未验证 提交 1927aff9 编写于 作者: C chentianyu03 提交者: GitHub

[Phi]Reduce kernels into multiply files (#41747)

* split reduce_kernel

* rm reduce_kernel in cmake

* split reduce_grad kernels

* fix cmake build error

* format code

* fix standalone_executor_test error
上级 27f28e82
...@@ -76,6 +76,7 @@ PD_DECLARE_KERNEL(add_raw, KPS, ALL_LAYOUT); ...@@ -76,6 +76,7 @@ PD_DECLARE_KERNEL(add_raw, KPS, ALL_LAYOUT);
#endif #endif
PD_DECLARE_KERNEL(add, GPU, ALL_LAYOUT); PD_DECLARE_KERNEL(add, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean, GPU, ALL_LAYOUT); PD_DECLARE_KERNEL(mean, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean_grad, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(sigmoid, GPU, ALL_LAYOUT); PD_DECLARE_KERNEL(sigmoid, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(sigmoid_grad, GPU, ALL_LAYOUT); PD_DECLARE_KERNEL(sigmoid_grad, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(reshape_grad, GPU, ALL_LAYOUT); PD_DECLARE_KERNEL(reshape_grad, GPU, ALL_LAYOUT);
......
...@@ -36,7 +36,7 @@ set(MANUAL_BUILD_KERNELS ${AUTOTUNE_KERNELS} cross_entropy_kernel adam_kernel ad ...@@ -36,7 +36,7 @@ set(MANUAL_BUILD_KERNELS ${AUTOTUNE_KERNELS} cross_entropy_kernel adam_kernel ad
matrix_power_kernel matrix_power_grad_kernel maxout_kernel maxout_grad_kernel pool_kernel matrix_power_kernel matrix_power_grad_kernel maxout_kernel maxout_grad_kernel pool_kernel
put_along_axis_kernel put_along_axis_grad_kernel segment_pool_kernel segment_pool_grad_kernel put_along_axis_kernel put_along_axis_grad_kernel segment_pool_kernel segment_pool_grad_kernel
softmax_kernel softmax_grad_kernel take_along_axis_kernel take_along_axis_grad_kernel softmax_kernel softmax_grad_kernel take_along_axis_kernel take_along_axis_grad_kernel
triangular_solve_grad_kernel determinant_grad_kernel reduce_kernel rnn_kernel rnn_grad_kernel warpctc_kernel warpctc_grad_kernel) triangular_solve_grad_kernel determinant_grad_kernel reduce_sum_kernel rnn_kernel rnn_grad_kernel warpctc_kernel warpctc_grad_kernel)
foreach(src ${AUTOTUNE_KERNELS}) foreach(src ${AUTOTUNE_KERNELS})
kernel_library(${src} DEPS ${COMMON_KERNEL_DEPS} switch_autotune) kernel_library(${src} DEPS ${COMMON_KERNEL_DEPS} switch_autotune)
endforeach() endforeach()
...@@ -51,7 +51,7 @@ kernel_library(hierarchical_sigmoid_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_bit ...@@ -51,7 +51,7 @@ kernel_library(hierarchical_sigmoid_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_bit
kernel_library(hierarchical_sigmoid_grad_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_bit_code) kernel_library(hierarchical_sigmoid_grad_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_bit_code)
kernel_library(gumbel_softmax_kernel DEPS ${COMMON_KERNEL_DEPS} softmax) kernel_library(gumbel_softmax_kernel DEPS ${COMMON_KERNEL_DEPS} softmax)
kernel_library(gumbel_softmax_grad_kernel DEPS ${COMMON_KERNEL_DEPS} softmax) kernel_library(gumbel_softmax_grad_kernel DEPS ${COMMON_KERNEL_DEPS} softmax)
kernel_library(reduce_kernel DEPS ${COMMON_KERNEL_DEPS} cast_kernel) kernel_library(reduce_sum_kernel DEPS ${COMMON_KERNEL_DEPS} cast_kernel)
kernel_library(matrix_power_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_inverse) kernel_library(matrix_power_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_inverse)
kernel_library(matrix_power_grad_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_inverse) kernel_library(matrix_power_grad_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_inverse)
kernel_library(maxout_kernel DEPS ${COMMON_KERNEL_DEPS} maxouting) kernel_library(maxout_kernel DEPS ${COMMON_KERNEL_DEPS} maxouting)
......
