Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
4f46a98f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4f46a98f
编写于
6月 07, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
stash
上级
3ff9ba0e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
46 addition
and
6 deletion
+46
-6
paddle/fluid/operators/crop_op.cc
paddle/fluid/operators/crop_op.cc
+18
-1
paddle/fluid/operators/crop_op.h
paddle/fluid/operators/crop_op.h
+28
-5
未找到文件。
paddle/fluid/operators/crop_op.cc
浏览文件 @
4f46a98f
...
...
@@ -60,13 +60,19 @@ class CropOpMaker : public framework::OpProtoAndCheckerMaker {
"The input used as reference for cropping, "
"which is of the same dimensions as X."
)
.
AsDispensable
();
AddInput
(
"Offsets"
,
"The input used to describe offsets in runtime, which is a "
"1-D vector whose size equals to the rank of input 'X'. The "
"elements data type must be int."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"The output of crop op, "
"which is of the same dimensions as X."
);
AddAttr
<
std
::
vector
<
int
>>
(
"offsets"
,
"A list<int> describing offsets to be cropped. "
"The size of offsets list should be the same as "
"the dimension size of input X."
);
"the dimension size of input X."
)
.
SetDefault
(
std
::
vector
<
int
>
());
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"A list<int> describing the shape of output. "
"The size of shape list should be the same as "
...
...
@@ -77,6 +83,17 @@ Crop Operator.
Crop input into output, as specified by offsets and shape.
There are two ways to set the offsets:
1. In runtime: Using the input 'Offsets', which is a Vairbale and can be
output of other operators. This way is suitable for
dynamic offsets.
2. In network configuration: Using the attribute 'offsets', which will be
set in Python configure script. This way is
suitable for fixed offsets.
You CANNOT use these two ways at the same time. An exception will be raised
if input 'Offset' is configured and meanwhile the attribute 'offsets' is
not empty.
There are two ways to set shape:
1. reference input: crop input X into the same shape as reference input.
The dimension of reference input should
...
...
paddle/fluid/operators/crop_op.h
浏览文件 @
4f46a98f
...
...
@@ -27,6 +27,32 @@ template <typename T, size_t D, int MajorType = Eigen::RowMajor,
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
framework
::
Tensor
;
static
std
::
vector
<
int
>
GetOffsets
(
const
framework
::
ExecutionContext
&
ctx
)
{
std
::
vector
<
int
>
res
;
int
rank
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
if
(
ctx
.
HasInput
(
"Offsets"
))
{
PADDLE_ENFORCE
(
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"offsets"
).
empty
(),
"Input 'Offsets' and attribute 'offsets' should not be used "
"at the same time."
);
const
auto
*
offsets_tensor
=
ctx
.
Input
<
Tensor
>
(
"Offsets"
);
PADDLE_ENFORCE_EQ
(
offsets_tensor
->
dims
().
size
(),
1
);
PADDLE_ENFORCE_EQ
(
rank
,
offsets_tensor
->
dims
()[
0
],
"Offsets size should be equal to dimension size of input tensor."
);
const
int
*
offsets_data
=
offsets_tensor
->
data
<
int
>
();
res
.
resize
(
rank
);
for
(
size_t
i
=
0
;
i
<
rank
;
++
i
)
{
res
[
i
]
=
offsets_data
[
i
];
}
}
else
{
res
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"offsets"
);
PADDLE_ENFORCE_EQ
(
rank
,
res
.
size
(),
"Offsets size should be equal to dimension size of input tensor."
);
}
return
res
;
}
template
<
typename
T
>
class
CropKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -37,10 +63,7 @@ class CropKernel : public framework::OpKernel<T> {
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_stride
=
framework
::
stride
(
x
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
auto
offsets
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"offsets"
);
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
static_cast
<
int64_t
>
(
offsets
.
size
()),
"Offsets size should be equal to dimension size of input tensor."
);
auto
offsets
=
GetOffsets
(
context
);
int64_t
offset
=
0
;
for
(
size_t
i
=
0
;
i
<
offsets
.
size
();
++
i
)
{
offset
+=
(
x_stride
[
i
]
*
offsets
[
i
]);
...
...
@@ -56,7 +79,7 @@ void CropGradFunction(const framework::ExecutionContext& context) {
if
(
d_x
!=
nullptr
)
{
auto
*
d_out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
offsets
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"offsets"
);
auto
offsets
=
GetOffsets
(
context
);
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
paddings
[
i
].
first
=
offsets
[
i
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录