未验证 提交 b68e36d6 编写于 作者: Q Qi Li 提交者: GitHub

[NPU] add clip and clip_grad on NPU, test=develop (#34429)

* [NPU] add clip and clip_grad on NPU, test=develop

* address review comments, test=develop

* update, test=develop
上级 5571c98f
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class ClipNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
auto min_tensor = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min") : nullptr;
auto max_tensor = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max") : nullptr;
Tensor min_tensor_temp(x->type());
Tensor max_tensor_temp(x->type());
if (min_tensor == nullptr) {
auto min_value = static_cast<T>(ctx.Attr<float>("min"));
min_tensor_temp.mutable_data<T>({1}, ctx.GetPlace());
FillNpuTensorWithConstant<T>(&min_tensor_temp, min_value);
min_tensor = &min_tensor_temp;
}
if (max_tensor == nullptr) {
auto max_value = static_cast<T>(ctx.Attr<float>("max"));
max_tensor_temp.mutable_data<T>({1}, ctx.GetPlace());
FillNpuTensorWithConstant<T>(&max_tensor_temp, max_value);
max_tensor = &max_tensor_temp;
}
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner =
NpuOpRunner("ClipByValue", {*x, *min_tensor, *max_tensor}, {*out}, {});
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class ClipGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
dx->mutable_data<T>(ctx.GetPlace());
auto* min_tensor = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min") : nullptr;
auto* max_tensor = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max") : nullptr;
auto min_val = ctx.Attr<float>("min");
if (min_tensor) {
Tensor min_data;
framework::TensorCopy(
*min_tensor, platform::CPUPlace(),
ctx.template device_context<platform::DeviceContext>(), &min_data);
ctx.template device_context<paddle::platform::NPUDeviceContext>().Wait();
min_val = static_cast<float>(min_data.data<T>()[0]);
}
auto max_val = ctx.Attr<float>("max");
if (max_tensor) {
Tensor max_data;
framework::TensorCopy(
*max_tensor, platform::CPUPlace(),
ctx.template device_context<platform::DeviceContext>(), &max_data);
ctx.template device_context<paddle::platform::NPUDeviceContext>().Wait();
max_val = static_cast<float>(max_data.data<T>()[0]);
}
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner =
NpuOpRunner("HardtanhGrad", {*x, *dout}, {*dx},
{{"min_val", min_val}, {"max_val", max_val}});
runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
clip, ops::ClipNPUKernel<plat::NPUDeviceContext, float>,
ops::ClipNPUKernel<plat::NPUDeviceContext, plat::float16>);
REGISTER_OP_NPU_KERNEL(
clip_grad, ops::ClipGradNPUKernel<plat::NPUDeviceContext, float>,
ops::ClipGradNPUKernel<plat::NPUDeviceContext, plat::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import sys
sys.path.append("..")
from op_test import OpTest
class TestClipOp(OpTest):
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def setUp(self):
self.set_npu()
self.max_relative_error = 0.006
self.inputs = {}
self.initTestCase()
self.op_type = "clip"
self.attrs = {}
self.attrs['min'] = self.min
self.attrs['max'] = self.max
if 'Min' in self.inputs:
min_v = self.inputs['Min']
else:
min_v = self.attrs['min']
if 'Max' in self.inputs:
max_v = self.inputs['Max']
else:
max_v = self.attrs['max']
input = np.random.random(self.shape).astype("float32")
input[np.abs(input - min_v) < self.max_relative_error] = 0.5
input[np.abs(input - max_v) < self.max_relative_error] = 0.5
self.inputs['X'] = input
self.outputs = {'Out': np.clip(self.inputs['X'], min_v, max_v)}
def test_check_output(self):
paddle.enable_static()
self.check_output_with_place(self.place)
paddle.disable_static()
def test_check_grad_normal(self):
paddle.enable_static()
self.check_grad_with_place(self.place, ['X'], 'Out')
paddle.disable_static()
def initTestCase(self):
self.shape = (4, 10, 10)
self.max = 0.8
self.min = 0.3
self.inputs['Max'] = np.array([0.8]).astype('float32')
self.inputs['Min'] = np.array([0.1]).astype('float32')
class TestCase1(TestClipOp):
def initTestCase(self):
self.shape = (8, 16, 8)
self.max = 0.7
