未验证 提交 75c975f0 编写于 作者: L Leo Guo 提交者: GitHub

Modify the unittests of the assign_value, iou_similarity, one_hot_v2,...

Modify the unittests of the assign_value, iou_similarity, one_hot_v2, reduce_mean, roi_align op. test=kunlun (#44061)
上级 ca9339eb
......@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
if(NOT DEFINED XPU_BASE_URL)
set(XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev")
set(XPU_BASE_URL "${XPU_BASE_URL_WITHOUT_DATE}/20220601")
set(XPU_BASE_URL "${XPU_BASE_URL_WITHOUT_DATE}/20220703")
else()
set(XPU_BASE_URL "${XPU_BASE_URL}")
endif()
......@@ -19,14 +19,14 @@ endif()
if(NOT DEFINED XPU_XDNN_BASE_URL)
set(XPU_XDNN_BASE_URL_WITHOUT_DATE
"https://klx-sdk-release-public.su.bcebos.com/xdnn/dev")
set(XPU_XDNN_BASE_URL "${XPU_XDNN_BASE_URL_WITHOUT_DATE}/20220601")
set(XPU_XDNN_BASE_URL "${XPU_XDNN_BASE_URL_WITHOUT_DATE}/20220703")
else()
set(XPU_XDNN_BASE_URL "${XPU_XDNN_BASE_URL}")
endif()
if(WITH_AARCH64)
set(XPU_XRE_DIR_NAME "xre-kylin_aarch64")
set(XPU_XDNN_DIR_NAME "XDNN-kylin_aarch64")
set(XPU_XDNN_DIR_NAME "xdnn-kylin_aarch64")
set(XPU_XCCL_DIR_NAME "xccl-kylin_aarch64")
set(XPU_XDNN_URL
"${XPU_XDNN_BASE_URL}/${XPU_XDNN_DIR_NAME}.tar.gz"
......@@ -40,7 +40,7 @@ elseif(WITH_SUNWAY)
CACHE STRING "" FORCE)
elseif(WITH_BDCENTOS)
set(XPU_XRE_DIR_NAME "xre-bdcentos_x86_64")
set(XPU_XDNN_DIR_NAME "XDNN-bdcentos_x86_64")
set(XPU_XDNN_DIR_NAME "xdnn-bdcentos_x86_64")
set(XPU_XCCL_DIR_NAME "xccl-bdcentos_x86_64")
# ubuntu and centos: use output by XDNN API team
set(XPU_XDNN_URL
......@@ -48,7 +48,7 @@ elseif(WITH_BDCENTOS)
CACHE STRING "" FORCE)
elseif(WITH_UBUNTU)
set(XPU_XRE_DIR_NAME "xre-ubuntu_x86_64")
set(XPU_XDNN_DIR_NAME "XDNN-ubuntu_x86_64")
set(XPU_XDNN_DIR_NAME "xdnn-ubuntu_x86_64")
set(XPU_XCCL_DIR_NAME "xccl-bdcentos_x86_64")
# ubuntu and centos: use output by XDNN API team
set(XPU_XDNN_URL
......@@ -56,7 +56,7 @@ elseif(WITH_UBUNTU)
CACHE STRING "" FORCE)
elseif(WITH_CENTOS)
set(XPU_XRE_DIR_NAME "xre-centos7_x86_64")
set(XPU_XDNN_DIR_NAME "XDNN-bdcentos_x86_64")
set(XPU_XDNN_DIR_NAME "xdnn-bdcentos_x86_64")
set(XPU_XCCL_DIR_NAME "xccl-bdcentos_x86_64")
# ubuntu and centos: use output by XDNN API team
set(XPU_XDNN_URL
......@@ -64,7 +64,7 @@ elseif(WITH_CENTOS)
CACHE STRING "" FORCE)
else()
set(XPU_XRE_DIR_NAME "xre-ubuntu_x86_64")
set(XPU_XDNN_DIR_NAME "XDNN-ubuntu_x86_64")
set(XPU_XDNN_DIR_NAME "xdnn-ubuntu_x86_64")
set(XPU_XCCL_DIR_NAME "xccl-bdcentos_x86_64")
# default: use output by XDNN API team
set(XPU_XDNN_URL
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import sys
sys.path.append("..")
