未验证 提交 ca9339eb 编写于 作者: Z zhiboniu 提交者: GitHub

replace fluid.mean to paddle.mean (#43907)

* change fluid.mean to paddle.mean

* reverse some old code examples
上级 5fbc26e2
......@@ -68,7 +68,7 @@ def train_lenet(lenet, reader, optimizer):
out = lenet(img)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
avg_loss.backward()
optimizer.minimize(avg_loss)
......
......@@ -46,7 +46,7 @@ def conv_block():
act="relu")
prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return [img, label], avg_loss
......
......@@ -118,7 +118,7 @@ class TestImperativeQat(unittest.TestCase):
out = lenet(img)
acc = fluid.layers.accuracy(out, label)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
avg_loss.backward()
adam.minimize(avg_loss)
lenet.clear_gradients()
......
......@@ -115,7 +115,7 @@ class TestImperativeQatAmp(unittest.TestCase):
out = model(img)
acc = fluid.layers.accuracy(out, label)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
scaled_loss = scaler.scale(avg_loss)
scaled_loss.backward()
......@@ -125,7 +125,7 @@ class TestImperativeQatAmp(unittest.TestCase):
out = model(img)
acc = fluid.layers.accuracy(out, label)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
avg_loss.backward()
adam.minimize(avg_loss)
......
......@@ -45,7 +45,7 @@ def conv_net(img, label):
act="relu")
prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss
......
......@@ -41,7 +41,7 @@ def linear_fc(num):
for _ in six.moves.xrange(num):
hidden = fluid.layers.fc(hidden, size=128, act='relu')
loss = fluid.layers.cross_entropy(input=hidden, label=label)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
return loss
......@@ -92,7 +92,7 @@ def residual_block(num, quant_skip_pattern=None):
pool_stride=2)
fc = fluid.layers.fc(input=pool, size=10)
loss = fluid.layers.cross_entropy(input=fc, label=label)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
return loss
......@@ -116,7 +116,7 @@ def conv_net(img, label, quant_skip_pattern):
with fluid.name_scope(quant_skip_pattern):
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss
......@@ -620,7 +620,7 @@ def quant_dequant_residual_block(num, quant_skip_pattern=None):
pool_add = fluid.layers.elementwise_add(x=pool1, y=pool2, act='relu')
fc = fluid.layers.fc(input=pool_add, size=10)
loss = fluid.layers.cross_entropy(input=fc, label=label)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
return loss
......
......@@ -53,7 +53,7 @@ def conv_net(img, label):
hidden = fluid.layers.fc(input=conv_pool_2, size=100, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss
......
......@@ -48,7 +48,7 @@ def conv_net(img, label):
hidden = fluid.layers.fc(input=conv_pool_1, size=100, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss
......
......@@ -55,7 +55,7 @@ def conv_net(img, label):
hidden = fluid.layers.fc(input=conv_pool_2, size=100, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss
......
......@@ -136,7 +136,7 @@ def train(net_type, use_cuda, save_dirname, is_local):
logits = fluid.layers.fc(input=net, size=classdim, act="softmax")
cost, predict = fluid.layers.softmax_with_cross_entropy(
logits, label, return_softmax=True)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
acc = fluid.layers.accuracy(input=predict, label=label)
# Test program
......@@ -460,7 +460,7 @@ class TestAmpWithNonIterableDataLoader(unittest.TestCase):
logits = fluid.layers.fc(input=net, size=10, act="softmax")
cost, predict = fluid.layers.softmax_with_cross_entropy(
logits, label, return_softmax=True)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
optimizer = fluid.optimizer.Lamb(learning_rate=0.001)
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
......
......@@ -32,7 +32,7 @@ def linear_fc(num):
for _ in six.moves.xrange(num):
hidden = fluid.layers.fc(hidden, size=128, act='relu')
loss = fluid.layers.cross_entropy(input=hidden, label=label)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
return loss
......@@ -63,7 +63,7 @@ def residual_block(num):
hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
fc = fluid.layers.fc(input=hidden, size=10)
loss = fluid.layers.cross_entropy(input=fc, label=label)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
return loss
......@@ -83,7 +83,7 @@ def conv_net(img, label):
act="relu")
prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss
......
......@@ -87,7 +87,7 @@ def bow_net(data,
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
return avg_cost
......
......@@ -103,7 +103,7 @@ def _dygraph_to_static_func_(dygraph_func):
@dygraph_to_static_func
def func(x):
if fluid.layers.mean(x) < 0:
if paddle.mean(x) < 0:
x_v = x - 1
else:
x_v = x + 1
......
......@@ -897,7 +897,7 @@ class ReduceLROnPlateau(LearningRateDecay):
check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
assert len(loss.shape) == 1 and loss.shape[0] == 1, "the loss.shape " \
"should be (1L,), but the current loss.shape is {}. Maybe that " \
"you should call fluid.layers.mean to process it first.".format(loss.shape)
"you should call paddle.mean to process it first.".format(loss.shape)
self.epoch_num += 1
if self.cooldown_counter > 0:
......
......@@ -16,6 +16,7 @@ import argparse
import logging
import time
import paddle
import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
......@@ -123,7 +124,7 @@ def model():
auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
label=label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
return datas, avg_cost, predict, train_file_path
......
