From 82ec9f225b210ff99d83b97e0e09938061aba4ee Mon Sep 17 00:00:00 2001 From: hedaoyuan <hedaoyuan@github.com> Date: Wed, 1 Mar 2017 17:50:19 +0800 Subject: [PATCH] Training the understand sentiment model with the new API. --- demo/sentiment/train_with_new_api.py | 182 +++++++++++++++++++++++++++ 1 file changed, 182 insertions(+) create mode 100644 demo/sentiment/train_with_new_api.py diff --git a/demo/sentiment/train_with_new_api.py b/demo/sentiment/train_with_new_api.py new file mode 100644 index 00000000000..f937b029068 --- /dev/null +++ b/demo/sentiment/train_with_new_api.py @@ -0,0 +1,182 @@ +from os.path import join as join_path +import paddle.v2 as paddle +import paddle.v2.layer as layer +import paddle.v2.activation as activation +import paddle.v2.data_type as data_type + + +def sequence_conv_pool(input, + input_size, + context_len, + hidden_size, + name=None, + context_start=None, + pool_type=None, + context_proj_layer_name=None, + context_proj_param_attr=False, + fc_layer_name=None, + fc_param_attr=None, + fc_bias_attr=None, + fc_act=None, + pool_bias_attr=None, + fc_attr=None, + context_attr=None, + pool_attr=None): + """ + Text convolution pooling layers helper. + + Text input => Context Projection => FC Layer => Pooling => Output. + + :param name: name of output layer(pooling layer name) + :type name: basestring + :param input: name of input layer + :type input: LayerOutput + :param context_len: context projection length. See + context_projection's document. + :type context_len: int + :param hidden_size: FC Layer size. + :type hidden_size: int + :param context_start: context projection length. See + context_projection's context_start. + :type context_start: int or None + :param pool_type: pooling layer type. See pooling_layer's document. + :type pool_type: BasePoolingType. + :param context_proj_layer_name: context projection layer name. + None if user don't care. + :type context_proj_layer_name: basestring + :param context_proj_param_attr: context projection parameter attribute. + None if user don't care. + :type context_proj_param_attr: ParameterAttribute or None. + :param fc_layer_name: fc layer name. None if user don't care. + :type fc_layer_name: basestring + :param fc_param_attr: fc layer parameter attribute. None if user don't care. + :type fc_param_attr: ParameterAttribute or None + :param fc_bias_attr: fc bias parameter attribute. False if no bias, + None if user don't care. + :type fc_bias_attr: ParameterAttribute or None + :param fc_act: fc layer activation type. None means tanh + :type fc_act: BaseActivation + :param pool_bias_attr: pooling layer bias attr. None if don't care. + False if no bias. + :type pool_bias_attr: ParameterAttribute or None. + :param fc_attr: fc layer extra attribute. + :type fc_attr: ExtraLayerAttribute + :param context_attr: context projection layer extra attribute. + :type context_attr: ExtraLayerAttribute + :param pool_attr: pooling layer extra attribute. + :type pool_attr: ExtraLayerAttribute + :return: output layer name. + :rtype: LayerOutput + """ + # Set Default Value to param + context_proj_layer_name = "%s_conv_proj" % name \ + if context_proj_layer_name is None else context_proj_layer_name + + with layer.mixed( + name=context_proj_layer_name, + size=input_size * context_len, + act=activation.Linear(), + layer_attr=context_attr) as m: + m += layer.context_projection( + input=input, + context_len=context_len, + context_start=context_start, + padding_attr=context_proj_param_attr) + + fc_layer_name = "%s_conv_fc" % name \ + if fc_layer_name is None else fc_layer_name + fl = layer.fc(name=fc_layer_name, + input=m, + size=hidden_size, + act=fc_act, + layer_attr=fc_attr, + param_attr=fc_param_attr, + bias_attr=fc_bias_attr) + + return layer.pooling( + name=name, + input=fl, + pooling_type=pool_type, + bias_attr=pool_bias_attr, + layer_attr=pool_attr) + + +def convolution_net(input_dim, + class_dim=2, + emb_dim=128, + hid_dim=128, + is_predict=False): + data = layer.data("word", data_type.integer_value_sequence(input_dim)) + emb = layer.embedding(input=data, size=emb_dim) + conv_3 = sequence_conv_pool( + input=emb, input_size=emb_dim, context_len=3, hidden_size=hid_dim) + conv_4 = sequence_conv_pool( + input=emb, input_size=emb_dim, context_len=4, hidden_size=hid_dim) + output = layer.fc(input=[conv_3, conv_4], + size=class_dim, + act=activation.Softmax()) + lbl = layer.data("label", data_type.integer_value(1)) + cost = layer.classification_cost(input=output, label=lbl) + return cost + + +def data_reader(): + data_dir = "./data/pre-imdb" + train_file = "train_part_000" + test_file = "test_part_000" + dict_file = "dict.txt" + train_file = join_path(data_dir, train_file) + test_file = join_path(data_dir, test_file) + dict_file = join_path(data_dir, dict_file) + + with open(dict_file, 'r') as fdict, open(train_file, 'r') as fdata: + dictionary = dict() + for i, line in enumerate(fdict): + dictionary[line.split('\t')[0]] = i + + print('dict len : %d' % (len(dictionary))) + for line_count, line in enumerate(fdata): + label, comment = line.strip().split('\t\t') + label = int(label) + words = comment.split() + word_slot = [dictionary[w] for w in words if w in dictionary] + yield (word_slot, label) + + +if __name__ == '__main__': + data_dir = "./data/pre-imdb" + train_list = "train.list" + test_list = "test.list" + dict_file = "dict.txt" + dict_dim = len(open(join_path(data_dir, "dict.txt")).readlines()) + class_dim = len(open(join_path(data_dir, 'labels.list')).readlines()) + is_predict = False + + # init + paddle.init(use_gpu=True, trainer_count=4) + + # network config + cost = convolution_net(dict_dim, class_dim=class_dim, is_predict=is_predict) + + # create parameters + parameters = paddle.parameters.create(cost) + + adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01) + + def event_handler(event): + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 1 == 0: + print "Pass %d, Batch %d, Cost %f, %s" % ( + event.pass_id, event.batch_id, event.cost, event.metrics) + + trainer = paddle.trainer.SGD(cost=cost, + parameters=parameters, + update_equation=adam_optimizer) + + trainer.train( + reader=paddle.reader.batched( + data_reader, batch_size=128), + event_handler=event_handler, + reader_dict={'word': 0, + 'label': 1}, + num_passes=10) -- GitLab