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper
import paddle
paddle.enable_static()
class XPUTestAssignValueOp(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'assign_value'
self.use_dynamic_create_class = False
class TestAssignValueOp(XPUOpTest):
def init(self):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
self.op_type = 'assign_value'
def setUp(self):
self.init()
self.inputs = {}
self.attrs = {}
self.init_data()
self.attrs["shape"] = self.value.shape
self.attrs["dtype"] = framework.convert_np_dtype_to_dtype_(
self.value.dtype)
self.outputs = {"Out": self.value}
def init_data(self):
self.value = numpy.random.random(size=(2, 5)).astype(self.dtype)
self.attrs["fp32_values"] = [float(v) for v in self.value.flat]
def test_forward(self):
self.check_output_with_place(self.place)
class TestAssignValueOp2(TestAssignValueOp):
def init_data(self):
self.value = numpy.random.random(size=(2, 5)).astype(numpy.int32)
self.attrs["int32_values"] = [int(v) for v in self.value.flat]
class TestAssignValueOp3(TestAssignValueOp):
def init_data(self):
self.value = numpy.random.random(size=(2, 5)).astype(numpy.int64)
self.attrs["int64_values"] = [int(v) for v in self.value.flat]
class TestAssignValueOp4(TestAssignValueOp):
def init_data(self):
self.value = numpy.random.choice(a=[False, True],
size=(2, 5)).astype(numpy.bool)
self.attrs["bool_values"] = [int(v) for v in self.value.flat]
class TestAssignApi(unittest.TestCase):
def setUp(self):
self.init_dtype()
self.value = (-100 + 200 * numpy.random.random(size=(2, 5))).astype(
self.dtype)
self.place = fluid.XPUPlace(0)
def init_dtype(self):
self.dtype = "float32"
def test_assign(self):
main_program = fluid.Program()
with fluid.program_guard(main_program):
x = layers.create_tensor(dtype=self.dtype)
layers.assign(input=self.value, output=x)
exe = fluid.Executor(self.place)
[fetched_x] = exe.run(main_program, feed={}, fetch_list=[x])
self.assertTrue(numpy.array_equal(fetched_x, self.value),
"fetch_x=%s val=%s" % (fetched_x, self.value))
self.assertEqual(fetched_x.dtype, self.value.dtype)
class TestAssignApi2(TestAssignApi):
def init_dtype(self):
self.dtype = "int32"
class TestAssignApi3(TestAssignApi):
def init_dtype(self):
self.dtype = "int64"
class TestAssignApi4(TestAssignApi):
def setUp(self):
self.init_dtype()
self.value = numpy.random.choice(a=[False, True],
size=(2, 5)).astype(numpy.bool)
self.place = fluid.XPUPlace(0)
def init_dtype(self):
self.dtype = "bool"
support_types = get_xpu_op_support_types('assign_value')
for stype in support_types:
create_test_class(globals(), XPUTestAssignValueOp, stype)
if __name__ == '__main__':
unittest.main()
......@@ -22,99 +22,116 @@ import unittest
import numpy as np
import numpy.random as random
import sys
import math
from op_test import OpTest
sys.path.append("..")
from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper
import paddle
paddle.enable_static()
class TestXPUIOUSimilarityOp(XPUOpTest):
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def setUp(self):
self.op_type = "iou_similarity"
self.boxes1 = random.rand(2, 4).astype('float32')
self.boxes2 = random.rand(3, 4).astype('float32')
self.output = random.rand(2, 3).astype('float32')
self.box_normalized = False
# run python iou computation
self._compute_iou()
self.inputs = {'X': self.boxes1, 'Y': self.boxes2}
self.attrs = {"box_normalized": self.box_normalized, 'use_xpu': True}
self.outputs = {'Out': self.output}
def _compute_iou(self, ):
for row in range(self.boxes1.shape[0]):
for col in range(self.boxes2.shape[0]):
xmin1, ymin1, xmax1, ymax1 = self.boxes1[row]
xmin2, ymin2, xmax2, ymax2 = self.boxes2[col]
if not self.box_normalized:
area1 = (ymax1 - ymin1 + 1) * (xmax1 - xmin1 + 1)
area2 = (ymax2 - ymin2 + 1) * (xmax2 - xmin2 + 1)
else:
area1 = (ymax1 - ymin1) * (xmax1 - xmin1)
area2 = (ymax2 - ymin2) * (xmax2 - xmin2)
inter_xmax = min(xmax1, xmax2)
inter_ymax = min(ymax1, ymax2)
inter_xmin = max(xmin1, xmin2)
inter_ymin = max(ymin1, ymin2)
inter_height = inter_ymax - inter_ymin
inter_width = inter_xmax - inter_xmin
if not self.box_normalized:
inter_height += 1
inter_width += 1