......@@ -102,7 +102,7 @@ def run_check():
exe = executor.Executor(
core.CUDAPlace(0) if core.is_compiled_with_cuda() and
(core.get_cuda_device_count() > 0) else core.CPUPlace())
loss = layers.mean(out)
loss = paddle.mean(out)
loss.persistable = True
optimizer.SGD(learning_rate=0.01).minimize(loss)
startup_prog.random_seed = 1
......
......@@ -493,7 +493,7 @@ def save_params(executor, dirname, main_program=None, filename=None):
predict = fluid.layers.fc(input=image, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
......@@ -719,7 +719,7 @@ def save_persistables(executor, dirname, main_program=None, filename=None):
predict = fluid.layers.fc(input=image, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
......@@ -1315,7 +1315,7 @@ def save_inference_model(dirname,
predict = fluid.layers.fc(input=image, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
......
......@@ -13089,7 +13089,7 @@ def mean(x, name=None):
input = fluid.layers.data(
name='data', shape=[2, 3], dtype='float32')
mean = fluid.layers.mean(input)
mean = paddle.mean(input)
"""
if _in_legacy_dygraph():
......
......@@ -913,7 +913,7 @@ class Optimizer(object):
program = loss.block.program
assert len(loss.shape) == 1 and loss.shape[0] == 1, \
"The loss.shape should be (1L,), but the current loss.shape is {}. " \
"Maybe that you should call fluid.layers.mean to process the current loss.".format(
"Maybe that you should call paddle.mean to process the current loss.".format(
loss.shape)
parameter_list = parameter_list if parameter_list \
else self._parameter_list
......@@ -6834,7 +6834,7 @@ class LookaheadOptimizer(object):
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
y = fluid.layers.fc(input=[x], size=2, act="softmax")
loss = fluid.layers.cross_entropy(input=y, label=label)
loss = fluid.layers.mean(x=loss)
loss = paddle.mean(x=loss)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
alpha=0.5,
......
......@@ -48,7 +48,7 @@ def convolution_net(data,
size=class_dim,
act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy, prediction
......@@ -93,7 +93,7 @@ def dyn_rnn_lstm(data,
last = fluid.layers.sequence_last_step(rnn())
prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy, prediction
......@@ -132,7 +132,7 @@ def stacked_lstm_net(data,
size=class_dim,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy, prediction
......
......@@ -56,16 +56,16 @@ def train(use_cuda, save_dirname, is_local, use_bf16, pure_bf16):
with amp.bf16.bf16_guard():
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
else:
y_predict = fluid.layers.fc(input=x, size=1, act=None)
with amp.bf16.bf16_guard():
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
else:
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
lr = 5e-3 if use_bf16 else 1e-3
sgd_optimizer = fluid.optimizer.SGD(learning_rate=lr)
......
......@@ -126,7 +126,7 @@ def train(net_type, use_cuda, save_dirname, is_local):
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
acc = fluid.layers.accuracy(input=predict, label=label)
# Test program
......
......@@ -160,7 +160,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
param_attr=fluid.ParamAttr(
name='crfw',
learning_rate=mix_hidden_lr))
avg_cost = fluid.layers.mean(crf_cost)
avg_cost = paddle.mean(crf_cost)
# TODO(qiao)
# check other optimizers and check why out will be NAN
......
......@@ -34,7 +34,7 @@ BATCH_SIZE = 64
def loss_net(hidden, label):
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
acc = fluid.layers.accuracy(input=prediction, label=label)
return prediction, avg_loss, acc
......
......@@ -153,7 +153,7 @@ def model():
label = layers.data(name='score', shape=[1], dtype='float32')
square_cost = layers.square_error_cost(input=scale_infer, label=label)
avg_cost = layers.mean(square_cost)
avg_cost = paddle.mean(square_cost)
return scale_infer, avg_cost
......
......@@ -158,7 +158,7 @@ def seq_to_seq_net():
dtype='int64',
lod_level=1)
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
return avg_cost, prediction
......
......@@ -85,7 +85,7 @@ def train(target,
size=dict_size,
act='softmax')
cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
return avg_cost, predict_word
word_dict = paddle.dataset.imikolov.build_dict()
......
......@@ -145,7 +145,7 @@ def train_main(use_cuda):
dtype='int64',
lod_level=1)
cost = layers.cross_entropy(input=rnn_out, label=label)
avg_cost = layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
optimizer = fluid.optimizer.Adagrad(learning_rate=1e-3)
optimizer.minimize(avg_cost)
......
......@@ -35,7 +35,7 @@ with fluid.program_guard(main_program=prog):
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
prog_clip = prog.clone()
prog_clip.block(0).var(hidden1.name)._set_error_clip(
......
......@@ -66,7 +66,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
mask=cond,
x=image)
loss = layers.cross_entropy(input=prob, label=label)
avg_loss = layers.mean(loss)
avg_loss = paddle.mean(loss)
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
optimizer.minimize(avg_loss, startup_prog)
......@@ -124,7 +124,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
prob = ie()
loss = layers.cross_entropy(input=prob[0], label=label)
avg_loss = layers.mean(loss)
avg_loss = paddle.mean(loss)
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
optimizer.minimize(avg_loss, startup_prog)
......
......@@ -61,7 +61,7 @@ class TestASPHelperPruningBase(unittest.TestCase):
def run_training_pruning_test(self, get_mask_gen_func, get_mask_check_func):
with fluid.program_guard(self.main_program, self.startup_program):
loss = fluid.layers.mean(
loss = paddle.mean(
fluid.layers.cross_entropy(input=self.predict,
label=self.label))
optimizer = paddle.incubate.asp.decorate(
......
