diff --git a/demo/image_classification/train_v2_vgg.py b/demo/image_classification/train_v2_vgg.py new file mode 100644 index 0000000000000000000000000000000000000000..33b53b27daf4b9be6db55d528e2357054c3cc5dc --- /dev/null +++ b/demo/image_classification/train_v2_vgg.py @@ -0,0 +1,85 @@ +import paddle.v2 as paddle + + +def event_handler(event): + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 100 == 0: + print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id, + event.cost) + else: + pass + + +def vgg_bn_drop(input): + def conv_block(ipt, num_filter, groups, dropouts, num_channels=None): + return paddle.layer.img_conv_group( + input=ipt, + num_channels=num_channels, + pool_size=2, + pool_stride=2, + conv_num_filter=[num_filter] * groups, + conv_filter_size=3, + conv_act=paddle.activation.Relu(), + conv_with_batchnorm=True, + conv_batchnorm_drop_rate=dropouts, + pool_type=pooling.Max()) + + conv1 = conv_block(input, 64, 2, [0.3, 0], 3) + conv2 = conv_block(conv1, 128, 2, [0.4, 0]) + conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) + conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) + conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) + + drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5) + fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear()) + bn = paddle.layer.batch_norm( + input=fc1, + act=paddle.activation.Relu(), + layer_attr=ExtraAttr(drop_rate=0.5)) + fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear()) + return fc2 + + +def main(): + datadim = 3 * 32 * 32 + classdim = 10 + + paddle.init(use_gpu=False, trainer_count=1) + + image = paddle.layer.data( + name="image", type=paddle.data_type.dense_vector(datadim)) + # net = vgg_bn_drop(image) + out = paddle.layer.fc(input=image, + size=classdim, + act=paddle.activation.Softmax()) + + lbl = paddle.layer.data( + name="label", type=paddle.data_type.integer_value(classdim)) + cost = paddle.layer.classification_cost(input=out, label=lbl) + + parameters = paddle.parameters.create(cost) + momentum_optimizer = paddle.optimizer.Momentum( + momentum=0.9, + regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128), + learning_rate=0.1 / 128.0, + learning_rate_decay_a=0.1, + learning_rate_decay_b=50000 * 100, + learning_rate_schedule='discexp', + batch_size=128) + + trainer = paddle.trainer.SGD(update_equation=momentum_optimizer) + trainer.train( + reader=paddle.reader.batched( + paddle.reader.shuffle( + paddle.dataset.cifar.train10(), buf_size=3072), + batch_size=128), + cost=cost, + num_passes=1, + parameters=parameters, + event_handler=event_handler, + reader_dict={'image': 0, + 'label': 1}, ) + + +if __name__ == '__main__': + main()