inter_height = max(inter_height, 0)
inter_width = max(inter_width, 0)
inter_area = inter_width * inter_height
union_area = area1 + area2 - inter_area
sim_score = inter_area / union_area
self.output[row, col] = sim_score
class TestXPUIOUSimilarityOpWithLoD(TestXPUIOUSimilarityOp):
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
def setUp(self):
super(TestXPUIOUSimilarityOpWithLoD, self).setUp()
self.boxes1_lod = [[1, 1]]
self.output_lod = [[1, 1]]
self.box_normalized = False
# run python iou computation
self._compute_iou()
self.inputs = {'X': (self.boxes1, self.boxes1_lod), 'Y': self.boxes2}
self.attrs = {"box_normalized": self.box_normalized}
self.outputs = {'Out': (self.output, self.output_lod)}
class TestXPUIOUSimilarityOpWithBoxNormalized(TestXPUIOUSimilarityOp):
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
def setUp(self):
super(TestXPUIOUSimilarityOpWithBoxNormalized, self).setUp()
self.boxes1_lod = [[1, 1]]
self.output_lod = [[1, 1]]
self.box_normalized = True
# run python iou computation
self._compute_iou()
self.inputs = {'X': (self.boxes1, self.boxes1_lod), 'Y': self.boxes2}
self.attrs = {"box_normalized": self.box_normalized}
self.outputs = {'Out': (self.output, self.output_lod)}
class XPUTestIOUSimilarityOp(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'iou_similarity'
self.use_dynamic_create_class = False
class TestXPUIOUSimilarityOp(XPUOpTest):
def init(self):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
self.op_type = 'iou_similarity'
def test_check_output(self):
self.check_output_with_place(self.place)
def setUp(self):
self.init()
self.boxes1 = random.rand(2, 4).astype(self.dtype)
self.boxes2 = random.rand(3, 4).astype(self.dtype)
self.output = random.rand(2, 3).astype(self.dtype)
self.box_normalized = False
# run python iou computation
self._compute_iou()
self.inputs = {'X': self.boxes1, 'Y': self.boxes2}
self.attrs = {
"box_normalized": self.box_normalized,
'use_xpu': True
}
self.outputs = {'Out': self.output}
def _compute_iou(self, ):
for row in range(self.boxes1.shape[0]):
for col in range(self.boxes2.shape[0]):
xmin1, ymin1, xmax1, ymax1 = self.boxes1[row]
xmin2, ymin2, xmax2, ymax2 = self.boxes2[col]
if not self.box_normalized:
area1 = (ymax1 - ymin1 + 1) * (xmax1 - xmin1 + 1)
area2 = (ymax2 - ymin2 + 1) * (xmax2 - xmin2 + 1)
else:
area1 = (ymax1 - ymin1) * (xmax1 - xmin1)
area2 = (ymax2 - ymin2) * (xmax2 - xmin2)
inter_xmax = min(xmax1, xmax2)
inter_ymax = min(ymax1, ymax2)
inter_xmin = max(xmin1, xmin2)
inter_ymin = max(ymin1, ymin2)
inter_height = inter_ymax - inter_ymin
inter_width = inter_xmax - inter_xmin
if not self.box_normalized:
inter_height += 1
inter_width += 1
inter_height = max(inter_height, 0)
inter_width = max(inter_width, 0)
inter_area = inter_width * inter_height
union_area = area1 + area2 - inter_area
sim_score = inter_area / union_area
self.output[row, col] = sim_score
class TestXPUIOUSimilarityOpWithLoD(TestXPUIOUSimilarityOp):
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
def setUp(self):
super().setUp()
self.boxes1_lod = [[1, 1]]
self.output_lod = [[1, 1]]
self.box_normalized = False
# run python iou computation
self._compute_iou()
self.inputs = {
'X': (self.boxes1, self.boxes1_lod),
'Y': self.boxes2
}
self.attrs = {"box_normalized": self.box_normalized}
self.outputs = {'Out': (self.output, self.output_lod)}
class TestXPUIOUSimilarityOpWithBoxNormalized(TestXPUIOUSimilarityOp):
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
def setUp(self):
super().setUp()
self.boxes1_lod = [[1, 1]]
self.output_lod = [[1, 1]]
self.box_normalized = True
# run python iou computation
self._compute_iou()
self.inputs = {
'X': (self.boxes1, self.boxes1_lod),
'Y': self.boxes2
}
self.attrs = {"box_normalized": self.box_normalized}
self.outputs = {'Out': (self.output, self.output_lod)}
support_types = get_xpu_op_support_types('iou_similarity')
for stype in support_types:
create_test_class(globals(), XPUTestIOUSimilarityOp, stype)
if __name__ == '__main__':
unittest.main()
......@@ -18,136 +18,130 @@ import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
import sys
sys.path.append("..")
