Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f4729a24
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f4729a24
编写于
11月 08, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into image
上级
15133229
502d7daf
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
325 addition
and
68 deletion
+325
-68
benchmark/paddle/image/vgg.py
benchmark/paddle/image/vgg.py
+1
-1
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
+76
-7
paddle/gserver/layers/MKLDNNAddtoLayer.h
paddle/gserver/layers/MKLDNNAddtoLayer.h
+21
-1
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+2
-7
paddle/operators/accuracy_op.cu
paddle/operators/accuracy_op.cu
+1
-1
paddle/operators/fill_constant_batch_size_like_op.cc
paddle/operators/fill_constant_batch_size_like_op.cc
+2
-2
paddle/operators/lstm_unit_op.cc
paddle/operators/lstm_unit_op.cc
+4
-4
paddle/operators/pool_cudnn_op.cu
paddle/operators/pool_cudnn_op.cu
+4
-4
paddle/operators/pool_op.cc
paddle/operators/pool_op.cc
+16
-15
paddle/operators/pool_op.h
paddle/operators/pool_op.h
+4
-4
paddle/operators/pool_with_index_op.cc
paddle/operators/pool_with_index_op.cc
+9
-9
paddle/operators/pool_with_index_op.h
paddle/operators/pool_with_index_op.h
+2
-2
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+71
-5
python/paddle/v2/framework/tests/test_accuracy_op.py
python/paddle/v2/framework/tests/test_accuracy_op.py
+0
-1
python/paddle/v2/framework/tests/test_pool2d_op.py
python/paddle/v2/framework/tests/test_pool2d_op.py
+2
-2
python/paddle/v2/framework/tests/test_pool3d_op.py
python/paddle/v2/framework/tests/test_pool3d_op.py
+2
-2
python/paddle/v2/framework/tests/test_pool_max_op.py
python/paddle/v2/framework/tests/test_pool_max_op.py
+1
-1
python/paddle/v2/framework/tests/test_understand_sentiment_lstm.py
...ddle/v2/framework/tests/test_understand_sentiment_lstm.py
+107
-0
未找到文件。
benchmark/paddle/image/vgg.py
浏览文件 @
f4729a24
...
...
@@ -13,7 +13,7 @@ define_py_data_sources2(
settings
(
batch_size
=
batch_size
,
learning_rate
=
0.01
/
batch_size
,
learning_rate
=
0.0
0
1
/
batch_size
,
learning_method
=
MomentumOptimizer
(
0.9
),
regularization
=
L2Regularization
(
0.0005
*
batch_size
))
...
...
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
浏览文件 @
f4729a24
...
...
@@ -62,16 +62,14 @@ void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
if
(
biases_
)
{
LOG
(
FATAL
)
<<
"not implemented yet"
;
}
resetFwdBuffers
(
inVals_
,
out
);
resetFwdBuffers
(
inVals_
,
bias
,
out
);
in
=
inVals_
[
0
];
std
::
shared_ptr
<
sum
::
primitive_desc
>
fwdPD
;
resetFwdPD
(
fwdPD
,
inVals_
,
out
);
std
::
shared_ptr
<
sum
::
primitive_desc
>
biasPD
;
resetFwdPD
(
fwdPD
,
biasPD
,
inVals_
,
bias
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD
,
inVals_
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD
,
biasPD
,
inVals_
,
bias
,
out
);
}
void
MKLDNNAddtoLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
...
...
@@ -79,7 +77,7 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
resetBwdBuffers
(
inGrads_
,
out
);
resetBwdBuffers
(
inGrads_
,
bias
,
out
);
in
=
inGrads_
[
0
];
// backward only need share output grad to input grad
...
...
@@ -89,6 +87,20 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
inputLayers_
[
i
]
->
getOutputGrad
()
->
setData
(
inGrads_
[
i
]
->
getData
());
}
}
// backward bias
bwdBias_
=
nullptr
;
if
(
bias
)
{
std
::
vector
<
double
>
scales
(
bs_
,
1.0
);
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
(
bs_
,
bias
->
getPrimitiveDesc
());
auto
biasPD
=
sum
::
primitive_desc
(
bias
->
getMemoryDesc
(),
scales
,
srcPDs
);
std
::
vector
<
primitive
::
at
>
srcs
;
for
(
size_t
i
=
0
;
i
<
grads_
.
size
();
++
i
)
{
srcs
.
push_back
(
*
(
grads_
[
i
]));
}
bwdBias_
.
reset
(
new
sum
(
biasPD
,
srcs
,
*
bias
));
pipeline
.
push_back
(
*
bwdBias_
);
}
}
void
MKLDNNAddtoLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
...
