未验证 提交 92cc33c0 编写于 作者: C Chengmo 提交者: GitHub

Cherry-pick index sample op in contrib (#23522)

* test=develop, add index sample op in contrib
上级 ada787db
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/index_sample_op.h"
#include <memory>
#include <vector>
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
class IndexSampleOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "Input(Tensor), dtype support int32/int64/float/double");
AddInput("Index", "Index(Tensor), dtype support int32/int64");
AddOutput("Out", "Return the element of input at index");
AddComment(R"DOC(
IndexSample OP returns the element of the specified location of X,
and the location is specified by Index.
X tensor and Index tensor's shape must be 2-D,
dimension at 0 which usually is batch size must be equal.
The returned tensor has the same shape and dimensions as the Index tensor.
)DOC");
}
};
class IndexSampleOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Inputs(Input) of FindByIndex should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasInput("Index"), true,
platform::errors::InvalidArgument(
"Inputs(Index) of FindByIndex should not be null."));
auto input_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(
input_dims.size(), 2,
platform::errors::InvalidArgument(
"Inputs(X) shape of IndexSample op should be 2-D, but "
"got X's shape = [%s], please check X shape.",
input_dims));
auto index_dims = ctx->GetInputDim("Index");
PADDLE_ENFORCE_EQ(
input_dims.size(), 2,
platform::errors::InvalidArgument(
"Inputs(Index) shape of IndexSample op should be 2-D, but "
"got Index's shape [%s] , please check index shape.",
input_dims));
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(input_dims[0], index_dims[0],
platform::errors::InvalidArgument(
"Inputs(X)'s value of dimension 0 must same with "
"Inputs(Index)'s value of dimension 0, but "
"got %d of Inputs(X), and got %d of Inputs(Index), "
"please check Inputs shape.",
input_dims[0], index_dims[0]));
}
ctx->SetOutputDim("Out", index_dims);
auto type = ctx->GetInputsVarType("Index")[0];
if (type == framework::proto::VarType::LOD_TENSOR) {
ctx->ShareLoD("Index", /*->*/ "Out");
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(data_type, ctx.device_context());
}
};
class IndexSampleGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("Index"), true,
platform::errors::InvalidArgument("Input(Index) should be not null."));
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument(
"Input(Out@GRAD) should be not null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
platform::errors::InvalidArgument(
"Output(X@GRAD) should be not null."));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
template <typename T>
class IndexSampleGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
std::unique_ptr<T> Apply() const override {
std::unique_ptr<T> op(new T());
op->SetType("index_sample_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Index", this->Input("Index"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
return op;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(IndexSampleGradNoNeedBufferVarInferer,
"X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(index_sample, ops::IndexSampleOp, ops::IndexSampleOpMaker,
ops::IndexSampleGradMaker<paddle::framework::OpDesc>,
ops::IndexSampleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(index_sample_grad, ops::IndexSampleGradOp,
ops::IndexSampleGradNoNeedBufferVarInferer);
REGISTER_OP_CPU_KERNEL(
index_sample, ops::IndexSampleKernel<paddle::platform::CPUPlace, float>,
ops::IndexSampleKernel<paddle::platform::CPUPlace, double>,
ops::IndexSampleKernel<paddle::platform::CPUPlace, int>,
ops::IndexSampleKernel<paddle::platform::CPUPlace, int64_t>);
REGISTER_OP_CPU_KERNEL(
index_sample_grad,
ops::IndexSampleGradKernel<paddle::platform::CPUPlace, float>,
ops::IndexSampleGradKernel<paddle::platform::CPUPlace, double>,
ops::IndexSampleGradKernel<paddle::platform::CPUPlace, int>,
ops::IndexSampleGradKernel<paddle::platform::CPUPlace, int64_t>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include <cmath>
#include <fstream>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DDim = framework::DDim;
template <typename T, typename IndexT = int>
void IndexSampleInner(const framework::ExecutionContext &context,
const LoDTensor &input, const LoDTensor &index,
LoDTensor *output) {
auto input_dims = input.dims();
auto index_dims = index.dims();
int batch_size = input_dims[0];
auto value_length = input_dims[1];
auto index_length = index_dims[1];
int index_ids_num = index.numel();
auto *input_data = input.data<T>();
auto *index_data = index.data<IndexT>();
std::vector<T> res{};
for (int i = 0; i < index_ids_num; i++) {
int b = floor(i / index_length);
PADDLE_ENFORCE_GE(
index_data[i], 0,
platform::errors::InvalidArgument(