from op_test_xpu import XPUOpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import time
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper
paddle.enable_static()
class TestOneHotOp(XPUOpTest):
class XPUTestOneHotOp(XPUOpTestWrapper):
def setUp(self):
self.use_xpu = True
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
# dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
def __init__(self):
self.op_name = 'one_hot_v2'
self.use_dynamic_create_class = False
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
class TestOneHotOp(XPUOpTest):
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
def init(self):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
self.op_type = 'one_hot_v2'
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': (out, x_lod)}
def setUp(self):
self.init()
depth = 10
depth_np = np.array(10).astype('int32')
# dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
out = np.zeros(shape=(np.product(x.shape),
depth)).astype(self.dtype)
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
class TestOneHotOp_attr(XPUOpTest):
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': (out, x_lod)}
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
def test_check_output(self):
self.check_output_with_place(self.place)
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')
class TestOneHotOp_attr(TestOneHotOp):
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
def setUp(self):
self.init()
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
self.inputs = {'X': (x, x_lod)}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
self.outputs = {'Out': (out, x_lod)}
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype(self.dtype)
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {
'dtype': int(core.VarDesc.VarType.FP32),
'depth': depth
}
self.outputs = {'Out': (out, x_lod)}
class TestOneHotOp_default_dtype(XPUOpTest):
class TestOneHotOp_default_dtype(TestOneHotOp):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
def setUp(self):
self.init()
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
out = np.zeros(shape=(np.product(x.shape),
depth)).astype(self.dtype)
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {}
self.outputs = {'Out': (out, x_lod)}
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
class TestOneHotOp_default_dtype_attr(TestOneHotOp):
def setUp(self):
self.init()
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
class TestOneHotOp_default_dtype_attr(XPUOpTest):
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype(self.dtype)
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
class TestOneHotOp_out_of_range(TestOneHotOp):
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def setUp(self):
self.init()
depth = 10
x_lod = [[4, 1, 3, 3]]
x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
out = np.zeros(shape=(np.product(x.shape),
depth)).astype(self.dtype)
class TestOneHotOp_out_of_range(XPUOpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
x_lod = [[4, 1, 3, 3]]
x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth, 'allow_out_of_range': True}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth, 'allow_out_of_range': True}
self.outputs = {'Out': (out, x_lod)}
class TestOneHotOpApi(unittest.TestCase):
......@@ -200,6 +194,9 @@ class BadInputTestOnehotV2(unittest.TestCase):
self.assertRaises(TypeError, test_bad_x)
support_types = get_xpu_op_support_types('one_hot_v2')
for stype in support_types:
create_test_class(globals(), XPUTestOneHotOp, stype)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
......@@ -19,196 +19,180 @@ import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest, skip_check_grad_ci
from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.framework import convert_np_dtype_to_dtype_
paddle.enable_static()
class TestMeanOp(OpTest):
def setUp(self):
self.op_type = "reduce_mean"
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
self.attrs = {'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
class XPUTestMeanOp(XPUOpTestWrapper):
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def __init__(self):
self.op_name = 'reduce_mean'
self.use_dynamic_create_class = False
def check_grad_(self):
self.check_grad(['X'], 'Out')
class TestMeanOp(XPUOpTest):
def setUp(self):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
self.op_type = "reduce_mean"
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