...@@ -23,7 +23,8 @@ ...@@ -23,7 +23,8 @@
#include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h" #include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/impl/matrix_rank_kernel_impl.h" #include "paddle/phi/kernels/impl/matrix_rank_kernel_impl.h"
#include "paddle/phi/kernels/reduce_kernel.h" #include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
namespace phi { namespace phi {
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_all_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
phi::BoolReduceKernel<CPUContext, T, phi::funcs::AllFunctor>(
dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(all_raw, CPU, ALL_LAYOUT, phi::AllRawKernel, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_any_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
phi::BoolReduceKernel<CPUContext, T, phi::funcs::AnyFunctor>(
dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(any_raw, CPU, ALL_LAYOUT, phi::AnyRawKernel, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_max_grad_kernel_impl.h"
PD_REGISTER_KERNEL(max_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMaxGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MaxFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
max_raw, CPU, ALL_LAYOUT, phi::MaxRawKernel, float, double, int, int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
namespace phi {
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<Context, T, funcs::MeanGradFunctor, true>(
dev_ctx, x, paddle::none, out_grad, dims, keep_dim, reduce_all, x_grad);
}
} // namespace phi
PD_REGISTER_KERNEL(mean_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMeanGradKernel,
bool,
float,
double) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MeanFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
mean_raw, CPU, ALL_LAYOUT, phi::MeanRawKernel, float, double, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h"
PD_REGISTER_KERNEL(min_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMinGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MinFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
min_raw, CPU, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_prod_grad_kernel_impl.h"
PD_REGISTER_KERNEL(prod_grad,
CPU,
ALL_LAYOUT,
phi::ReduceProdGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::ProdFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(prod_raw,
CPU,
ALL_LAYOUT,
phi::ProdRawKernel,
float,
double,
int,
int64_t) {}
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/phi/kernels/reduce_grad_kernel.h" #include "paddle/phi/kernels/reduce_sum_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/kernel_registry.h"
...@@ -20,9 +20,6 @@ ...@@ -20,9 +20,6 @@
#include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h" #include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h" #include "paddle/phi/kernels/impl/reduce_grad.h"
#include "paddle/phi/kernels/impl/reduce_max_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_prod_grad_kernel_impl.h"
namespace phi { namespace phi {
template <typename T, typename Context> template <typename T, typename Context>
...@@ -100,18 +97,6 @@ void ReduceSumGradKernel(const Context& dev_ctx, ...@@ -100,18 +97,6 @@ void ReduceSumGradKernel(const Context& dev_ctx,
dev_ctx, x, paddle::none, out_grad, dims, keep_dim, reduce_all, x_grad); dev_ctx, x, paddle::none, out_grad, dims, keep_dim, reduce_all, x_grad);
} }
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<Context, T, funcs::MeanGradFunctor, true>(
dev_ctx, x, paddle::none, out_grad, dims, keep_dim, reduce_all, x_grad);
}
} // namespace phi } // namespace phi
PD_REGISTER_KERNEL(sum_grad, PD_REGISTER_KERNEL(sum_grad,
...@@ -127,37 +112,3 @@ PD_REGISTER_KERNEL(sum_grad, ...@@ -127,37 +112,3 @@ PD_REGISTER_KERNEL(sum_grad,
phi::dtype::complex<float>, phi::dtype::complex<float>,
phi::dtype::complex<double>) {} phi::dtype::complex<double>) {}
PD_REGISTER_KERNEL(mean_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMeanGradKernel,
bool,
float,
double) {}
PD_REGISTER_KERNEL(prod_grad,
CPU,
ALL_LAYOUT,
phi::ReduceProdGradKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(max_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMaxGradKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(min_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMinGradKernel,
float,
double,
int,
int64_t) {}
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/phi/kernels/reduce_kernel.h" #include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/kernel_registry.h"