self.min = 0.0
class TestCase2(TestClipOp):
def initTestCase(self):
self.shape = (8, 16)
self.max = 1.0
self.min = 0.0
class TestCase3(TestClipOp):
def initTestCase(self):
self.shape = (4, 8, 16)
self.max = 0.7
self.min = 0.2
class TestCase4(TestClipOp):
def initTestCase(self):
self.shape = (4, 8, 8)
self.max = 0.7
self.min = 0.2
self.inputs['Max'] = np.array([0.8]).astype('float32')
self.inputs['Min'] = np.array([0.3]).astype('float32')
class TestCase5(TestClipOp):
def initTestCase(self):
self.shape = (4, 8, 16)
self.max = 0.5
self.min = 0.5
class TestClipOpError(unittest.TestCase):
def test_errors(self):
paddle.enable_static()
with program_guard(Program(), Program()):
input_data = np.random.random((2, 4)).astype("float32")
def test_Variable():
fluid.layers.clip(x=input_data, min=-1.0, max=1.0)
self.assertRaises(TypeError, test_Variable)
def test_dtype():
x2 = fluid.layers.data(name='x2', shape=[1], dtype='int32')
fluid.layers.clip(x=x2, min=-1.0, max=1.0)
self.assertRaises(TypeError, test_dtype)
paddle.disable_static()
class TestClipAPI(unittest.TestCase):
def _executed_api(self, x, min=None, max=None):
return paddle.clip(x, min, max)
def test_clip(self):
paddle.enable_static()
data_shape = [1, 9, 9, 4]
data = np.random.random(data_shape).astype('float32')
images = fluid.data(name='image', shape=data_shape, dtype='float32')
min = fluid.data(name='min', shape=[1], dtype='float32')
max = fluid.data(name='max', shape=[1], dtype='float32')
place = fluid.NPUPlace(0) if fluid.core.is_compiled_with_npu(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
out_1 = self._executed_api(images, min=min, max=max)
out_2 = self._executed_api(images, min=0.2, max=0.9)
out_3 = self._executed_api(images, min=0.3)
out_4 = self._executed_api(images, max=0.7)
out_5 = self._executed_api(images, min=min)
out_6 = self._executed_api(images, max=max)
out_7 = self._executed_api(images, max=-1.)
out_8 = self._executed_api(images)
res1, res2, res3, res4, res5, res6, res7, res8 = exe.run(
fluid.default_main_program(),
feed={
"image": data,
"min": np.array([0.2]).astype('float32'),
"max": np.array([0.8]).astype('float32')
},
fetch_list=[
out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
])
self.assertTrue(np.allclose(res1, data.clip(0.2, 0.8)))
self.assertTrue(np.allclose(res2, data.clip(0.2, 0.9)))
self.assertTrue(np.allclose(res3, data.clip(min=0.3)))
self.assertTrue(np.allclose(res4, data.clip(max=0.7)))
self.assertTrue(np.allclose(res5, data.clip(min=0.2)))
self.assertTrue(np.allclose(res6, data.clip(max=0.8)))
self.assertTrue(np.allclose(res7, data.clip(max=-1)))
self.assertTrue(np.allclose(res8, data))
paddle.disable_static()
def test_clip_dygraph(self):
paddle.disable_static()
place = fluid.NPUPlace(0) if fluid.core.is_compiled_with_npu(
) else fluid.CPUPlace()
paddle.disable_static(place)
data_shape = [1, 9, 9, 4]
data = np.random.random(data_shape).astype('float32')
images = paddle.to_tensor(data, dtype='float32')
v_min = paddle.to_tensor(np.array([0.2], dtype=np.float32))
v_max = paddle.to_tensor(np.array([0.8], dtype=np.float32))
out_1 = self._executed_api(images, min=0.2, max=0.8)
images = paddle.to_tensor(data, dtype='float32')
out_2 = self._executed_api(images, min=0.2, max=0.9)
images = paddle.to_tensor(data, dtype='float32')
out_3 = self._executed_api(images, min=v_min, max=v_max)
self.assertTrue(np.allclose(out_1.numpy(), data.clip(0.2, 0.8)))
self.assertTrue(np.allclose(out_2.numpy(), data.clip(0.2, 0.9)))
self.assertTrue(np.allclose(out_3.numpy(), data.clip(0.2, 0.8)))
def test_errors(self):
paddle.enable_static()
x1 = fluid.data(name='x1', shape=[1], dtype="int16")
x2 = fluid.data(name='x2', shape=[1], dtype="int8")
self.assertRaises(TypeError, paddle.clip, x=x1, min=0.2, max=0.8)
self.assertRaises(TypeError, paddle.clip, x=x2, min=0.2, max=0.8)
paddle.disable_static()
class TestInplaceClipAPI(TestClipAPI):
def _executed_api(self, x, min=None, max=None):
return x.clip_(min, max)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册