class TestMeanOp5D(OpTest):
def test_check_output(self):
self.check_output_with_place(self.place)
def setUp(self):
self.op_type = "reduce_mean"
self.inputs = {
'X': np.random.random((1, 2, 5, 6, 10)).astype("float32")
}
self.attrs = {'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestMeanOp6D(OpTest):
def setUp(self):
self.op_type = "reduce_mean"
self.inputs = {
'X': np.random.random((1, 1, 2, 5, 6, 10)).astype("float32")
}
self.attrs = {'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestMeanOp8D(OpTest):
def setUp(self):
self.op_type = "reduce_mean"
self.inputs = {
'X': np.random.random((1, 3, 1, 2, 1, 4, 3, 10)).astype("float32")
}
self.attrs = {'dim': (0, 3), 'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=(0, 3))}
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class Test1DReduce(OpTest):
def setUp(self):
self.op_type = "reduce_mean"
self.inputs = {'X': np.random.random(120).astype("float32")}
self.attrs = {'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class Test2DReduce0(Test1DReduce):
def setUp(self):
self.op_type = "reduce_mean"
self.attrs = {'dim': [0], 'use_xpu': True}
self.inputs = {'X': np.random.random((20, 10)).astype("float32")}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
class Test2DReduce1(Test1DReduce):
def setUp(self):
self.op_type = "reduce_mean"
self.attrs = {'dim': [1], 'use_xpu': True}
self.inputs = {'X': np.random.random((20, 10)).astype("float32")}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class Test3DReduce0(Test1DReduce):
def setUp(self):
self.op_type = "reduce_mean"
self.attrs = {'dim': [1], 'use_xpu': True}
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float32")}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class Test3DReduce1(Test1DReduce):
def setUp(self):
self.op_type = "reduce_mean"
self.attrs = {'dim': [2], 'use_xpu': True}
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float32")}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class Test3DReduce2(Test1DReduce):
def setUp(self):
self.op_type = "reduce_mean"
self.attrs = {'dim': [-2], 'use_xpu': True}
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float32")}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class Test3DReduce3(Test1DReduce):
def setUp(self):
self.op_type = "reduce_mean"
self.attrs = {'dim': [1, 2], 'use_xpu': True}
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float32")}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class TestKeepDimReduce(Test1DReduce):
def setUp(self):
self.op_type = "reduce_mean"
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
self.attrs = {'dim': [1], 'keep_dim': True, 'use_xpu': True}
self.outputs = {
'Out':
self.inputs['X'].mean(axis=tuple(self.attrs['dim']),
keepdims=self.attrs['keep_dim'])
}
class TestKeepDim8DReduce(Test1DReduce):
def setUp(self):
self.op_type = "reduce_mean"
self.inputs = {
'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float32")
}
self.attrs = {'dim': (3, 4, 5), 'keep_dim': True, 'use_xpu': True}
self.outputs = {
'Out':
self.inputs['X'].mean(axis=tuple(self.attrs['dim']),
keepdims=self.attrs['keep_dim'])
}
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out')
class TestMeanOp5D(TestMeanOp):
def setUp(self):
super().setUp()
self.inputs = {
'X': np.random.random((1, 2, 5, 6, 10)).astype(self.dtype)
}
self.attrs = {'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
class TestMeanOp6D(TestMeanOp):
def setUp(self):
super().setUp()
self.inputs = {
'X': np.random.random((1, 1, 2, 5, 6, 10)).astype(self.dtype)
}
self.attrs = {'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
class TestMeanOp8D(TestMeanOp):
def setUp(self):
super().setUp()
self.inputs = {
'X': np.random.random(
(1, 3, 1, 2, 1, 4, 3, 10)).astype(self.dtype)
}
self.attrs = {'dim': (0, 3), 'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=(0, 3))}
class XPUTestReduce(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'reduce_mean'
self.use_dynamic_create_class = False
class Test1DReduce(XPUOpTest):
def setUp(self):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
self.op_type = "reduce_mean"
self.inputs = {'X': np.random.random(120).astype(self.dtype)}
self.attrs = {'use_xpu': True}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
def test_check_output(self):
self.check_output_with_place(self.place)
# There is a api bug in checking grad when dim[0] > 0
# def test_check_grad(self):
# self.check_output_with_place(self.place, ['X'], 'Out')
class Test2DReduce0(Test1DReduce):