...@@ -21,18 +21,6 @@ ...@@ -21,18 +21,6 @@
namespace phi { namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MeanFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context> template <typename T, typename Context>
void SumRawKernel(const Context& dev_ctx, void SumRawKernel(const Context& dev_ctx,
const DenseTensor& x, const DenseTensor& x,
...@@ -45,64 +33,6 @@ void SumRawKernel(const Context& dev_ctx, ...@@ -45,64 +33,6 @@ void SumRawKernel(const Context& dev_ctx,
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out); dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
} }
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::ProdFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MaxFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MinFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
phi::BoolReduceKernel<CPUContext, T, phi::funcs::AllFunctor>(
dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
phi::BoolReduceKernel<CPUContext, T, phi::funcs::AnyFunctor>(
dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi } // namespace phi
using complex64 = ::phi::dtype::complex<float>; using complex64 = ::phi::dtype::complex<float>;
...@@ -123,23 +53,3 @@ PD_REGISTER_KERNEL(sum_raw, ...@@ -123,23 +53,3 @@ PD_REGISTER_KERNEL(sum_raw,
complex128) { complex128) {
kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED); kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
} }
PD_REGISTER_KERNEL(
mean_raw, CPU, ALL_LAYOUT, phi::MeanRawKernel, float, double, bool) {}
PD_REGISTER_KERNEL(prod_raw,
CPU,
ALL_LAYOUT,
phi::ProdRawKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(
max_raw, CPU, ALL_LAYOUT, phi::MaxRawKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
min_raw, CPU, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(all_raw, CPU, ALL_LAYOUT, phi::AllRawKernel, bool) {}
PD_REGISTER_KERNEL(any_raw, CPU, ALL_LAYOUT, phi::AnyRawKernel, bool) {}
...@@ -28,7 +28,8 @@ ...@@ -28,7 +28,8 @@
#include "paddle/phi/kernels/funcs/broadcast_function.h" #include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/compare_functors.h" #include "paddle/phi/kernels/funcs/compare_functors.h"
#include "paddle/phi/kernels/impl/matrix_rank_kernel_impl.h" #include "paddle/phi/kernels/impl/matrix_rank_kernel_impl.h"
#include "paddle/phi/kernels/reduce_kernel.h" #include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
namespace phi { namespace phi {
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_all_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::LogicalAndFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(all_raw, GPU, ALL_LAYOUT, phi::AllRawKernel, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_any_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::LogicalOrFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(any_raw, GPU, ALL_LAYOUT, phi::AnyRawKernel, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_max_grad_kernel_impl.h"
PD_REGISTER_KERNEL(max_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMaxGradKernel,
float,
double,
int,
int64_t) {}
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/phi/kernels/reduce_kernel.h" #include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h" #include "paddle/phi/kernels/gpu/reduce.h"
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/gpu/reduce_grad.h"
namespace phi {
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<T, Context, kps::DivideFunctor>(
dev_ctx, x, out_grad, dims, keep_dim, reduce_all, x_grad);
}
} // namespace phi
PD_REGISTER_KERNEL(mean_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMeanGradKernel,
bool,
float,
double,
phi::dtype::float16) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out, true);
}
} // namespace phi
using float16 = phi::dtype::float16;
PD_REGISTER_KERNEL(mean_raw,
GPU,
ALL_LAYOUT,
phi::MeanRawKernel,
float,
double,
bool,
float16,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h"
PD_REGISTER_KERNEL(min_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMinGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MinFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
min_raw, GPU, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_prod_grad_kernel_impl.h"
PD_REGISTER_KERNEL(prod_grad,
GPU,
ALL_LAYOUT,
phi::ReduceProdGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MulFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(prod_raw,
GPU,
ALL_LAYOUT,
phi::ProdRawKernel,
float,
double,
int,
int64_t) {}