......@@ -242,7 +242,7 @@ class TestASPStaticCustomerizedPruneFunc(unittest.TestCase):
def test_training_pruning(self):
with fluid.program_guard(self.main_program, self.startup_program):
loss = fluid.layers.mean(
loss = paddle.mean(
fluid.layers.cross_entropy(input=self.predict,
label=self.label))
optimizer = sparsity.decorate(
......
......@@ -48,7 +48,7 @@ class TestASPStaticOptimize(unittest.TestCase):
with fluid.program_guard(self.main_program, self.startup_program):
self.img, self.label, predict = build_model()
self.loss = fluid.layers.mean(
self.loss = paddle.mean(
fluid.layers.cross_entropy(input=predict, label=self.label))
self.optimizer = fluid.optimizer.SGD(learning_rate=0.01)
......
......@@ -66,7 +66,7 @@ class TestASPStaticPruningBase(unittest.TestCase):
def test_training_pruning(self):
with fluid.program_guard(self.main_program, self.startup_program):
loss = fluid.layers.mean(
loss = paddle.mean(
fluid.layers.cross_entropy(input=self.predict,
label=self.label))
optimizer = paddle.incubate.asp.decorate(
......
......@@ -141,7 +141,7 @@ class TestASPStaticOptimize(unittest.TestCase):
with fluid.program_guard(self.main_program, self.startup_program):
self.img, self.label, predict = build_model()
self.loss = fluid.layers.mean(
self.loss = paddle.mean(
fluid.layers.cross_entropy(input=predict, label=self.label))
self.optimizer = fluid.optimizer.SGD(learning_rate=0.01)
self.optimizer = paddle.incubate.asp.decorate(self.optimizer)
......
......@@ -96,7 +96,7 @@ def mlp_pretrain_forward(train_program, start_program):
predict = mlp(input)
cost = layers.cross_entropy(input=predict, label=label)
avg_cost = layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
return avg_cost, train_program, start_program
......
......@@ -70,7 +70,7 @@ def net():
cost, y_predict = fluid.layers.softmax_with_cross_entropy(
hidden, y, return_softmax=True)
acc_top1 = fluid.layers.accuracy(input=y_predict, label=y, k=1)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.05)
sgd_optimizer.minimize(avg_cost)
......
......@@ -84,7 +84,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
......
......@@ -92,7 +92,7 @@ class TestDistCTR2x2(TestDistRunnerBase):
auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
label=label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
inference_program = paddle.fluid.default_main_program().clone()
......
......@@ -143,7 +143,7 @@ class TestDistCTR2x2(FleetDistRunnerBase):
label=label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
self.feeds = datas
self.train_file_path = ["fake1", "fake2"]
......
......@@ -116,7 +116,7 @@ class TestHeterPipelinePsCTR2x2(FleetDistHeterRunnerBase):
predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
fluid.layers.Print(avg_cost, message="avg_cost")
self.feeds = datas
......
......@@ -76,7 +76,7 @@ class TestFleetMetaOptimizerPrecision(TestDistRunnerBase):
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
......
......@@ -76,7 +76,7 @@ class TestFleetMetaOptimizerFuseAllReducePrecision(TestDistRunnerBase):
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
......
......@@ -91,7 +91,7 @@ def get_loss(cos_q_pt, cos_q_nt):
shape=[-1, 1],
value=0.0,
dtype='float32'), loss_op2)
avg_cost = fluid.layers.mean(loss_op3)
avg_cost = paddle.mean(loss_op3)
return avg_cost
......
......@@ -133,7 +133,7 @@ class TestDistCTR2x2(FleetDistRunnerBase):
acc = fluid.layers.accuracy(input=predict, label=label)
auc_var, _, _ = fluid.layers.auc(input=predict, label=label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
self.feeds = datas
self.train_file_path = ["fake1", "fake2"]
......
......@@ -85,7 +85,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
......
......@@ -58,7 +58,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
......
......@@ -38,7 +38,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
......
......@@ -37,7 +37,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
......
......@@ -49,7 +49,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
......
......@@ -229,7 +229,7 @@ class DistSeResneXt2x2(TestDistRunnerBase):
out = model.net(input=image, class_dim=102)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
......
......@@ -56,7 +56,7 @@ def runtime_main():
act='softmax')
cost = paddle.fluid.layers.cross_entropy(input=prediction,
label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.sharding = True
......
......@@ -137,7 +137,7 @@ class TestDistTextClassification2x2(TestDistRunnerBase):
# Train program
predict = conv_net(data, dict_dim)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
acc = fluid.layers.accuracy(input=predict, label=label)
inference_program = fluid.default_main_program().clone()
......
......@@ -94,7 +94,7 @@ class TestDistWord2vec2x2(TestDistRunnerBase):
initializer=fluid.initializer.Constant(value=0.1)))
cost = fluid.layers.cross_entropy(input=predict_word,
label=words[4])
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
return avg_cost, predict_word
word_dict = paddle.dataset.imikolov.build_dict()
......
