未验证 提交 1927aff9 编写于 作者: C chentianyu03 提交者: GitHub

[Phi]Reduce kernels into multiply files (#41747)

* split reduce_kernel

* rm reduce_kernel in cmake

* split reduce_grad kernels

* fix cmake build error

* format code

* fix standalone_executor_test error
上级 27f28e82
......@@ -76,6 +76,7 @@ PD_DECLARE_KERNEL(add_raw, KPS, ALL_LAYOUT);
#endif
PD_DECLARE_KERNEL(add, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean_grad, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(sigmoid, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(sigmoid_grad, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(reshape_grad, GPU, ALL_LAYOUT);
......
......@@ -36,7 +36,7 @@ set(MANUAL_BUILD_KERNELS ${AUTOTUNE_KERNELS} cross_entropy_kernel adam_kernel ad
matrix_power_kernel matrix_power_grad_kernel maxout_kernel maxout_grad_kernel pool_kernel
put_along_axis_kernel put_along_axis_grad_kernel segment_pool_kernel segment_pool_grad_kernel
softmax_kernel softmax_grad_kernel take_along_axis_kernel take_along_axis_grad_kernel
triangular_solve_grad_kernel determinant_grad_kernel reduce_kernel rnn_kernel rnn_grad_kernel warpctc_kernel warpctc_grad_kernel)
triangular_solve_grad_kernel determinant_grad_kernel reduce_sum_kernel rnn_kernel rnn_grad_kernel warpctc_kernel warpctc_grad_kernel)
foreach(src ${AUTOTUNE_KERNELS})
kernel_library(${src} DEPS ${COMMON_KERNEL_DEPS} switch_autotune)
endforeach()
......@@ -51,7 +51,7 @@ kernel_library(hierarchical_sigmoid_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_bit
kernel_library(hierarchical_sigmoid_grad_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_bit_code)
kernel_library(gumbel_softmax_kernel DEPS ${COMMON_KERNEL_DEPS} softmax)
kernel_library(gumbel_softmax_grad_kernel DEPS ${COMMON_KERNEL_DEPS} softmax)
kernel_library(reduce_kernel DEPS ${COMMON_KERNEL_DEPS} cast_kernel)
kernel_library(reduce_sum_kernel DEPS ${COMMON_KERNEL_DEPS} cast_kernel)
kernel_library(matrix_power_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_inverse)
kernel_library(matrix_power_grad_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_inverse)
kernel_library(maxout_kernel DEPS ${COMMON_KERNEL_DEPS} maxouting)
......
......@@ -23,7 +23,8 @@
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/impl/matrix_rank_kernel_impl.h"
#include "paddle/phi/kernels/reduce_kernel.h"
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
namespace phi {
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_all_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
phi::BoolReduceKernel<CPUContext, T, phi::funcs::AllFunctor>(
dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(all_raw, CPU, ALL_LAYOUT, phi::AllRawKernel, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_any_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
phi::BoolReduceKernel<CPUContext, T, phi::funcs::AnyFunctor>(
dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(any_raw, CPU, ALL_LAYOUT, phi::AnyRawKernel, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_max_grad_kernel_impl.h"
PD_REGISTER_KERNEL(max_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMaxGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MaxFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
max_raw, CPU, ALL_LAYOUT, phi::MaxRawKernel, float, double, int, int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
namespace phi {
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<Context, T, funcs::MeanGradFunctor, true>(
dev_ctx, x, paddle::none, out_grad, dims, keep_dim, reduce_all, x_grad);
}
} // namespace phi
PD_REGISTER_KERNEL(mean_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMeanGradKernel,
bool,
float,
double) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MeanFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
mean_raw, CPU, ALL_LAYOUT, phi::MeanRawKernel, float, double, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h"
PD_REGISTER_KERNEL(min_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMinGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MinFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
min_raw, CPU, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_prod_grad_kernel_impl.h"
PD_REGISTER_KERNEL(prod_grad,
CPU,
ALL_LAYOUT,
phi::ReduceProdGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::ProdFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(prod_raw,
CPU,
ALL_LAYOUT,
phi::ProdRawKernel,
float,
double,
int,
int64_t) {}
......@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_grad_kernel.h"
#include "paddle/phi/kernels/reduce_sum_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
......@@ -20,9 +20,6 @@
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
#include "paddle/phi/kernels/impl/reduce_max_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_prod_grad_kernel_impl.h"
namespace phi {
template <typename T, typename Context>
......@@ -100,18 +97,6 @@ void ReduceSumGradKernel(const Context& dev_ctx,
dev_ctx, x, paddle::none, out_grad, dims, keep_dim, reduce_all, x_grad);
}
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<Context, T, funcs::MeanGradFunctor, true>(
