提交 cb14b0d8 编写于 作者: S sneaxiy

merge release/1.0.0

......@@ -23,14 +23,14 @@ namespace operators {
template <typename T>
class CPUUniformRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
framework::Tensor* tensor = nullptr;
void Compute(const framework::ExecutionContext &ctx) const override {
framework::Tensor *tensor = nullptr;
auto out_var = ctx.OutputVar("Out");
if (out_var->IsType<framework::LoDTensor>()) {
tensor = out_var->GetMutable<framework::LoDTensor>();
} else if (out_var->IsType<framework::SelectedRows>()) {
auto shape = ctx.Attr<std::vector<int>>("shape");
auto* selected_rows = out_var->GetMutable<framework::SelectedRows>();
auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
tensor = selected_rows->mutable_value();
tensor->Resize(framework::make_ddim(shape));
selected_rows->mutable_rows()->reserve(shape[0]);
......@@ -39,7 +39,7 @@ class CPUUniformRandomKernel : public framework::OpKernel<T> {
"uniform_random_op's output only"
"supports SelectedRows and LoDTensor");
}
T* data = tensor->mutable_data<T>(ctx.GetPlace());
T *data = tensor->mutable_data<T>(ctx.GetPlace());
unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
......@@ -60,14 +60,14 @@ class UniformRandomOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of UniformRandomOp should not be null.");
PADDLE_ENFORCE(
ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
"uniform_random's min must less then max");
auto& shape = ctx->Attrs().Get<std::vector<int>>("shape");
auto &shape = ctx->Attrs().Get<std::vector<int>>("shape");
std::vector<int64_t> temp;
temp.reserve(shape.size());
for (auto dim : shape) {
......@@ -78,7 +78,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
ctx.GetPlace());
......@@ -112,17 +112,17 @@ uniform distribution. The random result is in set [min, max].
class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto out_var_name = op_desc.Output("Out").front();
if (block->FindRecursiveOrCreateVar(out_var_name).GetType() ==
framework::proto::VarType::SELECTED_ROWS) {
block->FindRecursiveOrCreateVar(out_var_name)
.SetType(framework::proto::VarType::SELECTED_ROWS);
} else {
block->FindRecursiveOrCreateVar(out_var_name)
.SetType(framework::proto::VarType::LOD_TENSOR);
auto var_data_type = static_cast<framework::proto::VarType::Type>(
boost::get<int>(op_desc.GetAttr("dtype")));
auto out_var = block->FindRecursiveOrCreateVar(out_var_name);
if (out_var.GetType() != framework::proto::VarType::SELECTED_ROWS) {
out_var.SetType(framework::proto::VarType::LOD_TENSOR);
}
out_var.SetDataType(var_data_type);
}
};
......
......@@ -156,7 +156,50 @@ PYBIND11_PLUGIN(core) {
.def("_get_double_element", TensorGetElement<double>)
.def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
py::class_<LoDTensor, Tensor>(m, "LoDTensor")
py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
LoDTensor is a Tensor with optional LoD information.
np.array(lod_tensor) can convert LoDTensor to numpy array.
lod_tensor.lod() can retrieve the LoD information.
LoD is short for Level of Details and is usually used for varied sequence
length. You can skip the following comment if you don't need optional LoD.
For example:
A LoDTensor X can look like the example below. It contains 2 sequences.
The first has length 2 and the second has length 3, as described by x.lod.
The first tensor dimension 5=2+3 is calculated from LoD if it's available.
It means the total number of sequence element. In X, each element has 2
columns, hence [5, 2].
x.lod = [[2, 3]]
x.data = [[1, 2], [3, 4], // seq 1
[5, 6], [7, 8], [9, 10]] // seq 2
x.shape = [5, 2]
LoD can have multiple levels (for example, a paragraph can have multiple
sentences and a sentence can have multiple words). In the following
LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
first sequence length is 2 (has 2 sub-sequences), the second one's
length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
respectively. And the second sequence's 1 sub-sequence has length 3.
y.lod = [[2 1], [2 2 3]]
y.shape = [2+2+3, ...]
Note:
In above description, LoD is length-based. In Paddle internal
implementation, lod is offset-based. Hence, internally,
y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).
Sometimes LoD is called recursive_sequence_length to be more
self-explanatory. In this case, it must be length-based. Due to history
reasons. when LoD is called lod in public API, it might be offset-based.
Users should be careful about it.
)DOC")
.def_buffer(
[](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
.def("__init__",
......@@ -596,26 +639,58 @@ All parameter, weight, gradient are variables in Paddle.