......@@ -13,7 +13,7 @@
# limitations under the License.
from __future__ import absolute_import, division, print_function
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding, Layer, Linear
from paddle.fluid.dygraph.jit import declarative
......@@ -357,7 +357,7 @@ class PretrainModelLayer(Layer):
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out,
label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
mean_mask_lm_loss = paddle.mean(mask_lm_loss)
next_sent_fc_out = self.next_sent_fc(next_sent_feat)
......@@ -367,7 +367,7 @@ class PretrainModelLayer(Layer):
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax,
label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
mean_next_sent_loss = paddle.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
......@@ -41,7 +41,7 @@ def dyfunc_empty_nonlocal(x):
def dyfunc_with_if_else(x_v, label=None):
if fluid.layers.mean(x_v).numpy()[0] > 5:
if paddle.mean(x_v).numpy()[0] > 5:
x_v = x_v - 1
else:
x_v = x_v + 1
......@@ -87,14 +87,14 @@ def dyfunc_with_if_else3(x):
m = x + 2
n = x + 3
return q, x, y, z
q, x, y, z = fluid.layers.cond(fluid.layers.mean(x)[0] < 5, lambda :
q, x, y, z = fluid.layers.cond(paddle.mean(x)[0] < 5, lambda :
paddle.jit.dy2static.convert_call(true_fn_0)(q, x, y),
lambda : paddle.jit.dy2static.convert_call(false_fn_0)(q,
x, y))
"""
y = x + 1
# NOTE: x_v[0] < 5 is True
if fluid.layers.mean(x).numpy()[0] < 5:
if paddle.mean(x).numpy()[0] < 5:
x = x + 1
z = x + 2
q = x + 3
......@@ -155,13 +155,13 @@ def nested_if_else(x_v):
batch_size = fluid.layers.shape(x_v)[0]
# if tensor.shape is [1], now support to compare with numpy.
if fluid.layers.mean(x_v).numpy() < 0:
if paddle.mean(x_v).numpy() < 0:
y = x_v + bias
w = fluid.layers.fill_constant([feat_size], dtype='float32', value=10)
if y.numpy()[0] < 10:
tmp = y * w
y = fluid.layers.relu(tmp)
if fluid.layers.mean(y).numpy()[0] < batch_size:
if paddle.mean(y).numpy()[0] < batch_size:
y = fluid.layers.abs(y)
else:
tmp = fluid.layers.fill_constant([feat_size],
......@@ -257,7 +257,7 @@ class NetWithControlFlowIf(fluid.dygraph.Layer):
value=1)
# Control flow `if` statement
fc_out = self.fc(input)
if fluid.layers.mean(fc_out).numpy()[0] < 0:
if paddle.mean(fc_out).numpy()[0] < 0:
y = fc_out + self.constant_vars['bias']
self.constant_vars['w'] = fluid.layers.fill_constant(
[5], dtype='float32', value=10)
......@@ -280,13 +280,13 @@ class NetWithControlFlowIf(fluid.dygraph.Layer):
else:
y = fc_out - self.constant_vars['bias']
loss = fluid.layers.mean(y)
loss = paddle.mean(y)
return loss
def if_with_and_or(x_v, label=None):
batch_size = fluid.layers.shape(x_v)
if x_v is not None and (fluid.layers.mean(x_v).numpy()[0] > 0 or label
if x_v is not None and (paddle.mean(x_v).numpy()[0] > 0 or label
is not None) and batch_size[0] > 1 and True:
x_v = x_v - 1
else:
......@@ -318,7 +318,7 @@ def if_with_and_or_2(x, y=None):
def if_with_and_or_3(x, y=None):
batch_size = fluid.layers.shape(x)
mean_res = fluid.layers.mean(x)
mean_res = paddle.mean(x)
if x is not None and batch_size[0] > 1 and y is not None and mean_res.numpy(
)[0] > 0:
x = x + 1
......@@ -329,7 +329,7 @@ def if_with_and_or_3(x, y=None):
def if_with_and_or_4(x, y=None):
batch_size = fluid.layers.shape(x)
mean_res = fluid.layers.mean(x)
mean_res = paddle.mean(x)
if (x is not None and batch_size[0] > 1) or (y is not None
and mean_res.numpy()[0] > 0):
x = x + 1
......@@ -349,7 +349,7 @@ def if_with_class_var(x, y=None):
foo = Foo()
batch_size = fluid.layers.shape(x)
mean_res = fluid.layers.mean(x)
mean_res = paddle.mean(x)
if batch_size[0] > foo.a:
x = x + foo.b
......@@ -361,7 +361,7 @@ def if_with_class_var(x, y=None):
def if_tensor_case(x):
x = fluid.dygraph.to_variable(x)
mean = fluid.layers.mean(x)
mean = paddle.mean(x)
# It is equivalent to `if mean != 0`
if mean:
for i in range(0, 10):
......@@ -376,7 +376,7 @@ def if_tensor_case(x):
x += i
# join `and`/`or`
if fluid.layers.mean(x) + 1 and mean > 1 and x is not None or 2 > 1:
if paddle.mean(x) + 1 and mean > 1 and x is not None or 2 > 1:
x -= 1
# `not` statement
......
......@@ -19,6 +19,7 @@ import textwrap
from paddle.utils import gast
import inspect
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.dygraph_to_static.utils import ast_to_func
......@@ -59,7 +60,7 @@ class TestAST2Func(unittest.TestCase):
def func(x):
y = fluid.layers.relu(x)
loss = fluid.layers.mean(y)
loss = paddle.mean(y)
return loss
x_data = np.random.random([10, 16]).astype('float32')
......