dev_ctx, x, paddle::none, out_grad, dims, keep_dim, reduce_all, x_grad);
}
} // namespace phi
PD_REGISTER_KERNEL(sum_grad,
......@@ -127,37 +112,3 @@ PD_REGISTER_KERNEL(sum_grad,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
PD_REGISTER_KERNEL(mean_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMeanGradKernel,
bool,
float,
double) {}
PD_REGISTER_KERNEL(prod_grad,
CPU,
ALL_LAYOUT,
phi::ReduceProdGradKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(max_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMaxGradKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(min_grad,
CPU,
ALL_LAYOUT,
phi::ReduceMinGradKernel,
float,
double,
int,
int64_t) {}
......@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
......@@ -21,18 +21,6 @@
namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MeanFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void SumRawKernel(const Context& dev_ctx,
const DenseTensor& x,
......@@ -45,64 +33,6 @@ void SumRawKernel(const Context& dev_ctx,
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::ProdFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MaxFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MinFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
phi::BoolReduceKernel<CPUContext, T, phi::funcs::AllFunctor>(
dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
phi::BoolReduceKernel<CPUContext, T, phi::funcs::AnyFunctor>(
dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
using complex64 = ::phi::dtype::complex<float>;
......@@ -123,23 +53,3 @@ PD_REGISTER_KERNEL(sum_raw,
complex128) {
kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}
PD_REGISTER_KERNEL(
mean_raw, CPU, ALL_LAYOUT, phi::MeanRawKernel, float, double, bool) {}
PD_REGISTER_KERNEL(prod_raw,
CPU,
ALL_LAYOUT,
phi::ProdRawKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(
max_raw, CPU, ALL_LAYOUT, phi::MaxRawKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
min_raw, CPU, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(all_raw, CPU, ALL_LAYOUT, phi::AllRawKernel, bool) {}
PD_REGISTER_KERNEL(any_raw, CPU, ALL_LAYOUT, phi::AnyRawKernel, bool) {}
......@@ -28,7 +28,8 @@
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/compare_functors.h"
#include "paddle/phi/kernels/impl/matrix_rank_kernel_impl.h"
#include "paddle/phi/kernels/reduce_kernel.h"
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
namespace phi {
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_all_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::LogicalAndFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(all_raw, GPU, ALL_LAYOUT, phi::AllRawKernel, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_any_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::LogicalOrFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(any_raw, GPU, ALL_LAYOUT, phi::AnyRawKernel, bool) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_max_grad_kernel_impl.h"
PD_REGISTER_KERNEL(max_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMaxGradKernel,
float,
double,
int,
int64_t) {}
......@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_kernel.h"
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/gpu/reduce_grad.h"
namespace phi {
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<T, Context, kps::DivideFunctor>(
dev_ctx, x, out_grad, dims, keep_dim, reduce_all, x_grad);
}
} // namespace phi
PD_REGISTER_KERNEL(mean_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMeanGradKernel,
bool,
float,
double,
phi::dtype::float16) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out, true);
}
} // namespace phi
using float16 = phi::dtype::float16;
PD_REGISTER_KERNEL(mean_raw,
GPU,
ALL_LAYOUT,
phi::MeanRawKernel,
float,
double,
bool,
float16,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h"
PD_REGISTER_KERNEL(min_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMinGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MinFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
min_raw, GPU, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_prod_grad_kernel_impl.h"
PD_REGISTER_KERNEL(prod_grad,
GPU,
ALL_LAYOUT,
phi::ReduceProdGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MulFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(prod_raw,
GPU,
ALL_LAYOUT,
phi::ProdRawKernel,
float,
double,
int,
int64_t) {}
......@@ -12,15 +12,12 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_grad_kernel.h"
#include "paddle/phi/kernels/reduce_sum_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/gpu/reduce_grad.h"
#include "paddle/phi/kernels/impl/reduce_max_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_prod_grad_kernel_impl.h"
namespace phi {
......@@ -36,18 +33,6 @@ void ReduceSumGradKernel(const Context& dev_ctx,
dev_ctx, x, out_grad, dims, keep_dim, reduce_all, x_grad);
}
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<T, Context, kps::DivideFunctor>(
dev_ctx, x, out_grad, dims, keep_dim, reduce_all, x_grad);
}
} // namespace phi
PD_REGISTER_KERNEL(sum_grad,
