Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
cb14b0d8
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cb14b0d8
编写于
10月 16, 2018
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
差异文件
merge release/1.0.0
上级
ef4ceecd
b97257b1
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
193 addition
and
43 deletion
+193
-43
paddle/fluid/operators/uniform_random_op.cc
paddle/fluid/operators/uniform_random_op.cc
+16
-16
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+140
-18
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+5
-1
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+12
-5
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+1
-1
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+19
-2
未找到文件。
paddle/fluid/operators/uniform_random_op.cc
浏览文件 @
cb14b0d8
...
@@ -23,14 +23,14 @@ namespace operators {
...
@@ -23,14 +23,14 @@ namespace operators {
template
<
typename
T
>
template
<
typename
T
>
class
CPUUniformRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CPUUniformRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
Tensor
*
tensor
=
nullptr
;
framework
::
Tensor
*
tensor
=
nullptr
;
auto
out_var
=
ctx
.
OutputVar
(
"Out"
);
auto
out_var
=
ctx
.
OutputVar
(
"Out"
);
if
(
out_var
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
out_var
->
IsType
<
framework
::
LoDTensor
>
())
{
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
auto
*
selected_rows
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
auto
*
selected_rows
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
tensor
=
selected_rows
->
mutable_value
();
tensor
=
selected_rows
->
mutable_value
();
tensor
->
Resize
(
framework
::
make_ddim
(
shape
));
tensor
->
Resize
(
framework
::
make_ddim
(
shape
));
selected_rows
->
mutable_rows
()
->
reserve
(
shape
[
0
]);
selected_rows
->
mutable_rows
()
->
reserve
(
shape
[
0
]);
...
@@ -39,7 +39,7 @@ class CPUUniformRandomKernel : public framework::OpKernel<T> {
...
@@ -39,7 +39,7 @@ class CPUUniformRandomKernel : public framework::OpKernel<T> {
"uniform_random_op's output only"
"uniform_random_op's output only"
"supports SelectedRows and LoDTensor"
);
"supports SelectedRows and LoDTensor"
);
}
}
T
*
data
=
tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
data
=
tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
ctx
.
Attr
<
int
>
(
"seed"
));
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
ctx
.
Attr
<
int
>
(
"seed"
));
std
::
minstd_rand
engine
;
std
::
minstd_rand
engine
;
if
(
seed
==
0
)
{
if
(
seed
==
0
)
{
...
@@ -60,14 +60,14 @@ class UniformRandomOp : public framework::OperatorWithKernel {
...
@@ -60,14 +60,14 @@ class UniformRandomOp : public framework::OperatorWithKernel {
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of UniformRandomOp should not be null."
);
"Output(Out) of UniformRandomOp should not be null."
);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
ctx
->
Attrs
().
Get
<
float
>
(
"min"
)
<
ctx
->
Attrs
().
Get
<
float
>
(
"max"
),
ctx
->
Attrs
().
Get
<
float
>
(
"min"
)
<
ctx
->
Attrs
().
Get
<
float
>
(
"max"
),
"uniform_random's min must less then max"
);
"uniform_random's min must less then max"
);
auto
&
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape"
);
auto
&
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape"
);
std
::
vector
<
int64_t
>
temp
;
std
::
vector
<
int64_t
>
temp
;
temp
.
reserve
(
shape
.
size
());
temp
.
reserve
(
shape
.
size
());
for
(
auto
dim
:
shape
)
{
for
(
auto
dim
:
shape
)
{
...
@@ -78,7 +78,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
...
@@ -78,7 +78,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
protected:
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
return
framework
::
OpKernelType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
ctx
.
Attr
<
int
>
(
"dtype"
)),
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
ctx
.
Attr
<
int
>
(
"dtype"
)),
ctx
.
GetPlace
());
ctx
.
GetPlace
());
...
@@ -112,17 +112,17 @@ uniform distribution. The random result is in set [min, max].
...