......@@ -590,7 +590,7 @@ def val_bmn(model, args):
loss, tem_loss, pem_reg_loss, pem_cls_loss = bmn_loss_func(
pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, args)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
loss_data += [
avg_loss.numpy()[0],
......@@ -665,7 +665,7 @@ class TestTrain(unittest.TestCase):
loss, tem_loss, pem_reg_loss, pem_cls_loss = bmn_loss_func(
pred_bm, pred_start, pred_end, gt_iou_map, gt_start,
gt_end, args)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
avg_loss.backward()
adam.minimize(avg_loss)
......
......@@ -17,7 +17,7 @@ from __future__ import print_function
import unittest
import numpy as np
from collections import Counter
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.jit import declarative
......@@ -113,7 +113,7 @@ class TestCacheProgramWithOptimizer(unittest.TestCase):
def simple_func(x):
inputs = fluid.dygraph.to_variable(x)
mean = fluid.layers.mean(inputs)
mean = paddle.mean(inputs)
return mean
......
......@@ -37,7 +37,7 @@ np.random.seed(SEED)
# Use a decorator to test exception
@paddle.jit.to_static
def dyfunc_with_if(x_v):
if fluid.layers.mean(x_v).numpy()[0] > 5:
if paddle.mean(x_v).numpy()[0] > 5:
x_v = x_v - 1
else:
x_v = x_v + 1
......@@ -58,7 +58,7 @@ def nested_func(x_v):
@paddle.jit.to_static
def dyfunc_with_third_library_logging(x_v):
logging.info('test dyfunc_with_third_library_logging')
if fluid.layers.mean(x_v).numpy()[0] > 5:
if paddle.mean(x_v).numpy()[0] > 5:
x_v = x_v - 1
else:
x_v = x_v + 1
......
......@@ -33,7 +33,7 @@ def inner_func():
def func_error_in_compile_time(x):
x = fluid.dygraph.to_variable(x)
inner_func()
if fluid.layers.mean(x) < 0:
if paddle.mean(x) < 0:
x_v = x - 1
else:
x_v = x + 1
......@@ -78,7 +78,7 @@ class LayerErrorInCompiletime(fluid.dygraph.Layer):
def forward(self, x):
y = self._linear(x)
z = fluid.layers.fill_constant(shape=[1, 2], value=9, dtype="int")
out = fluid.layers.mean(y[z])
out = paddle.mean(y[z])
return out
......@@ -386,7 +386,7 @@ class TestJitSaveInCompiletime(TestErrorBase):
'y = self._linear(x)',
'z = fluid.layers.fill_constant(shape=[1, 2], value=9, dtype="int")',
'<--- HERE',
'out = fluid.layers.mean(y[z])',
'out = paddle.mean(y[z])',
'return out'
]
......
......@@ -16,7 +16,7 @@ from __future__ import print_function
import numpy as np
import unittest
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static import ProgramTranslator
......@@ -59,7 +59,7 @@ class Linear(fluid.dygraph.Layer):
@declarative
def forward(self, x):
pre = self.fc(x)
loss = fluid.layers.mean(pre)
loss = paddle.mean(pre)
return pre, loss
......
......@@ -15,6 +15,7 @@
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
import unittest
from paddle.fluid.dygraph import declarative
......@@ -23,7 +24,7 @@ from paddle.fluid.dygraph import declarative
@fluid.dygraph.declarative
def dygraph_decorated_func(x):
x = fluid.dygraph.to_variable(x)
if fluid.layers.mean(x) > 0:
if paddle.mean(x) > 0:
x_v = x - 1
else:
x_v = x + 1
......@@ -33,7 +34,7 @@ def dygraph_decorated_func(x):
@fluid.dygraph.declarative
def jit_decorated_func(x):
x = fluid.dygraph.to_variable(x)
if fluid.layers.mean(x) > 0:
if paddle.mean(x) > 0:
x_v = x - 1
else:
x_v = x + 1
......
......@@ -251,7 +251,7 @@ def relu(x):
def call_external_func(x, label=None):
if fluid.layers.mean(x) < 0:
if paddle.mean(x) < 0:
x_v = x - 1
else:
x_v = add_fn(x)
......@@ -274,7 +274,7 @@ class NetWithExternalFunc(fluid.dygraph.Layer):
@declarative
def forward(self, x, label=None):
if fluid.layers.mean(x) < 0:
if paddle.mean(x) < 0:
x_v = x - 1
else:
x_v = add_fn(x)
......
......@@ -403,7 +403,7 @@ class LexNet(fluid.dygraph.Layer):
crf_cost = self.linear_chain_crf(input=emission,
label=target,
length=length)
avg_cost = fluid.layers.mean(x=crf_cost)
avg_cost = paddle.mean(x=crf_cost)
crf_decode = self.crf_decoding(input=emission, length=length)
return avg_cost, crf_decode
......
