diff --git a/doc/ui/data_provider/pydataprovider2.rst b/doc/ui/data_provider/pydataprovider2.rst index e105d3be308705d228c0b188e15742a0f7325ab6..fcf230522f6999e726ccfd57bb8208ebba075c52 100644 --- a/doc/ui/data_provider/pydataprovider2.rst +++ b/doc/ui/data_provider/pydataprovider2.rst @@ -174,12 +174,12 @@ input_types +++++++++++ PaddlePaddle has four data types, and three sequence types. -The four data types are: +The four data types are: * :code:`dense_vector`: dense float vector. * :code:`sparse_binary_vector`: sparse binary vector, most of the value is 0, and the non zero elements are fixed to 1. -* :code:`sparse_float_vector`: sparse float vector, most of the value is 0, and some +* :code:`sparse_vector`: sparse float vector, most of the value is 0, and some non zero elements can be any float value. They are given by the user. * :code:`integer`: an integer scalar, that is especially used for label or word index. @@ -200,7 +200,7 @@ in the above table. +----------------------+---------------------+-----------------------------------+------------------------------------------------+ | sparse_binary_vector | [i, i, ...] | [[i, ...], [i, ...], ...] | [[[i, ...], ...], [[i, ...], ...],...] | +----------------------+---------------------+-----------------------------------+------------------------------------------------+ -| sparse_float_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] | +| sparse_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] | +----------------------+---------------------+-----------------------------------+------------------------------------------------+ | integer_value | i | [i, i, ...] | [[i, ...], [i, ...], ...] | +----------------------+---------------------+-----------------------------------+------------------------------------------------+ @@ -227,7 +227,7 @@ Its parameters lists as follows: * :code:`is_train` is a bool parameter that indicates the DataProvider is used in training or testing. * :code:`file_list` is the list of all files. - + * User-defined parameters args can be set in training configuration. Note, PaddlePaddle reserves the right to add pre-defined parameter, so please diff --git a/doc/ui/index.md b/doc/ui/index.md index 9c1ba27bdc14fa9ab762ffb97424a8a5946808f9..5aa051b4e9f6d1087dc8ba31d4af68d846b3fba1 100644 --- a/doc/ui/index.md +++ b/doc/ui/index.md @@ -7,7 +7,7 @@ ## API Reference -* [Model Config Interface](api/trainer_config_helpers/index.md) +* [Model Config Interface](api/trainer_config_helpers/index.rst) ## Command Line Argument diff --git a/doc_cn/ui/data_provider/pydataprovider2.rst b/doc_cn/ui/data_provider/pydataprovider2.rst index 80b40084d8f5037a76df0b3e01ed5742d8476bd0..34db4a97d99b484a1751fea51535072998e1ee8d 100644 --- a/doc_cn/ui/data_provider/pydataprovider2.rst +++ b/doc_cn/ui/data_provider/pydataprovider2.rst @@ -53,7 +53,7 @@ process函数调用多次 :code:`yield` 即可。 :code:`yield` 是Python的一 .. literalinclude:: mnist_config.py -这里说明了训练数据是 'train.list',而没有测试数据。引用的DataProvider是 'mnist_provider' +这里说明了训练数据是 'train.list',而没有测试数据。引用的DataProvider是 'mnist_provider' 这个模块中的 'process' 函数。 同时,根据模型配置文件中 :code:`data_layer` 的名字,用户也可以显式指定返回的数据对应关系。例如: @@ -152,7 +152,7 @@ PaddlePaddle的数据包括四种主要类型,和三种序列模式。其中 * dense_vector 表示稠密的浮点数向量。 * sparse_binary_vector 表示稀疏的零一向量,即大部分值为0,有值的位置只能取1 -* sparse_float_vector 表示稀疏的向量,即大部分值为0,有值的部分可以是任何浮点数 +* sparse_vector 表示稀疏的向量,即大部分值为0,有值的部分可以是任何浮点数 * integer 表示整数标签。 而三种序列模式为 @@ -170,7 +170,7 @@ PaddlePaddle的数据包括四种主要类型,和三种序列模式。其中 +----------------------+---------------------+-----------------------------------+------------------------------------------------+ | sparse_binary_vector | [i, i, ...] | [[i, ...], [i, ...], ...] | [[[i, ...], ...], [[i, ...], ...],...] | +----------------------+---------------------+-----------------------------------+------------------------------------------------+ -| sparse_float_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] | +| sparse_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] | +----------------------+---------------------+-----------------------------------+------------------------------------------------+ | integer_value | i | [i, i, ...] | [[i, ...], [i, ...], ...] | +----------------------+---------------------+-----------------------------------+------------------------------------------------+ @@ -202,7 +202,7 @@ DataProvider提供了两种简单的Cache策略。他们是 * CacheType.NO_CACHE 不缓存任何数据,每次都会从python端读取数据 * CacheType.CACHE_PASS_IN_MEM 第一个pass会从python端读取数据,剩下的pass会直接从内存里 - 读取数据。 + 读取数据。 注意事项