"Variable value (index) of OP(index_sample) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
value_length, index_data[i]));
PADDLE_ENFORCE_LT(
index_data[i], value_length,
platform::errors::InvalidArgument(
"Variable value (index) of OP(index_sample) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
value_length, index_data[i]));
int v_i = b * value_length + static_cast<int>(index_data[i]);
T v = input_data[v_i];
VLOG(4) << "Index Sample: batch = " << b << " index = " << v_i
<< " value = " << v;
res.push_back(v);
}
auto ddim = framework::make_ddim({batch_size, index_length});
output->Resize(ddim);
T *out_data = output->mutable_data<T>(context.GetPlace());
memcpy(out_data, &res[0], sizeof(T) * index_ids_num);
}
template <typename DeviceContext, typename T>
class IndexSampleKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *input_var = ctx.InputVar("X");
auto *index_var = ctx.InputVar("Index");
auto &input_tensor = input_var->Get<LoDTensor>();
auto &index_tensor = index_var->Get<LoDTensor>();
auto *out_var = ctx.OutputVar("Out");
auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
const auto &index_type = index_tensor.type();
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
index_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(index_type_match, true,
platform::errors::InvalidArgument(
"Input(Index) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));
if (index_type == framework::proto::VarType::INT32) {
IndexSampleInner<T, int>(ctx, input_tensor, index_tensor, out_tensor);
} else if (index_type == framework::proto::VarType::INT64) {
IndexSampleInner<T, int64_t>(ctx, input_tensor, index_tensor, out_tensor);
}
}
};
template <typename T, typename IndexT = int>
void IndexSampleGradInner(const framework::ExecutionContext &context,
const LoDTensor &out_grad, const LoDTensor &index,
LoDTensor *x_grad) {
auto index_dims = index.dims();
auto x_grad_dims = x_grad->dims();
int batch_size = x_grad_dims[0];
auto value_length = x_grad_dims[1];
auto index_length = index_dims[1];
int index_ids_num = index.numel();
T *x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
auto *out_grad_data = out_grad.data<T>();
auto *index_data = index.data<IndexT>();
memset(x_grad_data, 0, batch_size * value_length * sizeof(T));
for (int i = 0; i < index_ids_num; i++) {
int b = floor(i / index_length);
PADDLE_ENFORCE_GE(
index_data[i], 0,
platform::errors::InvalidArgument(
"Variable value (index) of OP(index_sample_grad) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
value_length, index_data[i]));
PADDLE_ENFORCE_LT(
index_data[i], value_length,
platform::errors::InvalidArgument(
"Variable value (index) of OP(index_sample_grad) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
value_length, index_data[i]));
int v_i = b * value_length + static_cast<int>(index_data[i]);
x_grad_data[v_i] += out_grad_data[i];
}
}
template <typename DeviceContext, typename T>
class IndexSampleGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *index_var = context.InputVar("Index");
auto *x_grad_var = context.OutputVar(framework::GradVarName("X"));
auto *out_grad_var = context.InputVar(framework::GradVarName("Out"));
auto &index_tensor = index_var->Get<LoDTensor>();
auto &out_grad_tensor = out_grad_var->Get<LoDTensor>();
auto *x_grad_tensor = x_grad_var->GetMutable<framework::LoDTensor>();
const auto &index_type = index_tensor.type();
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
index_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(index_type_match, true,
platform::errors::InvalidArgument(
"Input(Index) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));
if (index_type == framework::proto::VarType::INT32) {
IndexSampleGradInner<T, int>(context, out_grad_tensor, index_tensor,
x_grad_tensor);
} else if (index_type == framework::proto::VarType::INT64) {
IndexSampleGradInner<T, int64_t>(context, out_grad_tensor, index_tensor,
x_grad_tensor);
}
}
};
} // namespace operators
} // namespace paddle
......@@ -25,7 +25,7 @@ from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers import utils
from ... import unique_name
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
from paddle.fluid.data_feeder import check_type, check_dtype, convert_dtype
from paddle.fluid.data_feeder import check_type_and_dtype, check_type, check_dtype, convert_dtype
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
from paddle.fluid.layers import slice, reshape
......@@ -39,6 +39,7 @@ __all__ = [
'multiclass_nms2',
'search_pyramid_hash',
'shuffle_batch',
'index_sample',
'tdm_child',
'tdm_sampler',
]
......@@ -816,6 +817,66 @@ def shuffle_batch(x, seed=None):
return out
def index_sample(x, index):
"""
**IndexSample Layer**
IndexSample OP returns the element of the specified location of X,
and the location is specified by Index.