...
@@ -97,7 +109,25 @@ void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
}
}
void
MKLDNNAddtoLayer
::
prepareBias
(
MKLDNNMatrixPtr
&
bias
,
const
MatrixPtr
&
biasMat
,
const
MKLDNNMatrixPtr
&
out
,
std
::
vector
<
MKLDNNMatrixPtr
>&
outs
)
{
auto
pd
=
MKLDNNMatrix
::
createPrimitiveDesc
(
{(
int
)
layerSize_
},
memory
::
format
::
x
,
engine_
);
bias
=
MKLDNNMatrix
::
create
(
pd
,
biasMat
);
outs
.
clear
();
real
*
data
=
out
->
getData
();
CHECK_EQ
(
bs_
*
layerSize_
,
out
->
getElementCnt
());
for
(
int
i
=
0
;
i
<
bs_
;
++
i
)
{
MatrixPtr
tmp
=
Matrix
::
create
(
data
+
i
*
layerSize_
,
1
,
layerSize_
,
false
,
false
);
outs
.
push_back
(
MKLDNNMatrix
::
create
(
bias
->
getPrimitiveDesc
(),
tmp
));
}
}
void
MKLDNNAddtoLayer
::
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
inputs
.
resize
(
inputLayers_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
...
...
@@ -110,10 +140,18 @@ void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
}
resetOutValue
(
out
,
inputs
[
0
]
->
getPrimitiveDesc
());
if
(
biases_
&&
biases_
->
getW
())
{
prepareBias
(
bias
,
biases_
->
getW
(),
out
,
vals_
);
}
else
{
bias
=
nullptr
;
}
}
void
MKLDNNAddtoLayer
::
resetFwdPD
(
std
::
shared_ptr
<
sum
::
primitive_desc
>&
pd
,
std
::
shared_ptr
<
sum
::
primitive_desc
>&
biasPD
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
bias
,
MKLDNNMatrixPtr
out
)
{
std
::
vector
<
double
>
scales
(
inputs
.
size
(),
1.0
);
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
;
...
...
@@ -123,12 +161,23 @@ void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
CHECK
(
out
);
pd
.
reset
(
new
sum
::
primitive_desc
(
out
->
getMemoryDesc
(),
scales
,
srcPDs
));
CHECK_PRIMITIVE_DESC_EQ
(
out
,
pd
->
dst_primitive_desc
());
biasPD
=
nullptr
;
if
(
bias
)
{
std
::
vector
<
double
>
scales
(
2
,
1.0
);
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
(
2
,
bias
->
getPrimitiveDesc
());
biasPD
.
reset
(
new
sum
::
primitive_desc
(
bias
->
getMemoryDesc
(),
scales
,
srcPDs
));
CHECK_PRIMITIVE_DESC_EQ
(
bias
,
biasPD
->
dst_primitive_desc
());
}
}
void
MKLDNNAddtoLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
sum
::
primitive_desc
>&
pd
,
std
::
shared_ptr
<
sum
::
primitive_desc
>&
biasPD
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
std
::
vector
<
primitive
::
at
>
srcs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
...
...
@@ -136,9 +185,23 @@ void MKLDNNAddtoLayer::resetFwdPipeline(
}
fwd_
.
reset
(
new
sum
(
*
pd
,
srcs
,
*
out
));
pipeline
.
push_back
(
*
fwd_
);
fwdBias_
.
clear
();
if
(
biasPD
==
nullptr
||
bias
==
nullptr
)
{
return
;
}
fwdBias_
.
resize
(
vals_
.
size
());
for
(
size_t
i
=
0
;
i
<
vals_
.
size
();
++
i
)
{
std
::
vector
<
primitive
::
at
>
srcs
;
srcs
.
push_back
(
*
(
vals_
[
i
]));
srcs
.
push_back
(
*
bias
);
fwdBias_
[
i
].
reset
(
new
sum
(
*
biasPD
,
srcs
,
*
vals_
[
i
]));
pipeline
.
push_back
(
*
fwdBias_
[
i
]);
}
}
void
MKLDNNAddtoLayer
::
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
outVal_
);
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
...