// -- python binds for parallel executor.
py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy");
py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
ExecutionStrategy allows the user to more preciously control how to run
the program in ParallelExecutor by setting the property.
Examples:
.. code-block:: python
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 4
train_exe = fluid.ParallelExecutor(use_cuda=True,
loss_name=loss.name,
exec_strategy=exec_strategy)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC");
exec_strategy.def(py::init())
.def_property(
"num_threads",
[](const ExecutionStrategy &self) { return self.num_threads_; },
[](ExecutionStrategy &self, size_t num_threads) {
self.num_threads_ = num_threads;
})
},
R"DOC(The type is INT, num_threads represents the size of thread pool that
used to run the operators of the current program in ParallelExecutor.
If :math:`num\_threads=1`, all the operators will execute one by one,
but the order maybe difference between iterations.
If it is not set, it will be set in ParallelExecutor according to the
device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
:math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
if it is not set, ParallelExecutor will get the cpu count by calling
`multiprocessing.cpu_count()`. Default 0.)DOC")
.def_property(
"use_cuda",
[](const ExecutionStrategy &self) { return self.use_cuda_; },
[](ExecutionStrategy &self, bool use_cuda) {
self.use_cuda_ = use_cuda;
})
}) // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
// make user confuse, because ParallelExecutor has a parameter named
// 'use_cuda' too, in current implementation, ParallelExecutor's
// 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
.def_property(
"allow_op_delay",
[](const ExecutionStrategy &self) { return self.allow_op_delay_; },
[](ExecutionStrategy &self, bool allow_op_delay) {
self.allow_op_delay_ = allow_op_delay;
})
},
R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
communication operators to run, it may make the execution faster.
Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
.def_property(
"num_iteration_per_drop_scope",
[](const ExecutionStrategy &self) {
......@@ -623,7 +698,19 @@ All parameter, weight, gradient are variables in Paddle.
},
[](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
});
},
R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
many iterations to clean up the temp variables which
is generated during execution. It may make the execution faster,
because the temp variable's shape maybe the same between two iterations. Default 100.
NOTES:
1. If you fetch data when calling the 'run', the ParallelExecutor
will clean up the temp variables at the end of the current iteration.
2. In some NLP model, it may cause the GPU memory is insufficient,
in this case, you should reduce `num_iteration_per_drop_scope`.
)DOC");
exec_strategy.def_property(
"use_experimental_executor",
[](const ExecutionStrategy &self) {
......@@ -634,7 +721,22 @@ All parameter, weight, gradient are variables in Paddle.
: ExecutionStrategy::kDefault;
});
py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");
py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
BuildStrategy allows the user to more preciously control how to
build the SSA Graph in ParallelExecutor by setting the property.
Examples:
.. code-block:: python
build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
train_exe = fluid.ParallelExecutor(use_cuda=True,
loss_name=loss.name,
build_strategy=build_strategy)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC");
py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
.value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
......@@ -652,31 +754,51 @@ All parameter, weight, gradient are variables in Paddle.
[](const BuildStrategy &self) { return self.reduce_; },
[](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
self.reduce_ = strategy;
})
},
R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
'AllReduce' and 'Reduce'. If you want that all the parameters'
optimization are done on all devices independently, you should choose 'AllReduce';
if you choose 'Reduce', all the parameters' optimization will be evenly distributed
to different devices, and then broadcast the optimized parameter to other devices.
In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
.def_property(
"gradient_scale_strategy",
[](const BuildStrategy &self) { return self.gradient_scale_; },
[](BuildStrategy &self,
BuildStrategy::GradientScaleStrategy strategy) {
self.gradient_scale_ = strategy;
})
},
R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
If you want to customize :math:`loss@grad`, you can choose 'Customized'.
Default 'CoeffNumDevice'.)DOC")
.def_property(
"debug_graphviz_path",
[](const BuildStrategy &self) { return self.debug_graphviz_path_; },
[](BuildStrategy &self, const std::string &path) {
self.debug_graphviz_path_ = path;
})
},
R"DOC(The type is STR, debug_graphviz_path indicate the path that
writing the SSA Graph to file in the form of graphviz, you.