......@@ -16,6 +16,7 @@ from __future__ import print_function
import numpy as np
import unittest
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import declarative
......@@ -25,7 +26,7 @@ def call_lambda_as_func(x):
x = fluid.dygraph.to_variable(x)
add_func = lambda x, y: x + y
mean_func = lambda x: fluid.layers.mean(x)
mean_func = lambda x: paddle.mean(x)
y = add_func(x, 1)
y = add_func(y, add_func(y, -1))
......@@ -38,7 +39,7 @@ def call_lambda_directly(x):
x = fluid.dygraph.to_variable(x)
y = (lambda x, y: x + y)(x, x)
out = (lambda x: fluid.layers.mean(x))(y)
out = (lambda x: paddle.mean(x))(y)
return out
......@@ -48,7 +49,7 @@ def call_lambda_in_func(x):
add_func = lambda x: x + 1
y = fluid.layers.mean((lambda x: fluid.layers.relu(x))(x))
y = paddle.mean((lambda x: fluid.layers.relu(x))(x))
out = add_func(y) if y > 1 and y < 2 else (lambda x: x**2)(y)
return out
......@@ -59,7 +60,7 @@ def call_lambda_with_ifExpr(x):
add_func = lambda x: x + 1
y = fluid.layers.mean(x)
y = paddle.mean(x)
out = add_func(y) if y or y < 2 else (lambda x: x**2)(y)
return out
......@@ -70,7 +71,7 @@ def call_lambda_with_ifExpr2(x):
add_func = lambda x: x + 1
y = fluid.layers.mean(x)
y = paddle.mean(x)
# NOTE: y is Variable, but z<2 is python bool value
z = 0
......
......@@ -119,7 +119,7 @@ class MNIST(fluid.dygraph.Layer):
if label is not None:
acc = fluid.layers.accuracy(input=x, label=label)
loss = fluid.layers.cross_entropy(x, label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return x, acc, avg_loss
else:
......
......@@ -479,7 +479,7 @@ def train_mobilenet(args, to_static):
softmax_out = fluid.layers.softmax(out, use_cudnn=False)
loss = fluid.layers.cross_entropy(input=softmax_out,
label=label)
avg_loss = fluid.layers.mean(x=loss)
avg_loss = paddle.mean(x=loss)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
t_start_back = time.time()
......
......@@ -33,7 +33,7 @@ def nested_input(x, y):
sub_res = z_elem[0] - z_elem[1]
mul_res = y[-1]['d']['da'] * y[-1]['d']['dc']
mean_func = fluid.layers.mean
mean_func = paddle.mean
out = mean_func(sub_res) + mean_func(sum_res) + mean_func(mul_res)
return out
......
......@@ -42,7 +42,7 @@ def simple_func(x, weight_numpy):
x = fluid.dygraph.to_variable(x)
w = fluid.dygraph.to_variable(weight_numpy)
y = fluid.layers.matmul(x, w)
z = fluid.layers.mean(y)
z = paddle.mean(y)
return z
......@@ -51,7 +51,7 @@ def decorated_simple_func(x, weight_numpy):
x = fluid.dygraph.to_variable(x)
w = fluid.dygraph.to_variable(weight_numpy)
y = fluid.layers.matmul(x, w)
z = fluid.layers.mean(y)
z = paddle.mean(y)
return z
......@@ -91,7 +91,7 @@ class StaticCode1():
return x_v
_jst.IfElse(
fluid.layers.mean(x_v)[0] > 5, true_fn_0, false_fn_0, get_args_0,
paddle.mean(x_v)[0] > 5, true_fn_0, false_fn_0, get_args_0,
set_args_0, ('x_v', ))
def get_args_1():
......@@ -148,7 +148,7 @@ class StaticCode2():
return x_v
_jst.IfElse(
fluid.layers.mean(x_v)[0] > 5, true_fn_2, false_fn_2, get_args_2,
paddle.mean(x_v)[0] > 5, true_fn_2, false_fn_2, get_args_2,
set_args_2, ('x_v', ))
def get_args_3():
......
......@@ -262,7 +262,7 @@ class ResNetHelper:
pred = resnet(img)
loss = fluid.layers.cross_entropy(input=pred, label=label)
avg_loss = fluid.layers.mean(x=loss)
avg_loss = paddle.mean(x=loss)
acc_top1 = fluid.layers.accuracy(input=pred,
label=label,
k=1)
......
......@@ -75,7 +75,7 @@ def train(to_static, build_strategy=None):
# precision problem, need to figure out the underlying reason.
# If we remove it, the loss between dygraph and dy2stat is exactly same.
loss = fluid.layers.cross_entropy(input=pred, label=label)
avg_loss = fluid.layers.mean(x=pred)
avg_loss = paddle.mean(x=pred)
acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=pred, label=label, k=5)
......
......@@ -77,7 +77,7 @@ def train(to_static, build_strategy=None):
level='O2'):
pred = resnet(img)
loss = fluid.layers.cross_entropy(input=pred, label=label)
avg_loss = fluid.layers.mean(x=pred)
avg_loss = paddle.mean(x=pred)
acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=pred, label=label, k=5)
......
......@@ -45,7 +45,7 @@ class SimpleFcLayer(fluid.dygraph.Layer):
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
out = fluid.layers.mean(z)
out = paddle.mean(z)
return out, y
......
......@@ -318,7 +318,7 @@ class SeResNeXt(fluid.dygraph.Layer):
softmax_out = fluid.layers.softmax(out, use_cudnn=False)
loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
avg_loss = fluid.layers.mean(x=loss)
avg_loss = paddle.mean(x=loss)
acc_top1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=softmax_out, label=label, k=5)
......