...
@@ -149,6 +212,12 @@ void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
resetInGrad
(
inputs
[
i
],
inVal_
->
getPrimitiveDesc
(),
i
);
CHECK_PRIMITIVE_DESC_EQ
(
inputs
[
i
],
out
->
getPrimitiveDesc
());
}
if
(
biases_
&&
biases_
->
getWGrad
())
{
prepareBias
(
bias
,
biases_
->
getWGrad
(),
out
,
grads_
);
}
else
{
bias
=
nullptr
;
}
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNAddtoLayer.h
浏览文件 @
f4729a24
...
...
@@ -32,9 +32,15 @@ protected:
// layer size == ic * ih * iw == oc * oh *ow, and can not be changed
size_t
layerSize_
;
// TODO(TJ): this part has not been optimized by MKL-DNN
std
::
unique_ptr
<
Weight
>
biases_
;
// buffers for adding bias
std
::
vector
<
MKLDNNMatrixPtr
>
vals_
;
std
::
vector
<
MKLDNNMatrixPtr
>
grads_
;
// primitives for adding bias
std
::
vector
<
std
::
shared_ptr
<
mkldnn
::
primitive
>>
fwdBias_
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
bwdBias_
;
public:
explicit
MKLDNNAddtoLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
)
{}
...
...
@@ -91,20 +97,34 @@ protected:
* reset pipeline.
*/
void
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
void
resetFwdPD
(
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
pd
,
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
biasPD
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
bias
,
MKLDNNMatrixPtr
out
);
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
pd
,
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
biasPD
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* Backward functions: reset buffers(inputs, output, bias)
*/
void
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* prepare for bias
*/
void
prepareBias
(
MKLDNNMatrixPtr
&
bias
,
const
MatrixPtr
&
biasMat
,
const
MKLDNNMatrixPtr
&
out
,
std
::
vector
<
MKLDNNMatrixPtr
>&
outs
);
};
}
// namespace paddle
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
f4729a24
...
...
@@ -300,13 +300,8 @@ void testAddtoLayer(const testImageDesc& pm, const size_t nInputs) {
TestConfig
dnnConfig
;
getAddtoConfig
(
dnnConfig
,
pm
,
nInputs
);
dnnConfig
.
layerConfig
.
set_type
(
"mkldnn_addto"
);
// TODO(TJ): test with bias
for
(
auto
withBias
:
{
false
})
{
if
(
withBias
)
{
dnnConfig
.
biasSize
=
pm
.
ic
*
pm
.
ih
*
pm
.
iw
;
}
else
{
dnnConfig
.
biasSize
=
0
;
}
for
(
auto
withBias
:
{
false
,
true
})
{
dnnConfig
.
biasSize
=
withBias
?
pm
.
ic
*
pm
.
ih
*
pm
.
iw
:
0
;
RUN_MKLDNN_TEST_LAYER
(
dnnConfig
,
"addto"
,
pm
)
}
}
...
...
paddle/operators/accuracy_op.cu
浏览文件 @
f4729a24
...
...
@@ -65,7 +65,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
size_t
num_samples
=
inference
->
dims
()[
0
];
size_t
infer_width
=
inference
->
dims
()[
1
];
cudaMemset
((
void
**
)
&
accuracy_data
,
0
,
sizeof
(
float
));
PADDLE_ENFORCE
(
cudaMemset
(
accuracy_data
,
0
,
sizeof
(
float
)
));
if
(
num_samples
==
0
)
{
return
;
...
...
paddle/operators/fill_constant_batch_size_like_op.cc
浏览文件 @
f4729a24
...
...