@@ -112,17 +112,17 @@ uniform distribution. The random result is in set [min, max].
class
UniformRandomOpVarTypeInference
:
public
framework
::
VarTypeInference
{
class
UniformRandomOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
if
(
block
->
FindRecursiveOrCreateVar
(
out_var_name
).
GetType
()
==
auto
var_data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"dtype"
)));
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
.
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
auto
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
}
else
{
if
(
out_var
.
GetType
()
!=
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
out_var
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
out_var
.
SetDataType
(
var_data_type
);
}
}
};
};
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
cb14b0d8
...
@@ -156,7 +156,50 @@ PYBIND11_PLUGIN(core) {
...
@@ -156,7 +156,50 @@ PYBIND11_PLUGIN(core) {
.
def
(
"_get_double_element"
,
TensorGetElement
<
double
>
)
.
def
(
"_get_double_element"
,
TensorGetElement
<
double
>
)
.
def
(
"_dtype"
,
[](
Tensor
&
self
)
{
return
ToDataType
(
self
.
type
());
});
.
def
(
"_dtype"
,
[](
Tensor
&
self
)
{
return
ToDataType
(
self
.
type
());
});
py
::
class_
<
LoDTensor
,
Tensor
>
(
m
,
"LoDTensor"
)
py
::
class_
<
LoDTensor
,
Tensor
>
(
m
,
"LoDTensor"
,
R"DOC(
LoDTensor is a Tensor with optional LoD information.
np.array(lod_tensor) can convert LoDTensor to numpy array.
lod_tensor.lod() can retrieve the LoD information.
LoD is short for Level of Details and is usually used for varied sequence
length. You can skip the following comment if you don't need optional LoD.
For example:
A LoDTensor X can look like the example below. It contains 2 sequences.
The first has length 2 and the second has length 3, as described by x.lod.
The first tensor dimension 5=2+3 is calculated from LoD if it's available.
It means the total number of sequence element. In X, each element has 2
columns, hence [5, 2].
x.lod = [[2, 3]]
x.data = [[1, 2], [3, 4], // seq 1
[5, 6], [7, 8], [9, 10]] // seq 2
x.shape = [5, 2]
LoD can have multiple levels (for example, a paragraph can have multiple
sentences and a sentence can have multiple words). In the following
LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
first sequence length is 2 (has 2 sub-sequences), the second one's
length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
respectively. And the second sequence's 1 sub-sequence has length 3.
y.lod = [[2 1], [2 2 3]]
y.shape = [2+2+3, ...]
Note:
In above description, LoD is length-based. In Paddle internal
implementation, lod is offset-based. Hence, internally,
y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).
Sometimes LoD is called recursive_sequence_length to be more
self-explanatory. In this case, it must be length-based. Due to history
reasons. when LoD is called lod in public API, it might be offset-based.
Users should be careful about it.
)DOC"
)
.
def_buffer
(
.
def_buffer
(
[](
Tensor
&
self
)
->
py
::
buffer_info
{
return
CastToPyBuffer
(
self
);
})
[](
Tensor
&
self
)
->
py
::
buffer_info
{
return
CastToPyBuffer
(
self
);
})
.
def
(
"__init__"
,
.
def
(
"__init__"
,
...
@@ -596,26 +639,58 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -596,26 +639,58 @@ All parameter, weight, gradient are variables in Paddle.
// -- python binds for parallel executor.
// -- python binds for parallel executor.
py
::
class_
<
ParallelExecutor
>
pe
(
m
,
"ParallelExecutor"
);
py
::
class_
<
ParallelExecutor
>
pe
(
m
,
"ParallelExecutor"
);
py
::
class_
<
ExecutionStrategy
>
exec_strategy
(
pe
,
"ExecutionStrategy"
);
py
::
class_
<
ExecutionStrategy
>
exec_strategy
(
pe
,
"ExecutionStrategy"
,
R"DOC(
ExecutionStrategy allows the user to more preciously control how to run
the program in ParallelExecutor by setting the property.
