提交 597a58c3 编写于 作者: Y yangyaming

Add DetectionMAPEvaluator.

上级 c9d78710
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Evaluator.h"
#include "paddle/gserver/layers/DetectionUtil.h"
using std::map;
using std::vector;
using std::pair;
using std::make_pair;
namespace paddle {
/**
* @brief detection map Evaluator
*
* The config file api is detection_map_evaluator.
*/
class DetectionMAPEvaluator : public Evaluator {
public:
DetectionMAPEvaluator()
: evaluateDifficult_(false), cpuOutput_(nullptr), cpuLabel_(nullptr) {}
virtual void start() {
Evaluator::start();
allTruePos_.clear();
allFalsePos_.clear();
numPos_.clear();
}
virtual real evalImp(std::vector<Argument>& arguments) {
overlapThreshold_ = config_.overlap_threshold();
backgroundId_ = config_.background_id();
evaluateDifficult_ = config_.evaluate_difficult();
apType_ = config_.ap_type();
MatrixPtr detectTmpValue = arguments[0].value;
Matrix::resizeOrCreate(cpuOutput_,
detectTmpValue->getHeight(),
detectTmpValue->getWidth(),
false,
false);
MatrixPtr labelTmpValue = arguments[1].value;
Matrix::resizeOrCreate(cpuLabel_,
labelTmpValue->getHeight(),
labelTmpValue->getWidth(),
false,
false);
cpuOutput_->copyFrom(*detectTmpValue);
cpuLabel_->copyFrom(*labelTmpValue);
Argument label = arguments[1];
const int* labelIndex = label.sequenceStartPositions->getData(false);
size_t batchSize = label.getNumSequences();
vector<map<size_t, vector<NormalizedBBox>>> allGTBBoxes;
vector<map<size_t, vector<pair<real, NormalizedBBox>>>> allDetectBBoxes;
for (size_t n = 0; n < batchSize; ++n) {
map<size_t, vector<NormalizedBBox>> bboxes;
for (int i = labelIndex[n]; i < labelIndex[n + 1]; ++i) {
vector<NormalizedBBox> bbox;
getBBoxFromLabelData(cpuLabel_->getData() + i * 6, 1, bbox);
int c = cpuLabel_->getData()[i * 6];
bboxes[c].push_back(bbox[0]);
}
allGTBBoxes.push_back(bboxes);
}
size_t imgId = 0;
for (size_t n = 0; n < cpuOutput_->getHeight();) {
map<size_t, vector<pair<real, NormalizedBBox>>> bboxes;
while (cpuOutput_->getData()[n * 7] == imgId &&
n < cpuOutput_->getHeight()) {
vector<real> label;
vector<real> score;
vector<NormalizedBBox> bbox;
getBBoxFromDetectData(
cpuOutput_->getData() + n * 7, 1, label, score, bbox);
bboxes[label[0]].push_back(make_pair(score[0], bbox[0]));
++n;
}
++imgId;
if (imgId > batchSize) break;
allDetectBBoxes.push_back(bboxes);
}
for (size_t n = 0; n < batchSize; ++n) {
for (map<size_t, vector<NormalizedBBox>>::iterator it =
allGTBBoxes[n].begin();
it != allGTBBoxes[n].end();
++it) {
size_t count = 0;
if (evaluateDifficult_) {
count = it->second.size();
} else {
for (size_t i = 0; i < it->second.size(); ++i)
if (!(it->second[i].isDifficult)) ++count;
}
if (numPos_.find(it->first) == numPos_.end() && count != 0) {
numPos_[it->first] = count;
} else {
numPos_[it->first] += count;
}
}
}
// calcTFPos
calcTFPos(
batchSize, allGTBBoxes, allDetectBBoxes, &allTruePos_, &allFalsePos_);
return 0;
}
virtual void printStats(std::ostream& os) const {
real mAP = calcMAP();
os << "Detection mAP=" << mAP * 100;
}
virtual void distributeEval(ParameterClient2* client) {