@@ -75,10 +75,10 @@ class FillConstantBatchSizeLikeOpMaker
"with the specified value"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(vector<int>) The shape of the output"
);
AddAttr
<
int
>
(
"input_dim_idx"
,
"(int, default 0)
t
he index of input's batch size dimension"
)
"(int, default 0)
T
he index of input's batch size dimension"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"output_dim_idx"
,
"(int, default 0)
t
he index of output's batch size dimension"
)
"(int, default 0)
T
he index of output's batch size dimension"
)
.
SetDefault
(
0
);
AddAttr
<
float
>
(
"value"
,
"(float, default 0) The value to be filled"
)
.
SetDefault
(
0.0
f
);
...
...
paddle/operators/lstm_unit_op.cc
浏览文件 @
f4729a24
...
...
@@ -34,10 +34,10 @@ class LstmUnitOp : public framework::OperatorWithKernel {
auto
c_prev_dims
=
ctx
->
GetInputDim
(
"C_prev"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE
(
x_dims
[
0
]
==
c_prev_dims
[
0
],
"Batch size of inputs and states must be equal"
);
PADDLE_ENFORCE
(
x_dims
[
1
]
==
c_prev_dims
[
1
]
*
4
,
"Dimension of FC should equal to prev state * 4"
);
PADDLE_ENFORCE
_EQ
(
x_dims
[
0
],
c_prev_dims
[
0
],
"Batch size of inputs and states must be equal"
);
PADDLE_ENFORCE
_EQ
(
x_dims
[
1
],
c_prev_dims
[
1
]
*
4
,
"Dimension of FC should equal to prev state * 4"
);
int
b_size
=
c_prev_dims
[
0
];
// batch size
int
s_dim
=
c_prev_dims
[
1
];
// state dim
...
...
paddle/operators/pool_cudnn_op.cu
浏览文件 @
f4729a24
...
...
@@ -37,11 +37,11 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
ctx
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
ctx
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
input
->
dims
()[
i
+
2
]);
...
...
@@ -92,12 +92,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> {
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
ctx
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
ctx
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
input
->
dims
()[
i
+
2
]);
...
...
paddle/operators/pool_op.cc
浏览文件 @
f4729a24
...
...
@@ -29,7 +29,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
string
pooling_type
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
...
...
@@ -37,7 +37,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
"Pooling intput should be 4-D or 5-D tensor."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"global
P
ooling"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"global
_p
ooling"
))
{
ksize
.
resize
(
static_cast
<
size_t
>
(
in_x_dims
.
size
())
-
2
);
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
...
...
@@ -83,20 +83,20 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
"H is the height of the feature, "
"and W is the width of the feature."
);
AddAttr
<
std
::
string
>
(
"pooling
T
ype"
,
AddAttr
<
std
::
string
>
(
"pooling
_t
ype"
,
"(string), pooling type, can be
\"
max
\"
for max-pooling "
"and
\"
avg
\"
for average-pooling."
)
.
InEnum
({
"max"
,
"avg"
});
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector<int>) The pooling window "
"size(height, width) of the pooling operator. "
"If global
P
ooling = true, ksize and paddings will "
"If global
_p
ooling = true, ksize and paddings will "
"be ignored."
);
// TODO(Chengduo): Add checker.
// (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global
P
ooling"
,
AddAttr
<
bool
>
(
"global
_p
ooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global
P
ooling = true, ksize and paddings will be ignored."
)
"If global
_p
ooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
...
...
@@ -107,7 +107,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
"paddings"
,
"(vector<int>, defalut {0,0}), paddings(height, width) of pooling "
"operator."
"If global
P
ooling = true, paddings and ksize will be ignored."
)
"If global
_p
ooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
...
...
@@ -115,7 +115,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
Pool2d Operator.
The pooling2d operation calculates the output based on
the input, pooling
T
ype and ksize, strides, paddings parameters.
the input, pooling
_t
ype and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements.
...
...
@@ -152,7 +152,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"the number of channels, and D, H and W is the depth, height and "
"width of the feature, respectively."
);
AddAttr
<
std
::
string
>
(
"pooling
T
ype"
,
AddAttr
<
std
::
string
>
(
"pooling
_t
ype"
,
"(string) Pooling type, can be
\"
max
\"
for max-pooling "
"and
\"
avg
\"
for average-pooling."
)
.
InEnum
({
"max"
,
"avg"
});
...
...