......@@ -97,7 +97,7 @@ class CNN(fluid.dygraph.Layer):
prediction = self._fc_prediction(fc_1)
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, prediction, acc
......@@ -141,7 +141,7 @@ class BOW(fluid.dygraph.Layer):
prediction = self._fc_prediction(fc_2)
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, prediction, acc
......@@ -189,7 +189,7 @@ class GRU(fluid.dygraph.Layer):
prediction = self._fc_prediction(fc_2)
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, prediction, acc
......@@ -247,7 +247,7 @@ class BiGRU(fluid.dygraph.Layer):
# TODO(Aurelius84): Uncomment the following codes when we support return variable-length vars.
# if label is not None:
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, prediction, acc
# else:
......
......@@ -303,7 +303,7 @@ def train(args, fake_data_reader, to_static):
loss = fluid.layers.cross_entropy(input=outputs,
label=labels,
ignore_index=-1)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
acc_top1 = fluid.layers.accuracy(input=outputs,
label=labels,
k=1)
......
......@@ -101,7 +101,7 @@ def net(batch_size=4, lr=0.01):
predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
return datas, avg_cost
......
......@@ -66,7 +66,7 @@ class TestFleetMetaOptimizer(unittest.TestCase):
act='softmax')
cost = paddle.fluid.layers.cross_entropy(input=prediction,
label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
strategy = paddle.distributed.fleet.DistributedStrategy()
return avg_cost, strategy
......@@ -101,7 +101,7 @@ class TestFleetMetaOptimizer(unittest.TestCase):
act='softmax')
cost = paddle.fluid.layers.cross_entropy(input=prediction,
label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
strategy = paddle.distributed.fleet.DistributedStrategy()
return avg_cost, strategy
......
......@@ -48,7 +48,7 @@ class TestBase(IPUOpTest):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
out = paddle.fluid.layers.mean(x)
out = paddle.mean(x)
self.fetch_list = [out.name]
def run_model(self, exec_mode):
......
......@@ -18,6 +18,7 @@ import unittest
import numpy as np
from inference_pass_test import InferencePassTest
from quant_dequant_test import QuantDequantTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PassVersionChecker
......@@ -54,7 +55,7 @@ class QuantDequantTensorRTSubgraphPassConvTest(QuantDequantTest):
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816])
result = fluid.layers.relu(cout)
loss = fluid.layers.cross_entropy(input=result, label=label_shape)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
......@@ -152,7 +153,7 @@ class DynamicShapeQuantDequantTensorRTSubgraphPassConvTest(QuantDequantTest):
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816])
result = fluid.layers.relu(cout)
loss = fluid.layers.cross_entropy(input=result, label=label_shape)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
......@@ -245,7 +246,7 @@ class QuantDequantTensorRTSubgraphPassConvTransposeTest(QuantDequantTest):
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816])
result = fluid.layers.relu(cout)
loss = fluid.layers.cross_entropy(input=result, label=label_shape)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
......
......@@ -18,6 +18,7 @@ import unittest
import numpy as np
from inference_pass_test import InferencePassTest
from quant_dequant_test import QuantDequantTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import AnalysisConfig
......@@ -40,7 +41,7 @@ class FCQuantDequantFusePassTRTDims3Cols1Test(QuantDequantTest):
act="relu")
result = fluid.layers.relu(fc_out)
loss = fluid.layers.cross_entropy(input=result, label=self.label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
......@@ -105,7 +106,7 @@ class FCQuantDequantFusePassTRTDims3Cols2Test(QuantDequantTest):
c_out = fluid.layers.reshape(fc_out, shape=[0, 784])
result = fluid.layers.relu(c_out)
loss = fluid.layers.cross_entropy(input=result, label=self.label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
......@@ -172,7 +173,7 @@ class FCQuantDequantFusePassTRTDims3Cols3Test(QuantDequantTest):
c_out = fluid.layers.reshape(fc_out, shape=[1, 1, 2744])
result = fluid.layers.relu(c_out)
loss = fluid.layers.cross_entropy(input=result, label=label_shape)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
......
......@@ -16,6 +16,7 @@ import unittest
import numpy as np
from inference_pass_test import InferencePassTest
from quant_dequant_test import QuantDequantTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PassVersionChecker
......@@ -44,7 +45,7 @@ class TensorRTMatMulQuantDequantDims3Test(QuantDequantTest):
act=None)
result = fluid.layers.relu(fc_out)
loss = fluid.layers.cross_entropy(input=result, label=self.label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
......@@ -136,7 +137,7 @@ class TensorRTMatMulQuantDequantDims4Test(QuantDequantTest):
act=None)
result = fluid.layers.relu(fc_out)
loss = fluid.layers.cross_entropy(input=result, label=self.label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
......@@ -227,7 +228,7 @@ class TensorRTMatMulQuantDequantDims3DynamicTest(QuantDequantTest):
act=None)
result = fluid.layers.relu(fc_out)
loss = fluid.layers.cross_entropy(input=result, label=self.label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
......
......@@ -20,7 +20,7 @@ import random
import unittest
import warnings
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.framework import Program, Block
......@@ -56,7 +56,7 @@ class PassTest(unittest.TestCase):
def append_gradients(self, outs):
with fluid.program_guard(self.main_program, self.startup_program):
loss = fluid.layers.mean(outs)
loss = paddle.mean(outs)
fluid.backward.append_backward(loss)
def check_output(self, startup_on_cpu=False, atol=1e-5):
......