...@@ -12,15 +12,12 @@ ...@@ -12,15 +12,12 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/phi/kernels/reduce_grad_kernel.h" #include "paddle/phi/kernels/reduce_sum_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_function.h" #include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/gpu/reduce_grad.h" #include "paddle/phi/kernels/gpu/reduce_grad.h"
#include "paddle/phi/kernels/impl/reduce_max_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_prod_grad_kernel_impl.h"
namespace phi { namespace phi {
...@@ -36,18 +33,6 @@ void ReduceSumGradKernel(const Context& dev_ctx, ...@@ -36,18 +33,6 @@ void ReduceSumGradKernel(const Context& dev_ctx,
dev_ctx, x, out_grad, dims, keep_dim, reduce_all, x_grad); dev_ctx, x, out_grad, dims, keep_dim, reduce_all, x_grad);
} }
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<T, Context, kps::DivideFunctor>(
dev_ctx, x, out_grad, dims, keep_dim, reduce_all, x_grad);
}
} // namespace phi } // namespace phi
PD_REGISTER_KERNEL(sum_grad, PD_REGISTER_KERNEL(sum_grad,
...@@ -64,38 +49,3 @@ PD_REGISTER_KERNEL(sum_grad, ...@@ -64,38 +49,3 @@ PD_REGISTER_KERNEL(sum_grad,
phi::dtype::complex<float>, phi::dtype::complex<float>,
phi::dtype::complex<double>) {} phi::dtype::complex<double>) {}
PD_REGISTER_KERNEL(mean_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMeanGradKernel,
bool,
float,
double,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(prod_grad,
GPU,
ALL_LAYOUT,
phi::ReduceProdGradKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(max_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMaxGradKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(min_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMinGradKernel,
float,
double,
int,
int64_t) {}
...@@ -12,25 +12,13 @@ ...@@ -12,25 +12,13 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/phi/kernels/reduce_kernel.h" #include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h" #include "paddle/phi/kernels/gpu/reduce.h"
namespace phi { namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out, true);
}
template <typename T, typename Context> template <typename T, typename Context>
void SumRawKernel(const Context& dev_ctx, void SumRawKernel(const Context& dev_ctx,
const DenseTensor& x, const DenseTensor& x,
...@@ -43,66 +31,6 @@ void SumRawKernel(const Context& dev_ctx, ...@@ -43,66 +31,6 @@ void SumRawKernel(const Context& dev_ctx,
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out); dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
} }
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MulFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MaxFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MinFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::LogicalAndFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::LogicalOrFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi } // namespace phi
using float16 = phi::dtype::float16; using float16 = phi::dtype::float16;
...@@ -126,33 +54,3 @@ PD_REGISTER_KERNEL(sum_raw, ...@@ -126,33 +54,3 @@ PD_REGISTER_KERNEL(sum_raw,
complex128) { complex128) {
kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED); kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
} }
PD_REGISTER_KERNEL(mean_raw,
GPU,
ALL_LAYOUT,
phi::MeanRawKernel,
float,
double,
bool,
float16,
int,
int64_t) {}
PD_REGISTER_KERNEL(prod_raw,
GPU,
ALL_LAYOUT,
phi::ProdRawKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(
max_raw, GPU, ALL_LAYOUT, phi::MaxRawKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
min_raw, GPU, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(all_raw, GPU, ALL_LAYOUT, phi::AllRawKernel, bool) {}
PD_REGISTER_KERNEL(any_raw, GPU, ALL_LAYOUT, phi::AnyRawKernel, bool) {}
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
#pragma once #pragma once
#include "paddle/phi/kernels/reduce_grad_kernel.h" #include "paddle/phi/kernels/reduce_max_grad_kernel.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h" #include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h" #include "paddle/phi/kernels/impl/reduce_grad.h"
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
#pragma once #pragma once
#include "paddle/phi/kernels/reduce_grad_kernel.h" #include "paddle/phi/kernels/reduce_min_grad_kernel.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h" #include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h" #include "paddle/phi/kernels/impl/reduce_grad.h"
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