It is useful for debugging. Default "")DOC")
.def_property(
"enable_data_balance",
[](const BuildStrategy &self) { return self.enable_data_balance_; },
[](BuildStrategy &self, bool b) { self.enable_data_balance_ = b; })
.def_property("fuse_elewise_add_act_ops",
[](const BuildStrategy &self) {
return self.fuse_elewise_add_act_ops_;
},
[](BuildStrategy &self, bool b) {
self.fuse_elewise_add_act_ops_ = b;
});
[](BuildStrategy &self, bool b) {
self.enable_data_balance_ = b;
}) // FIXME(chengudo): enable_data_balance seems not important
.def_property(
"fuse_elewise_add_act_ops",
[](const BuildStrategy &self) {
return self.fuse_elewise_add_act_ops_;
},
[](BuildStrategy &self, bool b) {
self.fuse_elewise_add_act_ops_ = b;
},
R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
to fuse elementwise_add_op and activation_op,
it may make the execution faster. Default False)DOC");
pe.def(py::init<const std::vector<platform::Place> &,
const std::unordered_set<std::string> &,
......
......@@ -55,7 +55,11 @@ def data(name,
Args:
name(str): The name/alias of the function
shape(list): Tuple declaring the shape.
append_batch_size(bool): Whether or not to append the data as a batch.
append_batch_size(bool):
1. If true, it prepends -1 to the shape.
For example if shape=[1], the resulting shape is [-1, 1].
2. If shape contains -1, such as shape=[1, -1],
append_batch_size will be enforced to be be False (ineffective).
dtype(int|float): The type of data : float32, float_16, int etc
type(VarType): The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
......
......@@ -14,6 +14,8 @@
from __future__ import print_function
from .layer_function_generator import generate_layer_fn, generate_layer_fn_noattr
from .. import core
from ..framework import convert_np_dtype_to_dtype_
__activations_noattr__ = [
'sigmoid',
......@@ -58,8 +60,11 @@ _uniform_random_ = generate_layer_fn('uniform_random')
def uniform_random(shape, dtype=None, min=None, max=None, seed=None):
locals_var = locals().keys()
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
kwargs = dict()
for name in locals():
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
......@@ -78,8 +83,9 @@ _hard_shrink_ = generate_layer_fn('hard_shrink')
def hard_shrink(x, threshold=None):
locals_var = locals().keys()
kwargs = dict()
for name in locals():
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
......@@ -99,12 +105,12 @@ _cum_sum_ = generate_layer_fn('cumsum')
def cumsum(x, axis=None, exclusive=None, reverse=None):
locals_var = locals().keys()
kwargs = dict()
for name in locals():
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
return _cum_sum_(**kwargs)
......@@ -121,8 +127,9 @@ _thresholded_relu_ = generate_layer_fn('thresholded_relu')
def thresholded_relu(x, threshold=None):
locals_var = locals().keys()
kwargs = dict()
for name in locals():
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
......
......@@ -111,7 +111,7 @@ def create_global_var(shape,
force_cpu=False,
name=None):
"""
Create a new variable in the global block(block 0).
Create a new tensor variable with value in the global block(block 0).
Args:
shape(list[int]): shape of the variable
......
......@@ -31,15 +31,32 @@ BuildStrategy = core.ParallelExecutor.BuildStrategy
class ParallelExecutor(object):
"""
ParallelExecutor can run program in parallel.
ParallelExecutor is designed for data parallelism, which focuses on distributing
the data across different nodes and every node operates on the data in parallel.
If you use ParallelExecutor to run the current program on GPU, the node means GPU
device, and ParallelExecutor will get the available GPU device automatically on
the current machine. If you use ParallelExecutor to run the current program on CPU,
the node means the CPU device, and you can specify the CPU device number by adding
'CPU_NUM' environment variable, for example 'CPU_NUM=4', if the environment variable
is not found, ParallelExecutor will call `multiprocessing.cpu_count` to get the number
of CPUs in the system.
Args:
use_cuda (bool): Whether to use CUDA or not.
loss_name (str): The loss name must set in training. Default None.
main_program (Program): The program that need to run, if not provided,
then default_main_program will be used. Default None.
share_vars_from(ParallelExecutor): If provied, it will share variables
share_vars_from(ParallelExecutor): If provide, it will share variables
from the specified ParallelExecutor. Default None.
exec_strategy(ExecutionStrategy): exec_strategy is used to control how to run
the program in ParallelExecutor, for example how many threads are used to
execute the program, how many iterations to clean up the temp variables
which is generated during execution. For more information, please refer
to fluid.ExecutionStrategy. Default None.
build_strategy(BuildStrategy): build_strategy is used to control how to
build the SSA Graph in ParallelExecutor by setting the property,
for example reduce_strategy, gradient_scale_strategy. For more information,
please refer to fluid.BuildStrategy. Default None.
num_trainers(int): If greater than 1, NCCL will be initialized with
multiple rank of nodes, each node should have same number of GPUs.
Distributed training will be enabled then. Default 1.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册