LOG(FATAL) << "Distribute detection evaluation not implemented.";
}
protected:
void calcTFPos(const size_t batchSize,
const vector<map<size_t, vector<NormalizedBBox>>>& allGTBBoxes,
const vector<map<size_t, vector<pair<real, NormalizedBBox>>>>&
allDetectBBoxes,
map<size_t, vector<pair<real, size_t>>>* allTruePos,
map<size_t, vector<pair<real, size_t>>>* allFalsePos) {
for (size_t n = 0; n < allDetectBBoxes.size(); ++n) {
if (allGTBBoxes[n].size() == 0) {
for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
it = allDetectBBoxes[n].begin();
it != allDetectBBoxes[n].end();
++it) {
size_t label = it->first;
for (size_t i = 0; i < it->second.size(); ++i) {
(*allTruePos)[label].push_back(make_pair(it->second[i].first, 0));
(*allFalsePos)[label].push_back(make_pair(it->second[i].first, 1));
}
}
} else {
for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
it = allDetectBBoxes[n].begin();
it != allDetectBBoxes[n].end();
++it) {
size_t label = it->first;
vector<pair<real, NormalizedBBox>> predBBoxes = it->second;
if (allGTBBoxes[n].find(label) == allGTBBoxes[n].end()) {
for (size_t i = 0; i < predBBoxes.size(); ++i) {
(*allTruePos)[label].push_back(make_pair(predBBoxes[i].first, 0));
(*allFalsePos)[label].push_back(
make_pair(predBBoxes[i].first, 1));
}
} else {
vector<NormalizedBBox> gtBBoxes =
allGTBBoxes[n].find(label)->second;
vector<bool> visited(gtBBoxes.size(), false);
// Sort detections in descend order based on scores
std::sort(predBBoxes.begin(),
predBBoxes.end(),
sortScorePairDescend<NormalizedBBox>);
for (size_t i = 0; i < predBBoxes.size(); ++i) {
real maxOverlap = -1.0;
size_t maxIdx = 0;
for (size_t j = 0; j < gtBBoxes.size(); ++j) {
real overlap =
jaccardOverlap(predBBoxes[i].second, gtBBoxes[j]);
if (overlap > maxOverlap) {
maxOverlap = overlap;
maxIdx = j;
}
}
if (maxOverlap > overlapThreshold_) {
if (evaluateDifficult_ ||
(!evaluateDifficult_ && !gtBBoxes[maxIdx].isDifficult)) {
if (!visited[maxIdx]) {
(*allTruePos)[label].push_back(
make_pair(predBBoxes[i].first, 1));
(*allFalsePos)[label].push_back(
make_pair(predBBoxes[i].first, 0));
visited[maxIdx] = true;
} else {
(*allTruePos)[label].push_back(
make_pair(predBBoxes[i].first, 0));
(*allFalsePos)[label].push_back(
make_pair(predBBoxes[i].first, 1));
}
}
} else {
(*allTruePos)[label].push_back(
make_pair(predBBoxes[i].first, 0));
(*allFalsePos)[label].push_back(
make_pair(predBBoxes[i].first, 1));
}
}
}
}
}
}
}
real calcMAP() const {
real mAP = 0.0;
size_t count = 0;
for (map<size_t, size_t>::const_iterator it = numPos_.begin();
it != numPos_.end();
++it) {
size_t label = it->first;
size_t labelNumPos = it->second;
if (labelNumPos == 0 || allTruePos_.find(label) == allTruePos_.end())
continue;
vector<pair<real, size_t>> labelTruePos = allTruePos_.find(label)->second;
vector<pair<real, size_t>> labelFalsePos =
allFalsePos_.find(label)->second;
// Compute average precision.
vector<size_t> tpCumSum;
getAccumulation(labelTruePos, &tpCumSum);
vector<size_t> fpCumSum;
getAccumulation(labelFalsePos, &fpCumSum);
std::vector<real> precision, recall;
size_t num = tpCumSum.size();
// Compute Precision.