......@@ -64,38 +49,3 @@ PD_REGISTER_KERNEL(sum_grad,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
PD_REGISTER_KERNEL(mean_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMeanGradKernel,
bool,
float,
double,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(prod_grad,
GPU,
ALL_LAYOUT,
phi::ReduceProdGradKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(max_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMaxGradKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(min_grad,
GPU,
ALL_LAYOUT,
phi::ReduceMinGradKernel,
float,
double,
int,
int64_t) {}
......@@ -12,25 +12,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out, true);
}
template <typename T, typename Context>
void SumRawKernel(const Context& dev_ctx,
const DenseTensor& x,
......@@ -43,66 +31,6 @@ void SumRawKernel(const Context& dev_ctx,
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MulFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MaxFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MinFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::LogicalAndFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
auto out_dtype = x.dtype();
phi::Reduce<T, kps::LogicalOrFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}
} // namespace phi
using float16 = phi::dtype::float16;
......@@ -126,33 +54,3 @@ PD_REGISTER_KERNEL(sum_raw,
complex128) {
kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}
PD_REGISTER_KERNEL(mean_raw,
GPU,
ALL_LAYOUT,
phi::MeanRawKernel,
float,
double,
bool,
float16,
int,
int64_t) {}
PD_REGISTER_KERNEL(prod_raw,
GPU,
ALL_LAYOUT,
phi::ProdRawKernel,
float,
double,
int,
int64_t) {}
PD_REGISTER_KERNEL(
max_raw, GPU, ALL_LAYOUT, phi::MaxRawKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
min_raw, GPU, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(all_raw, GPU, ALL_LAYOUT, phi::AllRawKernel, bool) {}
PD_REGISTER_KERNEL(any_raw, GPU, ALL_LAYOUT, phi::AnyRawKernel, bool) {}
......@@ -14,7 +14,7 @@
#pragma once
#include "paddle/phi/kernels/reduce_grad_kernel.h"
#include "paddle/phi/kernels/reduce_max_grad_kernel.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
......
......@@ -14,7 +14,7 @@
#pragma once
#include "paddle/phi/kernels/reduce_grad_kernel.h"
#include "paddle/phi/kernels/reduce_min_grad_kernel.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
......
......@@ -14,7 +14,7 @@
#pragma once
#include "paddle/phi/kernels/reduce_grad_kernel.h"
#include "paddle/phi/kernels/reduce_prod_grad_kernel.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_all_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void AllKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
AllRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(all, CPU, ALL_LAYOUT, phi::AllKernel, bool) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(all, GPU, ALL_LAYOUT, phi::AllKernel, bool) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void AllKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_any_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void AnyKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
AnyRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(any, CPU, ALL_LAYOUT, phi::AnyKernel, bool) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(any, GPU, ALL_LAYOUT, phi::AnyKernel, bool) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void AnyKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ReduceMaxGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MaxRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
max, CPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(
max, GPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_mean_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void MeanKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MeanRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
mean, CPU, ALL_LAYOUT, phi::MeanKernel, float, double, bool) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(mean,
GPU,
ALL_LAYOUT,
phi::MeanKernel,
float,
double,
bool,
int,
int64_t,
phi::dtype::float16) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/unary.h"
namespace phi {
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MeanKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
DenseTensor Mean(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& axis,
bool keep_dim) {
DenseTensor dense_out;
MetaTensor meta_out(&dense_out);
SumRawInferMeta(x, axis, keep_dim, false, x.dtype(), &meta_out);
MeanKernel<T, Context>(dev_ctx, x, axis, keep_dim, &dense_out);
return dense_out;
}
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ReduceMinGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_min_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void MinKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MinRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
min, CPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(
min, GPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MinKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
} // namespace phi
......@@ -18,24 +18,6 @@
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ReduceSumGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
