提交 b6a0f9a3 编写于 作者: L liaogang

Add vgg training via api v2

上级 c6bfb712
import paddle.v2 as paddle
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id,
event.cost)
else:
pass
def vgg_bn_drop(input):
def conv_block(ipt, num_filter, groups, dropouts, num_channels=None):
return paddle.layer.img_conv_group(
input=ipt,
num_channels=num_channels,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act=paddle.activation.Relu(),
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type=pooling.Max())
conv1 = conv_block(input, 64, 2, [0.3, 0], 3)
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5)
fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear())
bn = paddle.layer.batch_norm(
input=fc1,
act=paddle.activation.Relu(),
layer_attr=ExtraAttr(drop_rate=0.5))
fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear())
return fc2
def main():
datadim = 3 * 32 * 32
classdim = 10
paddle.init(use_gpu=False, trainer_count=1)
image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(datadim))
# net = vgg_bn_drop(image)
out = paddle.layer.fc(input=image,
size=classdim,
act=paddle.activation.Softmax())
lbl = paddle.layer.data(
name="label", type=paddle.data_type.integer_value(classdim))
cost = paddle.layer.classification_cost(input=out, label=lbl)
parameters = paddle.parameters.create(cost)
momentum_optimizer = paddle.optimizer.Momentum(
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128),
learning_rate=0.1 / 128.0,
learning_rate_decay_a=0.1,
learning_rate_decay_b=50000 * 100,
learning_rate_schedule='discexp',
batch_size=128)
trainer = paddle.trainer.SGD(update_equation=momentum_optimizer)
trainer.train(
reader=paddle.reader.batched(
paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=3072),
batch_size=128),
cost=cost,
num_passes=1,
parameters=parameters,
event_handler=event_handler,
reader_dict={'image': 0,
'label': 1}, )
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册