@@ -160,13 +160,14 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"ksize"
,
"(vector<int>) The pooling window size(depth, height, "
"width) of pooling operator. "
"If global
P
ooling = true, ksize and paddings will "
"If global
_p
ooling = true, ksize and paddings will "
"be ignored."
);
// TODO(Chengduo): Add checker.
// (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"globalPooling"
,
"(bool, default false) Whether to use the global pooling. "
"If globalPooling = true, ksize and paddings wille be ignored."
)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings wille be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
...
...
@@ -178,7 +179,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"paddings"
,
"(vector<int>, defalut {0,0,0}), paddings(depth, height, "
"width) of pooling operator. "
"If global
P
ooling = true, ksize and paddings will be ignored."
)
"If global
_p
ooling = true, ksize and paddings will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
...
...
@@ -186,7 +187,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
Pool3d Operator.
The pooling3d operation calculates the output based on
the input, pooling
T
ype, ksize, strides, and paddings parameters.
the input, pooling
_t
ype, ksize, strides, and paddings parameters.
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings)
...
...
paddle/operators/pool_op.h
浏览文件 @
f4729a24
...
...
@@ -57,11 +57,11 @@ class PoolKernel : public framework::OpKernel<T> {
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
i
+
2
]);
...
...
@@ -119,12 +119,12 @@ class PoolGradKernel : public framework::OpKernel<T> {
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
in_x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
i
+
2
]);
...
...
paddle/operators/pool_with_index_op.cc
浏览文件 @
f4729a24
...
...
@@ -44,7 +44,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
"Pooling intput should be 4-D or 5-D tensor."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"global
P
ooling"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"global
_p
ooling"
))
{
ksize
.
resize
(
static_cast
<
size_t
>
(
in_x_dims
.
size
())
-
2
);
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
...
...
@@ -110,14 +110,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector<int>) The pooling window size(height, "
"width) of pooling operator. "
"If global
P
ooling = true, ksize and paddings "
"If global
_p
ooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global
P
ooling"
,
"global
_p
ooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global
P
ooling = true, ksize and paddings will be ignored."
)
"If global
_p
ooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
...
...
@@ -128,7 +128,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"paddings"
,
"(vector<int>, defalut {0, 0}), paddings(height, width) of pooling "
"operator. "
"If global
P
ooling = true, paddings and will be ignored."
)
"If global
_p
ooling = true, paddings and will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
...
...
@@ -188,14 +188,14 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector<int>) The pooling window size(depth, "
"height, width) of pooling operator. "
"If global
P
ooling = true, ksize and paddings "
"If global
_p
ooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global
P
ooling"
,
"global
_p
ooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global
P
ooling = true, ksize and paddings will be ignored."
)
"If global
_p
ooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1,1,1}), strides(depth, "
...
...
@@ -206,7 +206,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"paddings"
,
"(vector, defalut {0,0,0}), paddings(depth, "
"height, width) of pooling operator. "
"If global
P
ooling = true, paddings and ksize will be ignored."
)
"If global
_p
ooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
...
...
paddle/operators/pool_with_index_op.h
浏览文件 @
f4729a24
...
...
@@ -35,7 +35,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
i
+
2
]);
...
...
@@ -72,7 +72,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_x_grad
->
dims
()[
i
+
2
]);
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
f4729a24
...
...
@@ -134,9 +134,7 @@ def _create_op_func_(op_type):
o_name
=
not_intermediate_outputs
[
0
].
name
intermediate_output_names
=
[
output
.
name
for
output
in
intermediate_outputs
]
def
func
(
**
kwargs
):
helper
=
LayerHelper
(
op_type
,
**
kwargs
)
inputs
=
dict
()
def
infer_and_check_data_type
(
op_proto
,
**
kwargs
):
dtype
=
None
for
ipt
in
op_proto
.
inputs
:
name
=
_convert_
(
ipt
.
name
)
...
...