.. code-block:: text
Given:
X = [[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10]]
Index = [[0, 1, 3],
[0, 2, 4]]
Then:
Out = [[1, 2, 4],
[6, 8, 10]]
Args:
x (Variable): The source input tensor with 2-D shape. Supported data type is
int32, int64, float32, float64.
index (Variable): The index input tensor with 2-D shape, first dimension should be same with X.
Data type is int32 or int64.
Returns:
output (Variable): The output is a tensor with the same shape as index.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
# create x value
x_shape = (2, 5)
x_type = "float64"
x_np = np.random.random(x_shape).astype(x_type)
# create index value
index_shape = (2, 3)
index_type = "int32"
index_np = np.random.randint(low=0,
high=x_shape[1],
size=index_shape).astype(index_type)
x = fluid.data(name='x', shape=[-1, 5], dtype='float64')
index = fluid.data(name='index', shape=[-1, 3], dtype='int32')
output = fluid.contrib.layers.index_sample(x=x, index=index)
"""
helper = LayerHelper("index_sample", **locals())
check_type_and_dtype(x, 'x', Variable,
['float32', 'float64', 'int32', 'int64'],
'fluid.contrib.layers.index_sample')
check_type_and_dtype(index, 'index', Variable, ['int32', 'int64'],
'fluid.contrib.layers.index_sample')
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='index_sample',
inputs={'X': x,
'Index': index},
outputs={'Out': out})
return out
def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
"""
**Tdm Child**
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestIndexSampleOp(OpTest):
def setUp(self):
self.op_type = "index_sample"
self.config()
xnp = np.random.random(self.x_shape).astype(self.x_type)
indexnp = np.random.randint(
low=0, high=self.x_shape[1],
size=self.index_shape).astype(self.index_type)
self.inputs = {'X': xnp, 'Index': indexnp}
index_array = []
for i in range(self.index_shape[0]):
for j in indexnp[i]:
index_array.append(xnp[i, j])
out = np.reshape(index_array, self.index_shape)
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
def config(self):
"""
For multi-dimension input
"""
self.x_shape = (10, 20)
self.x_type = "float64"
self.index_shape = (10, 10)
self.index_type = "int32"
class TestCase1(TestIndexSampleOp):
def config(self):
"""
For one dimension input
"""
self.x_shape = (100, 1)
self.x_type = "float64"
self.index_shape = (100, 1)
self.index_type = "int32"
class TestCase2(TestIndexSampleOp):
def config(self):
"""
For int64_t index type
"""
self.x_shape = (10, 100)
self.x_type = "float64"
self.index_shape = (10, 10)
self.index_type = "int64"
class TestCase3(TestIndexSampleOp):
def config(self):
"""
For int index type
"""
self.x_shape = (10, 100)
self.x_type = "float64"
self.index_shape = (10, 10)
self.index_type = "int32"
class TestCase4(TestIndexSampleOp):
def config(self):
"""
For int64 index type
"""
self.x_shape = (10, 100)
self.x_type = "float64"
self.index_shape = (10, 10)
self.index_type = "int64"
class TestIndexSampleShape(unittest.TestCase):
def test_shape(self):
import paddle.fluid as fluid
import paddle
# create x value
x_shape = (2, 5)
x_type = "float64"
x_np = np.random.random(x_shape).astype(x_type)
# create index value
index_shape = (2, 3)
index_type = "int32"
index_np = np.random.randint(
low=0, high=x_shape[1], size=index_shape).astype(index_type)
x = fluid.data(name='x', shape=[-1, 5], dtype='float64')
index = fluid.data(name='index', shape=[-1, 3], dtype='int32')
output = fluid.contrib.layers.index_sample(x=x, index=index)
place = fluid.CPUPlace()
exe = fluid.Executor(place=place)
exe.run(fluid.default_startup_program())
feed = {'x': x_np, 'index': index_np}
res = exe.run(feed=feed, fetch_list=[output])
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册