def setUp(self):
super().setUp()
self.attrs = {'dim': [0], 'use_xpu': True}
self.inputs = {'X': np.random.random((20, 10)).astype(self.dtype)}
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
class Test2DReduce1(Test1DReduce):
def setUp(self):
super().setUp()
self.attrs = {'dim': [1], 'use_xpu': True}
self.inputs = {'X': np.random.random((20, 10)).astype(self.dtype)}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class Test3DReduce0(Test1DReduce):
def setUp(self):
super().setUp()
self.attrs = {'dim': [1], 'use_xpu': True}
self.inputs = {'X': np.random.random((5, 6, 7)).astype(self.dtype)}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class Test3DReduce1(Test1DReduce):
def setUp(self):
super().setUp()
self.attrs = {'dim': [2], 'use_xpu': True}
self.inputs = {'X': np.random.random((5, 6, 7)).astype(self.dtype)}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class Test3DReduce2(Test1DReduce):
def setUp(self):
super().setUp()
self.attrs = {'dim': [-2], 'use_xpu': True}
self.inputs = {'X': np.random.random((5, 6, 7)).astype(self.dtype)}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class Test3DReduce3(Test1DReduce):
def setUp(self):
super().setUp()
self.attrs = {'dim': [1, 2], 'use_xpu': True}
self.inputs = {'X': np.random.random((5, 6, 7)).astype(self.dtype)}
self.outputs = {
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
}
class TestKeepDimReduce(Test1DReduce):
def setUp(self):
super().setUp()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [1], 'keep_dim': True, 'use_xpu': True}
self.outputs = {
'Out':
self.inputs['X'].mean(axis=tuple(self.attrs['dim']),
keepdims=self.attrs['keep_dim'])
}
class TestKeepDim8DReduce(Test1DReduce):
def setUp(self):
super().setUp()
self.inputs = {
'X': np.random.random(
(2, 5, 3, 2, 2, 3, 4, 2)).astype(self.dtype)
}
self.attrs = {'dim': (3, 4, 5), 'keep_dim': True, 'use_xpu': True}
self.outputs = {
'Out':
self.inputs['X'].mean(axis=tuple(self.attrs['dim']),
keepdims=self.attrs['keep_dim'])
}
support_types = get_xpu_op_support_types('reduce_mean')
for stype in support_types:
create_test_class(globals(), XPUTestMeanOp, stype)
create_test_class(globals(), XPUTestReduce, stype)
if __name__ == '__main__':
unittest.main()
......@@ -20,208 +20,220 @@ import unittest
import math
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
from op_test_xpu import XPUOpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestROIAlignOp(XPUOpTest):
def set_data(self):
self.init_test_case()
self.make_rois()
self.calc_roi_align()
self.inputs = {
'X': self.x,
'ROIs': (self.rois[:, 1:5], self.rois_lod),
}
self.attrs = {
'spatial_scale': self.spatial_scale,
'pooled_height': self.pooled_height,
'pooled_width': self.pooled_width,
'sampling_ratio': self.sampling_ratio,
'aligned': self.continuous_coordinate
}
self.outputs = {'Out': self.out_data}
def init_test_case(self):
self.batch_size = 3
self.channels = 3
self.height = 8
self.width = 6
self.xpu_version = core.get_xpu_device_version(0)
# n, c, h, w
self.x_dim = (self.batch_size, self.channels, self.height, self.width)
self.spatial_scale = 1.0 / 2.0
self.pooled_height = 2
self.pooled_width = 2
self.sampling_ratio = -1
if self.xpu_version == core.XPUVersion.XPU1:
self.continuous_coordinate = False
else:
self.continuous_coordinate = bool(np.random.randint(2))
self.x = np.random.random(self.x_dim).astype('float32')
def pre_calc(self, x_i, roi_xmin, roi_ymin, roi_bin_grid_h, roi_bin_grid_w,
bin_size_h, bin_size_w):
count = roi_bin_grid_h * roi_bin_grid_w
bilinear_pos = np.zeros(
[self.channels, self.pooled_height, self.pooled_width, count, 4],
np.float32)
bilinear_w = np.zeros([self.pooled_height, self.pooled_width, count, 4],
np.float32)
for ph in range(self.pooled_width):
for pw in range(self.pooled_height):
c = 0
for iy in range(roi_bin_grid_h):
y = roi_ymin + ph * bin_size_h + (iy + 0.5) * \
bin_size_h / roi_bin_grid_h
for ix in range(roi_bin_grid_w):
x = roi_xmin + pw * bin_size_w + (ix + 0.5) * \
bin_size_w / roi_bin_grid_w
if y < -1.0 or y > self.height or \
x < -1.0 or x > self.width:
continue
if y <= 0:
y = 0
if x <= 0:
x = 0
y_low = int(y)
x_low = int(x)
if y_low >= self.height - 1:
y = y_high = y_low = self.height - 1
else:
y_high = y_low + 1
if x_low >= self.width - 1:
x = x_high = x_low = self.width - 1
else:
x_high = x_low + 1
ly = y - y_low
lx = x - x_low
hy = 1 - ly
