提交 576176d4 编写于 作者: Y Yu Yang

Remove typo in documentation.

上级 88b7ed8f
......@@ -174,12 +174,12 @@ input_types
+++++++++++
PaddlePaddle has four data types, and three sequence types.
The four data types are:
The four data types are:
* :code:`dense_vector`: dense float vector.
* :code:`sparse_binary_vector`: sparse binary vector, most of the value is 0, and
the non zero elements are fixed to 1.
* :code:`sparse_float_vector`: sparse float vector, most of the value is 0, and some
* :code:`sparse_vector`: sparse float vector, most of the value is 0, and some
non zero elements can be any float value. They are given by the user.
* :code:`integer`: an integer scalar, that is especially used for label or word index.
......@@ -200,7 +200,7 @@ in the above table.
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| sparse_binary_vector | [i, i, ...] | [[i, ...], [i, ...], ...] | [[[i, ...], ...], [[i, ...], ...],...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| sparse_float_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] |
| sparse_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| integer_value | i | [i, i, ...] | [[i, ...], [i, ...], ...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
......@@ -227,7 +227,7 @@ Its parameters lists as follows:
* :code:`is_train` is a bool parameter that indicates the DataProvider is used in
training or testing.
* :code:`file_list` is the list of all files.
* User-defined parameters args can be set in training configuration.
Note, PaddlePaddle reserves the right to add pre-defined parameter, so please
......
......@@ -7,7 +7,7 @@
## API Reference
* [Model Config Interface](api/trainer_config_helpers/index.md)
* [Model Config Interface](api/trainer_config_helpers/index.rst)
## Command Line Argument
......
......@@ -53,7 +53,7 @@ process函数调用多次 :code:`yield` 即可。 :code:`yield` 是Python的一
.. literalinclude:: mnist_config.py
这里说明了训练数据是 'train.list',而没有测试数据。引用的DataProvider是 'mnist_provider'
这里说明了训练数据是 'train.list',而没有测试数据。引用的DataProvider是 'mnist_provider'
这个模块中的 'process' 函数。
同时,根据模型配置文件中 :code:`data_layer` 的名字,用户也可以显式指定返回的数据对应关系。例如:
......@@ -152,7 +152,7 @@ PaddlePaddle的数据包括四种主要类型,和三种序列模式。其中
* dense_vector 表示稠密的浮点数向量。
* sparse_binary_vector 表示稀疏的零一向量,即大部分值为0,有值的位置只能取1
* sparse_float_vector 表示稀疏的向量,即大部分值为0,有值的部分可以是任何浮点数
* sparse_vector 表示稀疏的向量,即大部分值为0,有值的部分可以是任何浮点数
* integer 表示整数标签。
而三种序列模式为
......@@ -170,7 +170,7 @@ PaddlePaddle的数据包括四种主要类型,和三种序列模式。其中
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| sparse_binary_vector | [i, i, ...] | [[i, ...], [i, ...], ...] | [[[i, ...], ...], [[i, ...], ...],...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| sparse_float_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] |
| sparse_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| integer_value | i | [i, i, ...] | [[i, ...], [i, ...], ...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
......@@ -202,7 +202,7 @@ DataProvider提供了两种简单的Cache策略。他们是
* CacheType.NO_CACHE 不缓存任何数据,每次都会从python端读取数据
* CacheType.CACHE_PASS_IN_MEM 第一个pass会从python端读取数据,剩下的pass会直接从内存里
读取数据。
读取数据。
注意事项
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册