Examples:
.. code-block:: python
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 4
train_exe = fluid.ParallelExecutor(use_cuda=True,
loss_name=loss.name,
exec_strategy=exec_strategy)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC"
);
exec_strategy
.
def
(
py
::
init
())
exec_strategy
.
def
(
py
::
init
())
.
def_property
(
.
def_property
(
"num_threads"
,
"num_threads"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
num_threads_
;
},
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
num_threads_
;
},
[](
ExecutionStrategy
&
self
,
size_t
num_threads
)
{
[](
ExecutionStrategy
&
self
,
size_t
num_threads
)
{
self
.
num_threads_
=
num_threads
;
self
.
num_threads_
=
num_threads
;
})
},
R"DOC(The type is INT, num_threads represents the size of thread pool that
used to run the operators of the current program in ParallelExecutor.
If :math:`num\_threads=1`, all the operators will execute one by one,
but the order maybe difference between iterations.
If it is not set, it will be set in ParallelExecutor according to the
device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
:math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
if it is not set, ParallelExecutor will get the cpu count by calling
`multiprocessing.cpu_count()`. Default 0.)DOC"
)
.
def_property
(
.
def_property
(
"use_cuda"
,
"use_cuda"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
use_cuda_
;
},
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
use_cuda_
;
},
[](
ExecutionStrategy
&
self
,
bool
use_cuda
)
{
[](
ExecutionStrategy
&
self
,
bool
use_cuda
)
{
self
.
use_cuda_
=
use_cuda
;
self
.
use_cuda_
=
use_cuda
;
})
})
// FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
// make user confuse, because ParallelExecutor has a parameter named
// 'use_cuda' too, in current implementation, ParallelExecutor's
// 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
.
def_property
(
.
def_property
(
"allow_op_delay"
,
"allow_op_delay"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
allow_op_delay_
;
},
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
allow_op_delay_
;
},
[](
ExecutionStrategy
&
self
,
bool
allow_op_delay
)
{
[](
ExecutionStrategy
&
self
,
bool
allow_op_delay
)
{
self
.
allow_op_delay_
=
allow_op_delay
;
self
.
allow_op_delay_
=
allow_op_delay
;
})
},
R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
communication operators to run, it may make the execution faster.
Note that in some models, allow_op_delay may cause program hang. Default False.)DOC"
)
.
def_property
(
.
def_property
(
"num_iteration_per_drop_scope"
,
"num_iteration_per_drop_scope"
,
[](
const
ExecutionStrategy
&
self
)
{
[](
const
ExecutionStrategy
&
self
)
{
...
@@ -623,7 +698,19 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -623,7 +698,19 @@ All parameter, weight, gradient are variables in Paddle.
},
},
[](
ExecutionStrategy
&
self
,
size_t
num_iteration_per_drop_scope
)
{
[](
ExecutionStrategy
&
self
,
size_t
num_iteration_per_drop_scope
)
{
self
.
num_iteration_per_drop_scope_
=
num_iteration_per_drop_scope
;
self
.
num_iteration_per_drop_scope_
=
num_iteration_per_drop_scope
;
});
},
R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
many iterations to clean up the temp variables which
is generated during execution. It may make the execution faster,
because the temp variable's shape maybe the same between two iterations. Default 100.
NOTES:
1. If you fetch data when calling the 'run', the ParallelExecutor
will clean up the temp variables at the end of the current iteration.
2. In some NLP model, it may cause the GPU memory is insufficient,
in this case, you should reduce `num_iteration_per_drop_scope`.
)DOC"
);
exec_strategy
.
def_property
(
exec_strategy
.
def_property
(
"use_experimental_executor"
,
"use_experimental_executor"
,
[](
const
ExecutionStrategy
&
self
)
{
[](
const
ExecutionStrategy
&
self
)
{
...
@@ -634,7 +721,22 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -634,7 +721,22 @@ All parameter, weight, gradient are variables in Paddle.
