提交 d4c2f2f2 编写于 作者: R ranqiu

Refine the doc of layers.py

上级 e4c8de9e
...@@ -2985,8 +2985,8 @@ def spp_layer(input, ...@@ -2985,8 +2985,8 @@ def spp_layer(input,
A layer performs spatial pyramid pooling. A layer performs spatial pyramid pooling.
Reference: Reference:
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
https://arxiv.org/abs/1406.4729 https://arxiv.org/abs/1406.4729`_
The example usage is: The example usage is:
...@@ -3087,8 +3087,8 @@ def img_cmrnorm_layer(input, ...@@ -3087,8 +3087,8 @@ def img_cmrnorm_layer(input,
Response normalization across feature maps. Response normalization across feature maps.
Reference: Reference:
ImageNet Classification with Deep Convolutional Neural Networks `ImageNet Classification with Deep Convolutional Neural Networks
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf`_
The example usage is: The example usage is:
...@@ -3154,9 +3154,9 @@ def batch_norm_layer(input, ...@@ -3154,9 +3154,9 @@ def batch_norm_layer(input,
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
Reference: Reference:
Batch Normalization: Accelerating Deep Network Training by Reducing `Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift Internal Covariate Shift
http://arxiv.org/abs/1502.03167 http://arxiv.org/abs/1502.03167`_
The example usage is: The example usage is:
...@@ -5413,10 +5413,10 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None): ...@@ -5413,10 +5413,10 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
to be devided by groups. to be devided by groups.
Reference: Reference:
Maxout Networks `Maxout Networks
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf`_
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
https://arxiv.org/pdf/1312.6082v4.pdf https://arxiv.org/pdf/1312.6082v4.pdf`_
.. math:: .. math::
y_{si+j} = \max_k x_{gsi + sk + j} y_{si+j} = \max_k x_{gsi + sk + j}
...@@ -5481,9 +5481,9 @@ def ctc_layer(input, ...@@ -5481,9 +5481,9 @@ def ctc_layer(input,
alignment between the inputs and the target labels is unknown. alignment between the inputs and the target labels is unknown.
Reference: Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
Note: Note:
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1) Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
...@@ -5555,9 +5555,9 @@ def warp_ctc_layer(input, ...@@ -5555,9 +5555,9 @@ def warp_ctc_layer(input,
install it to :code:`third_party/install/warpctc` directory. install it to :code:`third_party/install/warpctc` directory.
Reference: Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
Note: Note:
- Let num_classes represents the category number. Considering the 'blank' - Let num_classes represents the category number. Considering the 'blank'
...@@ -5777,8 +5777,8 @@ def nce_layer(input, ...@@ -5777,8 +5777,8 @@ def nce_layer(input,
Noise-contrastive estimation. Noise-contrastive estimation.
Reference: Reference:
A fast and simple algorithm for training neural probabilistic language `A fast and simple algorithm for training neural probabilistic language
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf`_
The example usage is: The example usage is:
...@@ -5893,8 +5893,8 @@ def rank_cost(left, ...@@ -5893,8 +5893,8 @@ def rank_cost(left,
A cost Layer for learning to rank using gradient descent. A cost Layer for learning to rank using gradient descent.
Reference: Reference:
Learning to Rank using Gradient Descent `Learning to Rank using Gradient Descent
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf`_
.. math:: .. math::
...@@ -6429,8 +6429,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None): ...@@ -6429,8 +6429,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if} \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases} smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if} \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
Reference: Reference:
Fast R-CNN `Fast R-CNN
https://arxiv.org/pdf/1504.08083v2.pdf https://arxiv.org/pdf/1504.08083v2.pdf`_
The example usage is: The example usage is:
...@@ -6636,8 +6636,8 @@ def prelu_layer(input, ...@@ -6636,8 +6636,8 @@ def prelu_layer(input,
The Parametric Relu activation that actives outputs with a learnable weight. The Parametric Relu activation that actives outputs with a learnable weight.
Reference: Reference:
Delving Deep into Rectifiers: Surpassing Human-Level Performance on `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf`_
.. math:: .. math::
z_i &\\quad if \\quad z_i > 0 \\\\ z_i &\\quad if \\quad z_i > 0 \\\\
...@@ -6733,8 +6733,8 @@ def gated_unit_layer(input, ...@@ -6733,8 +6733,8 @@ def gated_unit_layer(input,
product between :match:`X'` and :math:`\sigma` is finally returned. product between :match:`X'` and :math:`\sigma` is finally returned.
Reference: Reference:
Language Modeling with Gated Convolutional Networks `Language Modeling with Gated Convolutional Networks
https://arxiv.org/abs/1612.08083 https://arxiv.org/abs/1612.08083`_
.. math:: .. math::
y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c) y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册