for (size_t i = 0; i < num; ++i) {
CHECK_LE(tpCumSum[i], labelNumPos);
precision.push_back(static_cast<real>(tpCumSum[i]) /
static_cast<real>(tpCumSum[i] + fpCumSum[i]));
recall.push_back(static_cast<real>(tpCumSum[i]) / labelNumPos);
}
// VOC2007 style
if (apType_ == "11point") {
vector<real> maxPrecisions(11, 0.0);
int startIdx = num - 1;
for (int j = 10; j >= 0; --j)
for (int i = startIdx; i >= 0; --i) {
if (recall[i] < j / 10.) {
startIdx = i;
if (j > 0) maxPrecisions[j - 1] = maxPrecisions[j];
break;
} else {
if (maxPrecisions[j] < precision[i])
maxPrecisions[j] = precision[i];
}
}
for (int j = 10; j >= 0; --j) mAP += maxPrecisions[j] / 11;
++count;
} else if (apType_ == "Integral") {
// Nature integral
real averagePrecisions = 0.;
real prevRecall = 0.;
for (size_t i = 0; i < num; ++i) {
if (fabs(recall[i] - prevRecall) > 1e-6)
averagePrecisions += precision[i] * fabs(recall[i] - prevRecall);
prevRecall = recall[i];
}
mAP += averagePrecisions;
++count;
} else {
LOG(FATAL) << "Unkown ap version: " << apType_;
}
}
if (count != 0) mAP /= count;
return mAP;
}
void getAccumulation(vector<pair<real, size_t>> inPairs,
vector<size_t>* accuVec) const {
std::stable_sort(
inPairs.begin(), inPairs.end(), sortScorePairDescend<size_t>);
accuVec->clear();
size_t sum = 0;
for (size_t i = 0; i < inPairs.size(); ++i) {
sum += inPairs[i].second;
accuVec->push_back(sum);
}
}
std::string getTypeImpl() const { return "detection_map"; }
real getValueImpl() const { return calcMAP() * 100; }
private:
real overlapThreshold_;
bool evaluateDifficult_;
size_t backgroundId_;
std::string apType_;
MatrixPtr cpuOutput_;
MatrixPtr cpuLabel_;
map<size_t, size_t> numPos_;
map<size_t, vector<pair<real, size_t>>> allTruePos_;
map<size_t, vector<pair<real, size_t>>> allFalsePos_;
};
REGISTER_EVALUATOR(detection_map, DetectionMAPEvaluator);
} // namespace paddle
......@@ -138,6 +138,23 @@ void testEvaluatorAll(TestConfig testConf,
testEvaluator(testConf, testEvaluatorName, batchSize, false);
}
TEST(Evaluator, detection_map) {
TestConfig config;
config.evaluatorConfig.set_type("detection_map");
config.evaluatorConfig.set_overlap_threshold(0.5);
config.evaluatorConfig.set_background_id(0);
config.evaluatorConfig.set_ap_type("Integral");
config.evaluatorConfig.set_evaluate_difficult(0);
config.inputDefs.push_back({INPUT_DATA, "output", 7});
config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "label", 6});
config.evaluatorConfig.set_evaluate_difficult(false);
testEvaluatorAll(config, "detection_map", 100);
config.evaluatorConfig.set_evaluate_difficult(true);
testEvaluatorAll(config, "detection_map", 100);
}
TEST(Evaluator, classification_error) {
TestConfig config;
config.evaluatorConfig.set_type("classification_error");
......
......@@ -489,6 +489,15 @@ message EvaluatorConfig {
// Used by ClassificationErrorEvaluator
// top # classification error
optional int32 top_k = 13 [default = 1];
// Used by DetectionMAPEvaluator
optional double overlap_threshold = 14 [default = 0.5];
optional int32 background_id = 15 [default = 0];
optional bool evaluate_difficult = 16 [default = false];
optional string ap_type = 17 [default = "11point"];
}
message LinkConfig {
......