@@ -153,6 +151,20 @@ def _create_op_func_(op_type):
elif
dtype
!=
each
.
data_type
:
raise
ValueError
(
"operator {0} must input same dtype"
.
format
(
op_type
))
return
dtype
def
func
(
**
kwargs
):
helper
=
LayerHelper
(
op_type
,
**
kwargs
)
dtype
=
infer_and_check_data_type
(
op_proto
,
**
kwargs
)
inputs
=
dict
()
for
ipt
in
op_proto
.
inputs
:
name
=
_convert_
(
ipt
.
name
)
val
=
kwargs
.
pop
(
name
,
[])
if
not
isinstance
(
val
,
list
)
and
not
isinstance
(
val
,
tuple
):
val
=
[
val
]
inputs
[
ipt
.
name
]
=
val
outputs
=
dict
()
...
...
@@ -178,6 +190,20 @@ _create_op_func_('reshape')
_create_op_func_
(
'elementwise_add'
)
_create_op_func_
(
'sigmoid'
)
_create_op_func_
(
'scale'
)
_create_op_func_
(
'reshape'
)
_create_op_func_
(
'transpose'
)
def
fill_constant
(
data_type
,
shape
,
value
=
None
,
program
=
None
):
helper
=
LayerHelper
(
'fill_constant'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
data_type
)
helper
.
append_op
(
type
=
'fill_constant'
,
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'data_type'
:
data_type
,
'shape'
:
shape
,
'value'
:
value
})
return
out
def
cast
(
x
,
data_type
,
main_program
=
None
):
...
...
@@ -414,9 +440,9 @@ def pool2d(input,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
pool_out
},
attrs
=
{
"pooling
T
ype"
:
pool_type
,
"pooling
_t
ype"
:
pool_type
,
"ksize"
:
pool_size
,
"global
P
ooling"
:
global_pooling
,
"global
_p
ooling"
:
global_pooling
,
"strides"
:
pool_stride
,
"paddings"
:
pool_padding
})
...
...
@@ -762,6 +788,46 @@ class StaticRNN(object):
})
def
lstm
(
x
,
c_pre_init
,
hidden_dim
,
forget_bias
=
None
,
main_program
=
None
,
startup_program
=
None
):
helper
=
LayerHelper
(
'lstm_unit'
,
**
locals
())
rnn
=
StaticRNN
()
with
rnn
.
step
():
c_pre
=
rnn
.
memory
(
init
=
c_pre_init
)
x_t
=
rnn
.
step_input
(
x
)
before_fc
=
concat
(
input
=
[
x_t
,
c_pre
],
axis
=
1
,
main_program
=
main_program
,
startup_program
=
startup_program
)
after_fc
=
fc
(
input
=
before_fc
,
size
=
hidden_dim
*
4
,
main_program
=
main_program
,
startup_program
=
startup_program
)
data_type
=
x
.
data_type
c
=
helper
.
create_tmp_variable
(
data_type
)
h
=
helper
.
create_tmp_variable
(
data_type
)
helper
.
append_op
(
type
=
'lstm_unit'
,
inputs
=
{
"X"
:
after_fc
,
"C_prev"
:
c_pre
},
outputs
=
{
"C"
:
c
,
"H"
:
h
},
attrs
=
{
"forget_bias"
:
forget_bias
})
rnn
.
update_memory
(
c_pre
,
c
)
rnn
.
output
(
h
)
return
rnn
()
def
lod_rank_table
(
x
,
level
=
0
,
main_program
=
None
):
helper
=
LayerHelper
(
"lod_rank_table"
,
**
locals
())
table
=
helper
.
create_variable
(
...
...
python/paddle/v2/framework/tests/test_accuracy_op.py
浏览文件 @
f4729a24
...
...
@@ -26,5 +26,4 @@ class TestAccuracyOp(OpTest):
if
__name__
==
'__main__'
:
exit
(
0
)
unittest
.
main
()
python/paddle/v2/framework/tests/test_pool2d_op.py
浏览文件 @
f4729a24
...
...
@@ -61,8 +61,8 @@ class TestPool2d_Op(OpTest):
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling
T
ype'
:
self
.
pool_type
,
'global
P
ooling'
:
self
.
global_pool
,
'pooling
_t
ype'
:
self
.
pool_type
,
'global
_p
ooling'
:
self
.
global_pool
,
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
...
...
python/paddle/v2/framework/tests/test_pool3d_op.py
浏览文件 @
f4729a24
...
...