:
ExecutionStrategy
::
kDefault
;
:
ExecutionStrategy
::
kDefault
;
});
});
py
::
class_
<
BuildStrategy
>
build_strategy
(
pe
,
"BuildStrategy"
);
py
::
class_
<
BuildStrategy
>
build_strategy
(
pe
,
"BuildStrategy"
,
R"DOC(
BuildStrategy allows the user to more preciously control how to
build the SSA Graph in ParallelExecutor by setting the property.
Examples:
.. code-block:: python
build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
train_exe = fluid.ParallelExecutor(use_cuda=True,
loss_name=loss.name,
build_strategy=build_strategy)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC"
);
py
::
enum_
<
BuildStrategy
::
ReduceStrategy
>
(
build_strategy
,
"ReduceStrategy"
)
py
::
enum_
<
BuildStrategy
::
ReduceStrategy
>
(
build_strategy
,
"ReduceStrategy"
)
.
value
(
"Reduce"
,
BuildStrategy
::
ReduceStrategy
::
kReduce
)
.
value
(
"Reduce"
,
BuildStrategy
::
ReduceStrategy
::
kReduce
)
...
@@ -652,31 +754,51 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -652,31 +754,51 @@ All parameter, weight, gradient are variables in Paddle.
[](
const
BuildStrategy
&
self
)
{
return
self
.
reduce_
;
},
[](
const
BuildStrategy
&
self
)
{
return
self
.
reduce_
;
},
[](
BuildStrategy
&
self
,
BuildStrategy
::
ReduceStrategy
strategy
)
{
[](
BuildStrategy
&
self
,
BuildStrategy
::
ReduceStrategy
strategy
)
{
self
.
reduce_
=
strategy
;
self
.
reduce_
=
strategy
;
})
},
R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
'AllReduce' and 'Reduce'. If you want that all the parameters'
optimization are done on all devices independently, you should choose 'AllReduce';
if you choose 'Reduce', all the parameters' optimization will be evenly distributed
to different devices, and then broadcast the optimized parameter to other devices.
In some models, `Reduce` is faster. Default 'AllReduce'. )DOC"
)
.
def_property
(
.
def_property
(
"gradient_scale_strategy"
,
"gradient_scale_strategy"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
gradient_scale_
;
},
[](
const
BuildStrategy
&
self
)
{
return
self
.
gradient_scale_
;
},
[](
BuildStrategy
&
self
,
[](
BuildStrategy
&
self
,
BuildStrategy
::
GradientScaleStrategy
strategy
)
{
BuildStrategy
::
GradientScaleStrategy
strategy
)
{
self
.
gradient_scale_
=
strategy
;
self
.
gradient_scale_
=
strategy
;
})
},
R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
If you want to customize :math:`loss@grad`, you can choose 'Customized'.
Default 'CoeffNumDevice'.)DOC"
)
.
def_property
(
.
def_property
(
"debug_graphviz_path"
,
"debug_graphviz_path"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
debug_graphviz_path_
;
},
[](
const
BuildStrategy
&
self
)
{
return
self
.
debug_graphviz_path_
;
},
[](
BuildStrategy
&
self
,
const
std
::
string
&
path
)
{
[](
BuildStrategy
&
self
,
const
std
::
string
&
path
)
{
self
.
debug_graphviz_path_
=
path
;
self
.
debug_graphviz_path_
=
path
;
})
},
R"DOC(The type is STR, debug_graphviz_path indicate the path that
writing the SSA Graph to file in the form of graphviz, you.