......@@ -1300,8 +1300,7 @@ def parse_maxout(maxout, input_layer_name, maxout_conf):
# Define an evaluator
@config_func
def Evaluator(
name,
def Evaluator(name,
type,
inputs,
chunk_scheme=None,
......@@ -1313,7 +1312,11 @@ def Evaluator(
num_results=None,
top_k=None,
delimited=None,
excluded_chunk_types=None, ):
excluded_chunk_types=None,
overlap_threshold=None,
background_id=None,
evaluate_difficult=None,
ap_type=None):
evaluator = g_config.model_config.evaluators.add()
evaluator.type = type
evaluator.name = MakeLayerNameInSubmodel(name)
......@@ -1347,6 +1350,18 @@ def Evaluator(
if excluded_chunk_types:
evaluator.excluded_chunk_types.extend(excluded_chunk_types)
if overlap_threshold is not None:
evaluator.overlap_threshold = overlap_threshold
if background_id is not None:
evaluator.background_id = background_id
if evaluate_difficult is not None:
evaluator.evaluate_difficult = evaluate_difficult
if ap_type is not None:
evaluator.ap_type = ap_type
class LayerBase(object):
def __init__(
......
......@@ -21,7 +21,8 @@ __all__ = [
"chunk_evaluator", "sum_evaluator", "column_sum_evaluator",
"value_printer_evaluator", "gradient_printer_evaluator",
"maxid_printer_evaluator", "maxframe_printer_evaluator",
"seqtext_printer_evaluator", "classification_error_printer_evaluator"
"seqtext_printer_evaluator", "classification_error_printer_evaluator",
"detection_map_evaluator"
]
......@@ -31,10 +32,11 @@ class EvaluatorAttribute(object):
FOR_RANK = 1 << 2
FOR_PRINT = 1 << 3
FOR_UTILS = 1 << 4
FOR_DETECTION = 1 << 5
KEYS = [
"for_classification", "for_regression", "for_rank", "for_print",
"for_utils"
"for_utils", "for_detection"
]
@staticmethod
......@@ -57,8 +59,7 @@ def evaluator(*attrs):
return impl
def evaluator_base(
input,
def evaluator_base(input,
type,
label=None,
weight=None,
......@@ -72,7 +73,11 @@ def evaluator_base(
num_results=None,
delimited=None,
top_k=None,
excluded_chunk_types=None, ):
excluded_chunk_types=None,
overlap_threshold=None,
background_id=None,
evaluate_difficult=None,
ap_type=None):
"""
Evaluator will evaluate the network status while training/testing.
......@@ -107,6 +112,14 @@ def evaluator_base(
:type weight: LayerOutput.
:param top_k: number k in top-k error rate
:type top_k: int
:param overlap_threshold: In detection tasks to filter detection results
:type overlap_threshold: float
:param background_id: Identifier of background class
:type background_id: int
:param evaluate_difficult: Whether to evaluate difficult objects
:type evaluate_difficult: bool
:param ap_type: How to calculate average persicion
:type ap_type: str
"""
# inputs type assertions.
assert classification_threshold is None or isinstance(
......@@ -136,7 +149,61 @@ def evaluator_base(
delimited=delimited,
num_results=num_results,
top_k=top_k,
excluded_chunk_types=excluded_chunk_types, )
excluded_chunk_types=excluded_chunk_types,
overlap_threshold=overlap_threshold,
background_id=background_id,
evaluate_difficult=evaluate_difficult,
ap_type=ap_type)
@evaluator(EvaluatorAttribute.FOR_DETECTION)
@wrap_name_default()
def detection_map_evaluator(input,
label,
overlap_threshold=0.5,
background_id=0,
evaluate_difficult=False,
ap_type="11point",
name=None):
"""
Detection mAP Evaluator. It will print mean Average Precision for detection.
The detection mAP Evaluator according to the detection_output's output count
the true positive and the false positive bbox and integral them to get the
mAP.
The simple usage is:
.. code-block:: python
eval = detection_map_evaluator(input=det_output,label=lbl)
:param input: Input layer.
:type input: LayerOutput
:param label: Label layer.
:type label: LayerOutput
:param overlap_threshold: The bbox overlap threshold of a true positive.
:type overlap_threshold: float
:param background_id: The background class index.
:type background_id: int
:param evaluate_difficult: Wether evaluate a difficult ground truth.
:type evaluate_difficult: bool
"""
if not isinstance(input, list):
input = [input]
if label:
input.append(label)
evaluator_base(
name=name,
type="detection_map",
input=input,
label=label,
overlap_threshold=overlap_threshold,
background_id=background_id,
evaluate_difficult=evaluate_difficult,
ap_type=ap_type)
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册