Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
82ec9f22
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
82ec9f22
编写于
7年前
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Training the understand sentiment model with the new API.
上级
cdecd53b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
182 addition
and
0 deletion
+182
-0
demo/sentiment/train_with_new_api.py
demo/sentiment/train_with_new_api.py
+182
-0
未找到文件。
demo/sentiment/train_with_new_api.py
0 → 100644
浏览文件 @
82ec9f22
from
os.path
import
join
as
join_path
import
paddle.v2
as
paddle
import
paddle.v2.layer
as
layer
import
paddle.v2.activation
as
activation
import
paddle.v2.data_type
as
data_type
def
sequence_conv_pool
(
input
,
input_size
,
context_len
,
hidden_size
,
name
=
None
,
context_start
=
None
,
pool_type
=
None
,
context_proj_layer_name
=
None
,
context_proj_param_attr
=
False
,
fc_layer_name
=
None
,
fc_param_attr
=
None
,
fc_bias_attr
=
None
,
fc_act
=
None
,
pool_bias_attr
=
None
,
fc_attr
=
None
,
context_attr
=
None
,
pool_attr
=
None
):
"""
Text convolution pooling layers helper.
Text input => Context Projection => FC Layer => Pooling => Output.
:param name: name of output layer(pooling layer name)
:type name: basestring
:param input: name of input layer
:type input: LayerOutput
:param context_len: context projection length. See
context_projection's document.
:type context_len: int
:param hidden_size: FC Layer size.
:type hidden_size: int
:param context_start: context projection length. See
context_projection's context_start.
:type context_start: int or None
:param pool_type: pooling layer type. See pooling_layer's document.
:type pool_type: BasePoolingType.
:param context_proj_layer_name: context projection layer name.
None if user don't care.
:type context_proj_layer_name: basestring
:param context_proj_param_attr: context projection parameter attribute.
None if user don't care.
:type context_proj_param_attr: ParameterAttribute or None.
:param fc_layer_name: fc layer name. None if user don't care.
:type fc_layer_name: basestring
:param fc_param_attr: fc layer parameter attribute. None if user don't care.
:type fc_param_attr: ParameterAttribute or None
:param fc_bias_attr: fc bias parameter attribute. False if no bias,
None if user don't care.
:type fc_bias_attr: ParameterAttribute or None
:param fc_act: fc layer activation type. None means tanh
:type fc_act: BaseActivation
:param pool_bias_attr: pooling layer bias attr. None if don't care.
False if no bias.
:type pool_bias_attr: ParameterAttribute or None.
:param fc_attr: fc layer extra attribute.
:type fc_attr: ExtraLayerAttribute
:param context_attr: context projection layer extra attribute.
:type context_attr: ExtraLayerAttribute
:param pool_attr: pooling layer extra attribute.
:type pool_attr: ExtraLayerAttribute
:return: output layer name.
:rtype: LayerOutput
"""
# Set Default Value to param
context_proj_layer_name
=
"%s_conv_proj"
%
name
\
if
context_proj_layer_name
is
None
else
context_proj_layer_name
with
layer
.
mixed
(
name
=
context_proj_layer_name
,
size
=
input_size
*
context_len
,
act
=
activation
.
Linear
(),
layer_attr
=
context_attr
)
as
m
:
m
+=
layer
.
context_projection
(
input
=
input
,
context_len
=
context_len
,
context_start
=
context_start
,
padding_attr
=
context_proj_param_attr
)
fc_layer_name
=
"%s_conv_fc"
%
name
\
if
fc_layer_name
is
None
else
fc_layer_name
fl
=
layer
.
fc
(
name
=
fc_layer_name
,
input
=
m
,
size
=
hidden_size
,
act
=
fc_act
,
layer_attr
=
fc_attr
,
param_attr
=
fc_param_attr
,
bias_attr
=
fc_bias_attr
)
return
layer
.
pooling
(
name
=
name
,
input
=
fl
,
pooling_type
=
pool_type
,
bias_attr
=
pool_bias_attr
,
layer_attr
=
pool_attr
)
def
convolution_net
(
input_dim
,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
128
,
is_predict
=
False
):
data
=
layer
.
data
(
"word"
,
data_type
.
integer_value_sequence
(
input_dim
))
emb
=
layer
.
embedding
(
input
=
data
,
size
=
emb_dim
)
conv_3
=
sequence_conv_pool
(
input
=
emb
,
input_size
=
emb_dim
,
context_len
=
3
,
hidden_size
=
hid_dim
)
conv_4
=
sequence_conv_pool
(
input
=
emb
,
input_size
=
emb_dim
,
context_len
=
4
,
hidden_size
=
hid_dim
)
output
=
layer
.
fc
(
input
=
[
conv_3
,
conv_4
],
size
=
class_dim
,
act
=
activation
.
Softmax
())
lbl
=
layer
.
data
(
"label"
,
data_type
.
integer_value
(
1
))
cost
=
layer
.
classification_cost
(
input
=
output
,
label
=
lbl
)
return
cost
def
data_reader
():
data_dir
=
"./data/pre-imdb"
train_file
=
"train_part_000"
test_file
=
"test_part_000"
dict_file
=
"dict.txt"
train_file
=
join_path
(
data_dir
,
train_file
)
test_file
=
join_path
(
data_dir
,
test_file
)
dict_file
=
join_path
(
data_dir
,
dict_file
)
with
open
(
dict_file
,
'r'
)
as
fdict
,
open
(
train_file
,
'r'
)
as
fdata
:
dictionary
=
dict
()
for
i
,
line
in
enumerate
(
fdict
):
dictionary
[
line
.
split
(
'
\t
'
)[
0
]]
=
i
print
(
'dict len : %d'
%
(
len
(
dictionary
)))
for
line_count
,
line
in
enumerate
(
fdata
):
label
,
comment
=
line
.
strip
().
split
(
'
\t\t
'
)
label
=
int
(
label
)
words
=
comment
.
split
()
word_slot
=
[
dictionary
[
w
]
for
w
in
words
if
w
in
dictionary
]
yield
(
word_slot
,
label
)
if
__name__
==
'__main__'
:
data_dir
=
"./data/pre-imdb"
train_list
=
"train.list"
test_list
=
"test.list"
dict_file
=
"dict.txt"
dict_dim
=
len
(
open
(
join_path
(
data_dir
,
"dict.txt"
)).
readlines
())
class_dim
=
len
(
open
(
join_path
(
data_dir
,
'labels.list'
)).
readlines
())
is_predict
=
False
# init
paddle
.
init
(
use_gpu
=
True
,
trainer_count
=
4
)
# network config
cost
=
convolution_net
(
dict_dim
,
class_dim
=
class_dim
,
is_predict
=
is_predict
)
# create parameters
parameters
=
paddle
.
parameters
.
create
(
cost
)
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
1
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
adam_optimizer
)
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
data_reader
,
batch_size
=
128
),
event_handler
=
event_handler
,
reader_dict
=
{
'word'
:
0
,
'label'
:
1
},
num_passes
=
10
)
This diff is collapsed.
Click to expand it.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录