hx = 1 - lx
for ch in range(self.channels):
bilinear_pos[ch, ph, pw, c, 0] = x_i[ch, y_low,
x_low]
bilinear_pos[ch, ph, pw, c, 1] = x_i[ch, y_low,
x_high]
bilinear_pos[ch, ph, pw, c, 2] = x_i[ch, y_high,
x_low]
bilinear_pos[ch, ph, pw, c, 3] = x_i[ch, y_high,
x_high]
bilinear_w[ph, pw, c, 0] = hy * hx
bilinear_w[ph, pw, c, 1] = hy * lx
bilinear_w[ph, pw, c, 2] = ly * hx
bilinear_w[ph, pw, c, 3] = ly * lx
c = c + 1
return bilinear_pos, bilinear_w
def calc_roi_align(self):
self.out_data = np.zeros(
(self.rois_num, self.channels, self.pooled_height,
self.pooled_width)).astype('float32')
for i in range(self.rois_num):
roi = self.rois[i]
roi_batch_id = int(roi[0])
x_i = self.x[roi_batch_id]
roi_offset = 0.5 if self.continuous_coordinate else 0
roi_xmin = roi[1] * self.spatial_scale - roi_offset
roi_ymin = roi[2] * self.spatial_scale - roi_offset
roi_xmax = roi[3] * self.spatial_scale - roi_offset
roi_ymax = roi[4] * self.spatial_scale - roi_offset
roi_width = roi_xmax - roi_xmin
roi_height = roi_ymax - roi_ymin
if not self.continuous_coordinate:
roi_width = max(roi_width, 1)
roi_height = max(roi_height, 1)
bin_size_h = float(roi_height) / float(self.pooled_height)
bin_size_w = float(roi_width) / float(self.pooled_width)
roi_bin_grid_h = self.sampling_ratio if self.sampling_ratio > 0 else \
math.ceil(roi_height / self.pooled_height)
roi_bin_grid_w = self.sampling_ratio if self.sampling_ratio > 0 else \
math.ceil(roi_width / self.pooled_width)
count = int(roi_bin_grid_h * roi_bin_grid_w)
pre_size = count * self.pooled_width * self.pooled_height
bilinear_pos, bilinear_w = self.pre_calc(x_i, roi_xmin, roi_ymin,
int(roi_bin_grid_h),
int(roi_bin_grid_w),
bin_size_h, bin_size_w)
for ch in range(self.channels):
align_per_bin = (bilinear_pos[ch] * bilinear_w).sum(axis=-1)
output_val = align_per_bin.mean(axis=-1)
self.out_data[i, ch, :, :] = output_val
def make_rois(self):
rois = []
self.rois_lod = [[]]
for bno in range(self.batch_size):
self.rois_lod[0].append(bno + 1)
for i in range(bno + 1):
x1 = np.random.random_integers(
0, self.width // self.spatial_scale - self.pooled_width)
y1 = np.random.random_integers(
0, self.height // self.spatial_scale - self.pooled_height)
x2 = np.random.random_integers(x1 + self.pooled_width,
self.width // self.spatial_scale)
y2 = np.random.random_integers(
y1 + self.pooled_height, self.height // self.spatial_scale)
roi = [bno, x1, y1, x2, y2]
rois.append(roi)
self.rois_num = len(rois)
self.rois = np.array(rois).astype("float32")
def setUp(self):
self.op_type = "roi_align"
self.set_data()
def test_check_output(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
if core.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, {'X'}, 'Out')
class TestROIAlignInLodOp(TestROIAlignOp):
def set_data(self):
self.init_test_case()
self.make_rois()
self.calc_roi_align()
seq_len = self.rois_lod[0]
self.inputs = {
'X': self.x,
'ROIs': (self.rois[:, 1:5], self.rois_lod),
'RoisNum': np.asarray(seq_len).astype('int32')
}
self.attrs = {
'spatial_scale': self.spatial_scale,
'pooled_height': self.pooled_height,
'pooled_width': self.pooled_width,
'sampling_ratio': self.sampling_ratio,
'aligned': self.continuous_coordinate
}
self.outputs = {'Out': self.out_data}
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper
paddle.enable_static()
class XPUTestROIAlignOp(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'roi_align'
self.use_dynamic_create_class = False
class TestROIAlignOp(XPUOpTest):
def set_data(self):
self.init_test_case()
self.make_rois()
self.calc_roi_align()
self.inputs = {
'X': self.x,
'ROIs': (self.rois[:, 1:5], self.rois_lod),
}
self.attrs = {
'spatial_scale': self.spatial_scale,
'pooled_height': self.pooled_height,
'pooled_width': self.pooled_width,
'sampling_ratio': self.sampling_ratio,
'aligned': self.continuous_coordinate
}
self.outputs = {'Out': self.out_data}
def init_test_case(self):
self.batch_size = 3
self.channels = 3
self.height = 8
self.width = 6
self.xpu_version = core.get_xpu_device_version(0)
# n, c, h, w
self.x_dim = (self.batch_size, self.channels, self.height,
self.width)
self.spatial_scale = 1.0 / 2.0
self.pooled_height = 2
self.pooled_width = 2
self.sampling_ratio = -1
if self.xpu_version == core.XPUVersion.XPU1:
self.continuous_coordinate = False
else:
self.continuous_coordinate = bool(np.random.randint(2))
self.x = np.random.random(self.x_dim).astype(self.dtype)
