diff --git a/paddle/fluid/operators/crop_op.cc b/paddle/fluid/operators/crop_op.cc index 669b3bbe9df4cae1aa381184092dfa51157ab6a3..b5b31c7ce0cc62aa8c85bbb8e625645528cf71c2 100644 --- a/paddle/fluid/operators/crop_op.cc +++ b/paddle/fluid/operators/crop_op.cc @@ -60,13 +60,19 @@ class CropOpMaker : public framework::OpProtoAndCheckerMaker { "The input used as reference for cropping, " "which is of the same dimensions as X.") .AsDispensable(); + AddInput("Offsets", + "The input used to describe offsets in runtime, which is a " + "1-D vector whose size equals to the rank of input 'X'. The " + "elements data type must be int.") + .AsDispensable(); AddOutput("Out", "The output of crop op, " "which is of the same dimensions as X."); AddAttr>("offsets", "A list describing offsets to be cropped. " "The size of offsets list should be the same as " - "the dimension size of input X."); + "the dimension size of input X.") + .SetDefault(std::vector()); AddAttr>("shape", "A list describing the shape of output. " "The size of shape list should be the same as " @@ -77,6 +83,17 @@ Crop Operator. Crop input into output, as specified by offsets and shape. +There are two ways to set the offsets: +1. In runtime: Using the input 'Offsets', which is a Vairbale and can be + output of other operators. This way is suitable for + dynamic offsets. +2. In network configuration: Using the attribute 'offsets', which will be + set in Python configure script. This way is + suitable for fixed offsets. +You CANNOT use these two ways at the same time. An exception will be raised +if input 'Offset' is configured and meanwhile the attribute 'offsets' is +not empty. + There are two ways to set shape: 1. reference input: crop input X into the same shape as reference input. The dimension of reference input should diff --git a/paddle/fluid/operators/crop_op.h b/paddle/fluid/operators/crop_op.h index f05c2e23284e3a24cf48442996f671ec6084c391..d8e9f086cc9be67f6dd95ec73a3562b8c146ce17 100644 --- a/paddle/fluid/operators/crop_op.h +++ b/paddle/fluid/operators/crop_op.h @@ -27,6 +27,32 @@ template ; using framework::Tensor; +static std::vector GetOffsets(const framework::ExecutionContext& ctx) { + std::vector res; + int rank = ctx.Input("X")->dims().size(); + if (ctx.HasInput("Offsets")) { + PADDLE_ENFORCE(ctx.Attr>("offsets").empty(), + "Input 'Offsets' and attribute 'offsets' should not be used " + "at the same time."); + const auto* offsets_tensor = ctx.Input("Offsets"); + PADDLE_ENFORCE_EQ(offsets_tensor->dims().size(), 1); + PADDLE_ENFORCE_EQ( + rank, offsets_tensor->dims()[0], + "Offsets size should be equal to dimension size of input tensor."); + const int* offsets_data = offsets_tensor->data(); + res.resize(rank); + for (size_t i = 0; i < rank; ++i) { + res[i] = offsets_data[i]; + } + } else { + res = ctx.Attr>("offsets"); + PADDLE_ENFORCE_EQ( + rank, res.size(), + "Offsets size should be equal to dimension size of input tensor."); + } + return res; +} + template class CropKernel : public framework::OpKernel { public: @@ -37,10 +63,7 @@ class CropKernel : public framework::OpKernel { T* out_data = out->mutable_data(context.GetPlace()); auto x_stride = framework::stride(x->dims()); auto out_stride = framework::stride(out->dims()); - auto offsets = context.Attr>("offsets"); - PADDLE_ENFORCE_EQ( - x->dims().size(), static_cast(offsets.size()), - "Offsets size should be equal to dimension size of input tensor."); + auto offsets = GetOffsets(context); int64_t offset = 0; for (size_t i = 0; i < offsets.size(); ++i) { offset += (x_stride[i] * offsets[i]); @@ -56,7 +79,7 @@ void CropGradFunction(const framework::ExecutionContext& context) { if (d_x != nullptr) { auto* d_out = context.Input(framework::GradVarName("Out")); d_x->mutable_data(context.GetPlace()); - auto offsets = context.Attr>("offsets"); + auto offsets = GetOffsets(context); Eigen::array, D> paddings; for (size_t i = 0; i < D; ++i) { paddings[i].first = offsets[i];