#pragma once #pragma once
#include "paddle/phi/kernels/reduce_grad_kernel.h" #include "paddle/phi/kernels/reduce_prod_grad_kernel.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h" #include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h" #include "paddle/phi/kernels/impl/reduce_grad.h"
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_all_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void AllKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
AllRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(all, CPU, ALL_LAYOUT, phi::AllKernel, bool) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(all, GPU, ALL_LAYOUT, phi::AllKernel, bool) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void AllKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_any_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void AnyKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
AnyRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(any, CPU, ALL_LAYOUT, phi::AnyKernel, bool) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(any, GPU, ALL_LAYOUT, phi::AnyKernel, bool) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void AnyKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ReduceMaxGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MaxRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
max, CPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(
max, GPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void MeanKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MeanRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
mean, CPU, ALL_LAYOUT, phi::MeanKernel, float, double, bool) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(mean,
GPU,
ALL_LAYOUT,
phi::MeanKernel,
float,
double,
bool,
int,
int64_t,
phi::dtype::float16) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/unary.h"
namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MeanKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
DenseTensor Mean(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& axis,
bool keep_dim) {
DenseTensor dense_out;
MetaTensor meta_out(&dense_out);
SumRawInferMeta(x, axis, keep_dim, false, x.dtype(), &meta_out);
MeanKernel<T, Context>(dev_ctx, x, axis, keep_dim, &dense_out);
return dense_out;
}
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ReduceMinGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void MinKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MinRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
min, CPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(
min, GPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MinKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
} // namespace phi
...@@ -18,24 +18,6 @@ ...@@ -18,24 +18,6 @@
#include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/dense_tensor.h"
namespace phi { namespace phi {
template <typename T, typename Context>
void ReduceSumGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
template <typename T, typename Context> template <typename T, typename Context>
void ReduceProdGradKernel(const Context& dev_ctx, void ReduceProdGradKernel(const Context& dev_ctx,
const DenseTensor& x, const DenseTensor& x,
...@@ -45,25 +27,4 @@ void ReduceProdGradKernel(const Context& dev_ctx, ...@@ -45,25 +27,4 @@ void ReduceProdGradKernel(const Context& dev_ctx,
bool keep_dim, bool keep_dim,
bool reduce_all, bool reduce_all,
DenseTensor* x_grad); DenseTensor* x_grad);
template <typename T, typename Context>
void ReduceMaxGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
template <typename T, typename Context>
void ReduceMinGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi } // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void ProdKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
ProdRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
prod, CPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(
prod, GPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {}
#endif
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
You may obtain a copy of the License at // You may obtain a copy of the License at
//
http://www.apache.org/licenses/LICENSE-2.0 // http://www.apache.org/licenses/LICENSE-2.0
//
Unless required by applicable law or agreed to in writing, software // Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, // distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
limitations under the License. */ // limitations under the License.