def pre_calc(self, x_i, roi_xmin, roi_ymin, roi_bin_grid_h,
roi_bin_grid_w, bin_size_h, bin_size_w):
count = roi_bin_grid_h * roi_bin_grid_w
bilinear_pos = np.zeros([
self.channels, self.pooled_height, self.pooled_width, count, 4
], np.float32)
bilinear_w = np.zeros(
[self.pooled_height, self.pooled_width, count, 4], np.float32)
for ph in range(self.pooled_width):
for pw in range(self.pooled_height):
c = 0
for iy in range(roi_bin_grid_h):
y = roi_ymin + ph * bin_size_h + (iy + 0.5) * \
bin_size_h / roi_bin_grid_h
for ix in range(roi_bin_grid_w):
x = roi_xmin + pw * bin_size_w + (ix + 0.5) * \
bin_size_w / roi_bin_grid_w
if y < -1.0 or y > self.height or \
x < -1.0 or x > self.width:
continue
if y <= 0:
y = 0
if x <= 0:
x = 0
y_low = int(y)
x_low = int(x)
if y_low >= self.height - 1:
y = y_high = y_low = self.height - 1
else:
y_high = y_low + 1
if x_low >= self.width - 1:
x = x_high = x_low = self.width - 1
else:
x_high = x_low + 1
ly = y - y_low
lx = x - x_low
hy = 1 - ly
hx = 1 - lx
for ch in range(self.channels):
bilinear_pos[ch, ph, pw, c, 0] = x_i[ch, y_low,
x_low]
bilinear_pos[ch, ph, pw, c, 1] = x_i[ch, y_low,
x_high]
bilinear_pos[ch, ph, pw, c, 2] = x_i[ch, y_high,
x_low]
bilinear_pos[ch, ph, pw, c, 3] = x_i[ch, y_high,
x_high]
bilinear_w[ph, pw, c, 0] = hy * hx
bilinear_w[ph, pw, c, 1] = hy * lx
bilinear_w[ph, pw, c, 2] = ly * hx
bilinear_w[ph, pw, c, 3] = ly * lx
c = c + 1
return bilinear_pos, bilinear_w
def calc_roi_align(self):
self.out_data = np.zeros(
(self.rois_num, self.channels, self.pooled_height,
self.pooled_width)).astype(self.dtype)
for i in range(self.rois_num):
roi = self.rois[i]
roi_batch_id = int(roi[0])
x_i = self.x[roi_batch_id]
roi_offset = 0.5 if self.continuous_coordinate else 0
roi_xmin = roi[1] * self.spatial_scale - roi_offset
roi_ymin = roi[2] * self.spatial_scale - roi_offset
roi_xmax = roi[3] * self.spatial_scale - roi_offset
roi_ymax = roi[4] * self.spatial_scale - roi_offset
roi_width = roi_xmax - roi_xmin
roi_height = roi_ymax - roi_ymin
if not self.continuous_coordinate:
roi_width = max(roi_width, 1)
roi_height = max(roi_height, 1)
bin_size_h = float(roi_height) / float(self.pooled_height)
bin_size_w = float(roi_width) / float(self.pooled_width)
roi_bin_grid_h = self.sampling_ratio if self.sampling_ratio > 0 else \
math.ceil(roi_height / self.pooled_height)
roi_bin_grid_w = self.sampling_ratio if self.sampling_ratio > 0 else \
math.ceil(roi_width / self.pooled_width)
count = int(roi_bin_grid_h * roi_bin_grid_w)
pre_size = count * self.pooled_width * self.pooled_height
bilinear_pos, bilinear_w = self.pre_calc(
x_i, roi_xmin, roi_ymin, int(roi_bin_grid_h),
int(roi_bin_grid_w), bin_size_h, bin_size_w)
for ch in range(self.channels):
align_per_bin = (bilinear_pos[ch] * bilinear_w).sum(axis=-1)
output_val = align_per_bin.mean(axis=-1)
self.out_data[i, ch, :, :] = output_val
def make_rois(self):
rois = []
self.rois_lod = [[]]
for bno in range(self.batch_size):
self.rois_lod[0].append(bno + 1)
for i in range(bno + 1):
x1 = np.random.random_integers(
0, self.width // self.spatial_scale - self.pooled_width)
y1 = np.random.random_integers(
0,
self.height // self.spatial_scale - self.pooled_height)
x2 = np.random.random_integers(
x1 + self.pooled_width,
self.width // self.spatial_scale)
y2 = np.random.random_integers(
y1 + self.pooled_height,
self.height // self.spatial_scale)
roi = [bno, x1, y1, x2, y2]
rois.append(roi)
self.rois_num = len(rois)
self.rois = np.array(rois).astype(self.dtype)
def setUp(self):
self.set_xpu()
self.op_type = "roi_align"
self.place = paddle.XPUPlace(0)
self.dtype = self.in_type
self.set_data()
def set_xpu(self):
self.__class__.use_xpu = True
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, {'X'}, 'Out')
class TestROIAlignInLodOp(TestROIAlignOp):
def set_data(self):
self.init_test_case()
self.make_rois()
self.calc_roi_align()
seq_len = self.rois_lod[0]
self.inputs = {
'X': self.x,
'ROIs': (self.rois[:, 1:5], self.rois_lod),
'RoisNum': np.asarray(seq_len).astype('int32')
}
self.attrs = {
'spatial_scale': self.spatial_scale,
'pooled_height': self.pooled_height,
'pooled_width': self.pooled_width,
'sampling_ratio': self.sampling_ratio,
'aligned': self.continuous_coordinate
}
self.outputs = {'Out': self.out_data}
support_types = get_xpu_op_support_types('roi_align')
for stype in support_types:
create_test_class(globals(), XPUTestROIAlignOp, stype)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册