It is useful for debugging. Default "")DOC"
)
.
def_property
(
.
def_property
(
"enable_data_balance"
,
"enable_data_balance"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
enable_data_balance_
;
},
[](
const
BuildStrategy
&
self
)
{
return
self
.
enable_data_balance_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
enable_data_balance_
=
b
;
})
[](
BuildStrategy
&
self
,
bool
b
)
{
.
def_property
(
"fuse_elewise_add_act_ops"
,
self
.
enable_data_balance_
=
b
;
[](
const
BuildStrategy
&
self
)
{
})
// FIXME(chengudo): enable_data_balance seems not important
return
self
.
fuse_elewise_add_act_ops_
;
.
def_property
(
},
"fuse_elewise_add_act_ops"
,
[](
BuildStrategy
&
self
,
bool
b
)
{
[](
const
BuildStrategy
&
self
)
{
self
.
fuse_elewise_add_act_ops_
=
b
;
return
self
.
fuse_elewise_add_act_ops_
;
});
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
fuse_elewise_add_act_ops_
=
b
;
},
R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
to fuse elementwise_add_op and activation_op,
it may make the execution faster. Default False)DOC"
);
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
cb14b0d8
...
@@ -55,7 +55,11 @@ def data(name,
...
@@ -55,7 +55,11 @@ def data(name,
Args:
Args:
name(str): The name/alias of the function
name(str): The name/alias of the function
shape(list): Tuple declaring the shape.
shape(list): Tuple declaring the shape.
append_batch_size(bool): Whether or not to append the data as a batch.
append_batch_size(bool):
1. If true, it prepends -1 to the shape.
For example if shape=[1], the resulting shape is [-1, 1].
2. If shape contains -1, such as shape=[1, -1],
append_batch_size will be enforced to be be False (ineffective).
dtype(int|float): The type of data : float32, float_16, int etc
dtype(int|float): The type of data : float32, float_16, int etc
type(VarType): The output type. By default it is LOD_TENSOR.
type(VarType): The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
cb14b0d8
...
@@ -14,6 +14,8 @@
...
@@ -14,6 +14,8 @@
from
__future__
import
print_function
from
__future__
import
print_function
from
.layer_function_generator
import
generate_layer_fn
,
generate_layer_fn_noattr
from
.layer_function_generator
import
generate_layer_fn
,
generate_layer_fn_noattr
from
..
import
core
from
..framework
import
convert_np_dtype_to_dtype_
__activations_noattr__
=
[
__activations_noattr__
=
[
'sigmoid'
,
'sigmoid'
,
...
@@ -58,8 +60,11 @@ _uniform_random_ = generate_layer_fn('uniform_random')
...
@@ -58,8 +60,11 @@ _uniform_random_ = generate_layer_fn('uniform_random')
def
uniform_random
(
shape
,
dtype
=
None
,
min
=
None
,
max
=
None
,
seed
=
None
):
def
uniform_random
(
shape
,
dtype
=
None
,
min
=
None
,
max
=
None
,
seed
=
None
):
locals_var
=
locals
().
keys
()
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
kwargs
=
dict
()
kwargs
=
dict
()
for
name
in
locals
()
:
for
name
in
locals
_var
:
val
=
locals
()[
name
]
val
=
locals
()[
name
]
if
val
is
not
None
:
if
val
is
not
None
:
kwargs
[
name
]
=
val
kwargs
[
name
]
=
val
...
@@ -78,8 +83,9 @@ _hard_shrink_ = generate_layer_fn('hard_shrink')
...
@@ -78,8 +83,9 @@ _hard_shrink_ = generate_layer_fn('hard_shrink')
def
hard_shrink
(
x
,
threshold
=
None
):
def
hard_shrink
(
x
,
threshold
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
kwargs
=
dict
()
for
name
in
locals
()
:
for
name
in
locals
_var
:
val
=
locals
()[
name
]
val
=
locals
()[
name
]
if
val
is
not
None
:
if
val
is
not
None
:
kwargs
[
name
]
=
val
kwargs
[
name
]
=
val
...
@@ -99,12 +105,12 @@ _cum_sum_ = generate_layer_fn('cumsum')
...
@@ -99,12 +105,12 @@ _cum_sum_ = generate_layer_fn('cumsum')
def
cumsum
(
x
,
axis
=
None
,
exclusive
=
None
,
reverse
=
None
):
def
cumsum
(
x
,
axis
=
None
,
exclusive
=
None
,
reverse
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
kwargs
=
dict
()
for
name
in
locals
()
:
for
name
in
locals
_var
:
val
=
locals
()[
name
]
val
=
locals
()[
name
]
if
val
is
not
None
:
if
val
is
not
None
:
kwargs
[
name
]
=
val
kwargs
[
name
]
=
val
return
_cum_sum_
(
**
kwargs
)
return
_cum_sum_
(
**
kwargs
)
...