#pragma once #pragma once
#include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/dense_tensor.h"
namespace phi { namespace phi {
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context> template <typename T, typename Context>
void ReduceProdKernel(const Context& dev_ctx, void ProdKernel(const Context& dev_ctx,
const DenseTensor& x, const DenseTensor& x,
const std::vector<int64_t>& dims, const std::vector<int64_t>& dims,
bool keep_dim, bool keep_dim,
bool reduce_all, DenseTensor* out);
DenseTensor* out);
} // namespace phi } // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ReduceSumGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/phi/kernels/reduce_kernel.h" #include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/backends/all_context.h" #include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/kernel_registry.h"
...@@ -30,74 +30,11 @@ void SumKernel(const Context& dev_ctx, ...@@ -30,74 +30,11 @@ void SumKernel(const Context& dev_ctx,
SumRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out_dtype, out); SumRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out_dtype, out);
} }
template <typename T, typename Context>
void MeanKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MeanRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void ProdKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
ProdRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MaxRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void MinKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MinRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void AllKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
AllRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void AnyKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
AnyRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi } // namespace phi
using complex64 = ::phi::dtype::complex<float>; using complex64 = ::phi::dtype::complex<float>;
using complex128 = ::phi::dtype::complex<double>; using complex128 = ::phi::dtype::complex<double>;
PD_REGISTER_KERNEL(
mean, CPU, ALL_LAYOUT, phi::MeanKernel, float, double, bool) {}
PD_REGISTER_KERNEL(sum, PD_REGISTER_KERNEL(sum,
CPU, CPU,
ALL_LAYOUT, ALL_LAYOUT,
...@@ -114,28 +51,7 @@ PD_REGISTER_KERNEL(sum, ...@@ -114,28 +51,7 @@ PD_REGISTER_KERNEL(sum,
kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED); kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
} }
PD_REGISTER_KERNEL(
prod, CPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
max, CPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
min, CPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(all, CPU, ALL_LAYOUT, phi::AllKernel, bool) {}
PD_REGISTER_KERNEL(any, CPU, ALL_LAYOUT, phi::AnyKernel, bool) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(mean,
GPU,
ALL_LAYOUT,
phi::MeanKernel,
float,
double,
bool,
int,
int64_t,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(sum, PD_REGISTER_KERNEL(sum,
GPU, GPU,
ALL_LAYOUT, ALL_LAYOUT,
...@@ -152,14 +68,4 @@ PD_REGISTER_KERNEL(sum, ...@@ -152,14 +68,4 @@ PD_REGISTER_KERNEL(sum,
complex128) { complex128) {
kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED); kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
} }
PD_REGISTER_KERNEL(
prod, GPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
max, GPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
min, GPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(all, GPU, ALL_LAYOUT, phi::AllKernel, bool) {}
PD_REGISTER_KERNEL(any, GPU, ALL_LAYOUT, phi::AnyKernel, bool) {}
#endif #endif
...@@ -27,54 +27,6 @@ void SumRawKernel(const Context& dev_ctx, ...@@ -27,54 +27,6 @@ void SumRawKernel(const Context& dev_ctx,
DataType out_dtype, DataType out_dtype,
DenseTensor* out); DenseTensor* out);
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context> template <typename T, typename Context>
void SumKernel(const Context& dev_ctx, void SumKernel(const Context& dev_ctx,
const DenseTensor& x, const DenseTensor& x,
...@@ -83,60 +35,6 @@ void SumKernel(const Context& dev_ctx, ...@@ -83,60 +35,6 @@ void SumKernel(const Context& dev_ctx,
bool keep_dim, bool keep_dim,
DenseTensor* out); DenseTensor* out);
template <typename T, typename Context>
void MeanKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void ProdKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void MinKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void AnyKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void AllKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
DenseTensor Mean(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& axis,
bool keep_dim) {
DenseTensor dense_out;
MetaTensor meta_out(&dense_out);
SumRawInferMeta(x, axis, keep_dim, false, x.dtype(), &meta_out);
MeanKernel<T, Context>(dev_ctx, x, axis, keep_dim, &dense_out);
return dense_out;
}
template <typename T, typename Context> template <typename T, typename Context>
DenseTensor Sum(const Context& dev_ctx, DenseTensor Sum(const Context& dev_ctx,
const DenseTensor& x, const DenseTensor& x,
......
...@@ -15,7 +15,7 @@ limitations under the License. */ ...@@ -15,7 +15,7 @@ limitations under the License. */
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <memory> #include <memory>
#include "paddle/phi/kernels/reduce_kernel.h" #include "paddle/phi/kernels/reduce_mean_kernel.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h" #include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/lib/utils/allocator.h" #include "paddle/phi/api/lib/utils/allocator.h"
......
...@@ -15,7 +15,7 @@ limitations under the License. */ ...@@ -15,7 +15,7 @@ limitations under the License. */
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <memory> #include <memory>
#include "paddle/phi/kernels/reduce_kernel.h" #include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h" #include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/lib/utils/allocator.h" #include "paddle/phi/api/lib/utils/allocator.h"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册