......@@ -41,7 +41,7 @@ class TestQuantizationSubGraph(unittest.TestCase):
for _ in six.moves.xrange(num):
hidden = fluid.layers.fc(hidden, size=128, act='relu')
loss = fluid.layers.cross_entropy(input=hidden, label=label)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
return loss
main_program = Program()
......
......@@ -148,7 +148,7 @@ class TestMomentumV2(unittest.TestCase):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
rms_optimizer = paddle.optimizer.Momentum(learning_rate=0.1,
momentum=0.9)
......@@ -271,7 +271,7 @@ class TestMomentumOpWithDecayAPI(unittest.TestCase):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
learning_rate=0.1, momentum=0.9)
......@@ -591,7 +591,7 @@ class TestMultiTensorMomentumStatic(unittest.TestCase):
name='X',
dtype='float32')
hidden = paddle.static.nn.fc(x=data, size=10)
loss = paddle.fluid.layers.mean(hidden)
loss = paddle.mean(hidden)
optimizer.minimize(loss)
exe.run(startup_program)
if use_amp:
......
......@@ -107,7 +107,7 @@ class TestWhereAPI(unittest.TestCase):
x.stop_gradient = x_stop_gradient
y.stop_gradient = y_stop_gradient
result = paddle.where(cond, x, y)
append_backward(layers.mean(result))
append_backward(paddle.mean(result))
for use_mlu in [False, True]:
place = (paddle.device.MLUPlace(0)
if use_mlu else fluid.CPUPlace())
......
......@@ -117,7 +117,7 @@ class TestMomentumV2(unittest.TestCase):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
rms_optimizer = paddle.optimizer.Momentum(learning_rate=0.1,
momentum=0.9)
......@@ -243,7 +243,7 @@ class TestMomentumOpWithDecayAPI(unittest.TestCase):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
learning_rate=0.1, momentum=0.9)
......
......@@ -86,7 +86,7 @@ class TestSoftmaxNet(unittest.TestCase):
prob = fluid.layers.softmax(prediction, axis=1)
cost = fluid.layers.cross_entropy(input=prob, label=label)
loss = fluid.layers.mean(cost)
loss = paddle.mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
......
......@@ -105,7 +105,7 @@ class TestNPUWhereAPI(unittest.TestCase):
y.stop_gradient = y_stop_gradient
result = paddle.where(cond, x, y)
append_backward(fluid.layers.mean(result))
append_backward(paddle.mean(result))
exe = fluid.Executor(self.place)
exe.run(startup)
......
......@@ -90,7 +90,7 @@ class TestWhileOp(unittest.TestCase):
layers.array_write(result2, i=j, array=mem_array)
layers.less_than(x=j, y=array_len2, cond=cond2)
sum_result = layers.array_read(array=mem_array, i=j)
loss = layers.mean(sum_result)
loss = paddle.mean(sum_result)
return loss, sum_result
def test_simple_net(self):
......
......@@ -112,7 +112,7 @@ class MNIST(fluid.dygraph.Layer):
x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
cost = self._fc(x)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
return avg_loss
......
......@@ -335,7 +335,7 @@ class TestSeResNeXt(TestParallelDyGraphRunnerBase):
out = model(img)
softmax_out = fluid.layers.softmax(out, use_cudnn=False)
loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
avg_loss = fluid.layers.mean(x=loss)
avg_loss = paddle.mean(x=loss)
return avg_loss
......
......@@ -94,7 +94,7 @@ class TestSyncBatchNorm(TestParallelDyGraphRunnerBase):
out = model(img)
out = fluid.layers.mean(out)
out = paddle.mean(out)
return out
......
......@@ -104,7 +104,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
predict = cnn_model(images)
with fluid.device_guard("gpu:1"):
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
with fluid.device_guard("gpu:1"):
......
......@@ -104,7 +104,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
predict = cnn_model(images)
with fluid.device_guard("gpu:1"):
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
with fluid.device_guard("gpu:1"):
......
......@@ -98,7 +98,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
predict = cnn_model(images)
with fluid.device_guard("gpu:0"):
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
# Evaluator
with fluid.device_guard("gpu:0"):
......
......@@ -17,6 +17,7 @@ import paddle.fluid as fluid
fluid.core._set_eager_deletion_mode(-1, -1, False)
import paddle
import paddle.fluid.layers.ops as ops
from paddle.fluid.layers.learning_rate_scheduler import cosine_decay
from simple_nets import init_data
......@@ -172,7 +173,7 @@ def SE_ResNeXt50Small(use_feed):
# Classifier layer:
prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
return loss
......
......@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import numpy as np
......@@ -27,7 +28,7 @@ def simple_fc_net_with_inputs(img, label, class_num=10):
value=1.0)))
prediction = fluid.layers.fc(hidden, size=class_num, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
return loss
......@@ -51,7 +52,7 @@ def batchnorm_fc_with_inputs(img, label, class_num=10):
prediction = fluid.layers.fc(hidden, size=class_num, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
return loss
......@@ -87,7 +88,7 @@ def bow_net(use_feed,
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = paddle.mean(x=cost)
return avg_cost
......
......@@ -136,7 +136,7 @@ class TestAdadeltaV2(unittest.TestCase):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
rms_optimizer = paddle.optimizer.Adadelta(learning_rate=0.1)
rms_optimizer.minimize(avg_cost)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册