python
im = center_crop(im, 224) im = center_crop(im, 224)
:param im: the input image with HWC layout. :param im: the input image with HWC layout.
...@@ -223,6 +233,7 @@ def random_crop(im, size, is_color=True): ...@@ -223,6 +233,7 @@ def random_crop(im, size, is_color=True):
Example usage: Example usage:
.. code-block:: python .. code-block:: python
im = random_crop(im, 224) im = random_crop(im, 224)
:param im: the input image with HWC layout. :param im: the input image with HWC layout.
...@@ -251,6 +262,7 @@ def left_right_flip(im): ...@@ -251,6 +262,7 @@ def left_right_flip(im):
Example usage: Example usage:
.. code-block:: python .. code-block:: python
im = left_right_flip(im) im = left_right_flip(im)
:paam im: input image with HWC layout :paam im: input image with HWC layout
...@@ -275,6 +287,7 @@ def simple_transform(im, ...@@ -275,6 +287,7 @@ def simple_transform(im,
Example usage: Example usage:
.. code-block:: python .. code-block:: python
im = simple_transform(im, 256, 224, True) im = simple_transform(im, 256, 224, True)
:param im: The input image with HWC layout. :param im: The input image with HWC layout.
...@@ -285,6 +298,11 @@ def simple_transform(im, ...@@ -285,6 +298,11 @@ def simple_transform(im,
:type crop_size: int :type crop_size: int
:param is_train: Whether it is training or not. :param is_train: Whether it is training or not.
:type is_train: bool :type is_train: bool
:param is_color: whether the image is color or not.
:type is_color: bool
:param mean: the mean values, which can be element-wise mean values or
mean values per channel.
:type mean: numpy array | list
""" """
im = resize_short(im, resize_size) im = resize_short(im, resize_size)
if is_train: if is_train:
...@@ -324,6 +342,7 @@ def load_and_transform(filename, ...@@ -324,6 +342,7 @@ def load_and_transform(filename,
Example usage: Example usage:
.. code-block:: python .. code-block:: python
im = load_and_transform('cat.jpg', 256, 224, True) im = load_and_transform('cat.jpg', 256, 224, True)
:param filename: The file name of input image. :param filename: The file name of input image.
...@@ -334,6 +353,11 @@ def load_and_transform(filename, ...@@ -334,6 +353,11 @@ def load_and_transform(filename,
:type crop_size: int :type crop_size: int
:param is_train: Whether it is training or not. :param is_train: Whether it is training or not.
:type is_train: bool :type is_train: bool
:param is_color: whether the image is color or not.
:type is_color: bool
:param mean: the mean values, which can be element-wise mean values or
mean values per channel.
:type mean: numpy array | list
""" """
im = load_image(filename) im = load_image(filename)
im = simple_transform(im, resize_size, crop_size, is_train, is_color, mean) im = simple_transform(im, resize_size, crop_size, is_train, is_color, mean)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册