@@ -67,8 +67,8 @@ class TestPool3d_Op(OpTest):
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling
T
ype'
:
self
.
pool_type
,
'global
P
ooling'
:
self
.
global_pool
,
'pooling
_t
ype'
:
self
.
pool_type
,
'global
_p
ooling'
:
self
.
global_pool
,
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
...
...
python/paddle/v2/framework/tests/test_pool_max_op.py
浏览文件 @
f4729a24
...
...
@@ -86,7 +86,7 @@ class TestMaxPoolWithIndex_Op(OpTest):
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'global
P
ooling'
:
self
.
global_pool
,
'global
_p
ooling'
:
self
.
global_pool
,
}
self
.
inputs
=
{
'X'
:
input
}
...
...
python/paddle/v2/framework/tests/test_understand_sentiment_lstm.py
0 → 100644
浏览文件 @
f4729a24
import
paddle.v2
as
paddle
import
paddle.v2.framework.layers
as
layers
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
g_main_program
,
g_startup_program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
def
lstm_net
(
dict_dim
,
class_dim
=
2
,
emb_dim
=
32
,
seq_len
=
80
,
batch_size
=
50
):
data
=
layers
.
data
(
name
=
"words"
,
shape
=
[
seq_len
*
batch_size
,
1
],
append_batch_size
=
False
,
data_type
=
"int64"
)
label
=
layers
.
data
(
name
=
"label"
,
shape
=
[
batch_size
,
1
],
append_batch_size
=
False
,
data_type
=
"int64"
)
emb
=
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
emb
=
layers
.
reshape
(
x
=
emb
,
shape
=
[
batch_size
,
seq_len
,
emb_dim
])
emb
=
layers
.
transpose
(
x
=
emb
,
axis
=
[
1
,
0
,
2
])
c_pre_init
=
layers
.
fill_constant
(
dtype
=
emb
.
data_type
,
shape
=
[
batch_size
,
emb_dim
],
value
=
0.0
)
layer_1_out
=
layers
.
lstm
(
emb
,
c_pre_init
=
c_pre_init
,
hidden_dim
=
emb_dim
)
layer_1_out
=
layers
.
transpose
(
x
=
layer_1_out
,
axis
=
[
1
,
0
,
2
])
prediction
=
layers
.
fc
(
input
=
layer_1_out
,
size
=
class_dim
,
act
=
"softmax"
)
cost
=
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
layers
.
mean
(
x
=
cost
)
adam_optimizer
=
optimizer
.
AdamOptimizer
(
learning_rate
=
0.002
)
opts
=
adam_optimizer
.
minimize
(
avg_cost
)
acc
=
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
core
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
chop_data
(
data
,
chop_len
=
80
,
batch_len
=
50
):
data
=
[(
x
[
0
][:
chop_len
],
x
[
1
])
for
x
in
data
if
len
(
x
[
0
])
>=
chop_len
]
return
data
[:
batch_len
]
def
prepare_feed_data
(
data
,
place
):
tensor_words
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
label
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
label
=
label
.
reshape
([
50
,
1
])
tensor_label
=
core
.
LoDTensor
()
tensor_label
.
set
(
label
,
place
)
return
tensor_words
,
tensor_label
def
main
():
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
cost
,
acc
=
lstm_net
(
dict_dim
=
len
(
word_dict
),
class_dim
=
2
)
batch_size
=
100
train_data
=
paddle
.
batch
(
paddle
.
reader
.
buffered
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
size
=
batch_size
*
10
),
batch_size
=
batch_size
)
data
=
chop_data
(
next
(
train_data
()))
place
=
core
.
CPUPlace
()
tensor_words
,
tensor_label
=
prepare_feed_data
(
data
,
place
)
exe
=
Executor
(
place
)
exe
.
run
(
g_startup_program
)
while
True
:
outs
=
exe
.
run
(
g_main_program
,
feed
=
{
"words"
:
tensor_words
,
"label"
:
tensor_label
},
fetch_list
=
[
cost
,
acc
])
cost_val
=
np
.
array
(
outs
[
0
])
acc_val
=
np
.
array
(
outs
[
1
])
print
(
"cost="
+
str
(
cost_val
)
+
" acc="
+
str
(
acc_val
))
if
acc_val
>
0.9
:
break
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录