@@ -121,8 +127,9 @@ _thresholded_relu_ = generate_layer_fn('thresholded_relu')
...
@@ -121,8 +127,9 @@ _thresholded_relu_ = generate_layer_fn('thresholded_relu')
def
thresholded_relu
(
x
,
threshold
=
None
):
def
thresholded_relu
(
x
,
threshold
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
kwargs
=
dict
()
for
name
in
locals
()
:
for
name
in
locals
_var
:
val
=
locals
()[
name
]
val
=
locals
()[
name
]
if
val
is
not
None
:
if
val
is
not
None
:
kwargs
[
name
]
=
val
kwargs
[
name
]
=
val
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
cb14b0d8
...
@@ -111,7 +111,7 @@ def create_global_var(shape,
...
@@ -111,7 +111,7 @@ def create_global_var(shape,
force_cpu
=
False
,
force_cpu
=
False
,
name
=
None
):
name
=
None
):
"""
"""
Create a new
variabl
e in the global block(block 0).
Create a new
tensor variable with valu
e in the global block(block 0).
Args:
Args:
shape(list[int]): shape of the variable
shape(list[int]): shape of the variable
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
cb14b0d8
...
@@ -31,15 +31,32 @@ BuildStrategy = core.ParallelExecutor.BuildStrategy
...
@@ -31,15 +31,32 @@ BuildStrategy = core.ParallelExecutor.BuildStrategy
class
ParallelExecutor
(
object
):
class
ParallelExecutor
(
object
):
"""
"""
ParallelExecutor can run program in parallel.
ParallelExecutor is designed for data parallelism, which focuses on distributing
the data across different nodes and every node operates on the data in parallel.
If you use ParallelExecutor to run the current program on GPU, the node means GPU
device, and ParallelExecutor will get the available GPU device automatically on
the current machine. If you use ParallelExecutor to run the current program on CPU,
the node means the CPU device, and you can specify the CPU device number by adding
'CPU_NUM' environment variable, for example 'CPU_NUM=4', if the environment variable
is not found, ParallelExecutor will call `multiprocessing.cpu_count` to get the number
of CPUs in the system.
Args:
Args:
use_cuda (bool): Whether to use CUDA or not.
use_cuda (bool): Whether to use CUDA or not.
loss_name (str): The loss name must set in training. Default None.
loss_name (str): The loss name must set in training. Default None.
main_program (Program): The program that need to run, if not provided,
main_program (Program): The program that need to run, if not provided,
then default_main_program will be used. Default None.
then default_main_program will be used. Default None.
share_vars_from(ParallelExecutor): If provi
ed
, it will share variables
share_vars_from(ParallelExecutor): If provi
de
, it will share variables
from the specified ParallelExecutor. Default None.
from the specified ParallelExecutor. Default None.
exec_strategy(ExecutionStrategy): exec_strategy is used to control how to run
the program in ParallelExecutor, for example how many threads are used to
execute the program, how many iterations to clean up the temp variables
which is generated during execution. For more information, please refer
to fluid.ExecutionStrategy. Default None.
build_strategy(BuildStrategy): build_strategy is used to control how to
build the SSA Graph in ParallelExecutor by setting the property,
for example reduce_strategy, gradient_scale_strategy. For more information,
please refer to fluid.BuildStrategy. Default None.
num_trainers(int): If greater than 1, NCCL will be initialized with
num_trainers(int): If greater than 1, NCCL will be initialized with
multiple rank of nodes, each node should have same number of GPUs.
multiple rank of nodes, each node should have same number of GPUs.
Distributed training will be enabled then. Default 1.
Distributed training will be enabled then. Default 1.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录