template <typename T, typename Context>
void ReduceProdGradKernel(const Context& dev_ctx,
const DenseTensor& x,
......@@ -45,25 +27,4 @@ void ReduceProdGradKernel(const Context& dev_ctx,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
template <typename T, typename Context>
void ReduceMaxGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
template <typename T, typename Context>
void ReduceMinGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_prod_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void ProdKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
ProdRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
prod, CPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(
prod, GPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {}
#endif
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void ReduceProdKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
void ProdKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ReduceSumGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad);
} // namespace phi
......@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
......@@ -30,74 +30,11 @@ void SumKernel(const Context& dev_ctx,
SumRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out_dtype, out);
}
template <typename T, typename Context>
void MeanKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MeanRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void ProdKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
ProdRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MaxRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void MinKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
MinRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void AllKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
AllRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
template <typename T, typename Context>
void AnyKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out) {
bool reduce_all = false;
AnyRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
}
} // namespace phi
using complex64 = ::phi::dtype::complex<float>;
using complex128 = ::phi::dtype::complex<double>;
PD_REGISTER_KERNEL(
mean, CPU, ALL_LAYOUT, phi::MeanKernel, float, double, bool) {}
PD_REGISTER_KERNEL(sum,
CPU,
ALL_LAYOUT,
......@@ -114,28 +51,7 @@ PD_REGISTER_KERNEL(sum,
kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}
PD_REGISTER_KERNEL(
prod, CPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
max, CPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
min, CPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(all, CPU, ALL_LAYOUT, phi::AllKernel, bool) {}
PD_REGISTER_KERNEL(any, CPU, ALL_LAYOUT, phi::AnyKernel, bool) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(mean,
GPU,
ALL_LAYOUT,
phi::MeanKernel,
float,
double,
bool,
int,
int64_t,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(sum,
GPU,
ALL_LAYOUT,
......@@ -152,14 +68,4 @@ PD_REGISTER_KERNEL(sum,
complex128) {
kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}
PD_REGISTER_KERNEL(
prod, GPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
max, GPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(
min, GPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(all, GPU, ALL_LAYOUT, phi::AllKernel, bool) {}
PD_REGISTER_KERNEL(any, GPU, ALL_LAYOUT, phi::AnyKernel, bool) {}
#endif
......@@ -27,54 +27,6 @@ void SumRawKernel(const Context& dev_ctx,
DataType out_dtype,
DenseTensor* out);
template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void SumKernel(const Context& dev_ctx,
const DenseTensor& x,
......@@ -83,60 +35,6 @@ void SumKernel(const Context& dev_ctx,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void MeanKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void ProdKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void MinKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void AnyKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
void AllKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& dims,
bool keep_dim,
DenseTensor* out);
template <typename T, typename Context>
DenseTensor Mean(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<int64_t>& axis,
bool keep_dim) {
DenseTensor dense_out;
MetaTensor meta_out(&dense_out);
SumRawInferMeta(x, axis, keep_dim, false, x.dtype(), &meta_out);
MeanKernel<T, Context>(dev_ctx, x, axis, keep_dim, &dense_out);
return dense_out;
}
template <typename T, typename Context>
DenseTensor Sum(const Context& dev_ctx,
const DenseTensor& x,
......
......@@ -15,7 +15,7 @@ limitations under the License. */
#include <gtest/gtest.h>
#include <memory>
#include "paddle/phi/kernels/reduce_kernel.h"
#include "paddle/phi/kernels/reduce_mean_kernel.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/lib/utils/allocator.h"
......
......@@ -15,7 +15,7 @@ limitations under the License. */
#include <gtest/gtest.h>
#include <memory>
#include "paddle/phi/kernels/reduce_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/lib/utils/allocator.h"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册