MathFunctions.cpp 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MathFunctions.h"
#include "hl_matrix_apply.cuh"
Y
Yu Yang 已提交
17
#include "hl_matrix_ops.cuh"
L
liaogang 已提交
18
#include "paddle/utils/DynamicLoader.h"
L
liaogang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31

namespace dynload {

std::once_flag lapack_dso_flag;
void* lapack_dso_handle = nullptr;

/**
 * The following macro definition can generate structs
 * (for each function) to dynamic load lapack routine
 * via operator overloading.
 *
 * note: default dynamic linked libs
 */
32 33 34 35 36

// The argument for stringizing operator is not macro-expanded first.
// We have to use two levels of macro to do the expansion.
// See https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html
#define STR(x) #x
L
liaogang 已提交
37 38 39

// clang-format off
#ifndef LAPACK_FOUND
L
liaogang 已提交
40 41 42
#define DYNAMIC_LOAD_LAPACK_WRAP(__name)                                       \
  struct DynLoad__##__name {                                                   \
    template <typename... Args>                                                \
L
liaogang 已提交
43
    auto operator()(Args... args) -> decltype(__name(args...)) {               \
L
liaogang 已提交
44 45
      using lapack_func = decltype(__name(args...)) (*)(Args...);              \
      std::call_once(lapack_dso_flag, GetLapackDsoHandle, &lapack_dso_handle); \
46 47 48
      void* p_##__name = dlsym(lapack_dso_handle, STR(__name));                \
      CHECK(p_##__name) << "Cannot find symbol " << STR(__name)                \
                        << " in liblapack.so";                                 \
L
liaogang 已提交
49 50 51
      return reinterpret_cast<lapack_func>(p_##__name)(args...);               \
    }                                                                          \
  } __name;  // struct DynLoad__##__name
L
liaogang 已提交
52 53 54 55 56 57 58 59 60
#else
#define DYNAMIC_LOAD_LAPACK_WRAP(__name)                                       \
  struct DynLoad__##__name {                                                   \
    template <typename... Args>                                                \
    auto operator()(Args... args) -> decltype(__name(args...)) {               \
      return __name(args...);                                                  \
    }                                                                          \
  } __name;  // struct DynLoad__##__name
#endif
L
liaogang 已提交
61 62

#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
63 64 65 66
  #define  PADDLE_SGETRF  clapack_sgetrf
  #define  PADDLE_DGETRF  clapack_dgetrf
  #define  PADDLE_SGETRI  clapack_sgetri
  #define  PADDLE_DGETRI  clapack_dgetri
L
liaogang 已提交
67
#else
L
liaogang 已提交
68 69 70 71
  #define  PADDLE_SGETRF  LAPACKE_sgetrf
  #define  PADDLE_DGETRF  LAPACKE_dgetrf
  #define  PADDLE_SGETRI  LAPACKE_sgetri
  #define  PADDLE_DGETRI  LAPACKE_dgetri
72
#endif
L
liaogang 已提交
73 74 75 76 77 78 79 80

#define LAPACK_ROUTINE_EACH(__macro)       \
  __macro(PADDLE_SGETRF)                   \
  __macro(PADDLE_DGETRF)                   \
  __macro(PADDLE_SGETRI)                   \
  __macro(PADDLE_DGETRI)
// clang-format on

L
liaogang 已提交
81 82
LAPACK_ROUTINE_EACH(DYNAMIC_LOAD_LAPACK_WRAP)

L
liaogang 已提交
83
}  // namespace dynload
Z
zhangjinchao01 已提交
84 85 86

namespace paddle {

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
template <>
void gemm<float>(const CBLAS_TRANSPOSE transA,
                 const CBLAS_TRANSPOSE transB,
                 const int M,
                 const int N,
                 const int K,
                 const float alpha,
                 const float* A,
                 const int lda,
                 const float* B,
                 const int ldb,
                 const float beta,
                 float* C,
                 const int ldc) {
  cblas_sgemm(CblasRowMajor,
              transA,
              transB,
              M,
              N,
              K,
              alpha,
              A,
              lda,
              B,
              ldb,
              beta,
              C,
              ldc);
}

template <>
void gemm<double>(const CBLAS_TRANSPOSE transA,
                  const CBLAS_TRANSPOSE transB,
                  const int M,
                  const int N,
                  const int K,
                  const double alpha,
                  const double* A,
                  const int lda,
                  const double* B,
                  const int ldb,
                  const double beta,
                  double* C,
                  const int ldc) {
  cblas_dgemm(CblasRowMajor,
              transA,
              transB,
              M,
              N,
              K,
              alpha,
              A,
              lda,
              B,
              ldb,
              beta,
              C,
              ldc);
}

template <>
int getrf<float>(const CBLAS_ORDER order,
                 const int M,
                 const int N,
                 float* A,
                 const int lda,
                 int* ipiv) {
L
liaogang 已提交
154
  return dynload::PADDLE_SGETRF(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
155 156
}

157 158 159 160 161 162 163
template <>
int getrf<double>(const CBLAS_ORDER order,
                  const int M,
                  const int N,
                  double* A,
                  const int lda,
                  int* ipiv) {
L
liaogang 已提交
164
  return dynload::PADDLE_DGETRF(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
165 166
}

167 168 169 170 171 172
template <>
int getri<float>(const CBLAS_ORDER order,
                 const int N,
                 float* A,
                 const int lda,
                 const int* ipiv) {
L
liaogang 已提交
173
  return dynload::PADDLE_SGETRI(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
174 175
}

176 177 178 179 180 181
template <>
int getri<double>(const CBLAS_ORDER order,
                  const int N,
                  double* A,
                  const int lda,
                  const int* ipiv) {
L
liaogang 已提交
182
  return dynload::PADDLE_DGETRI(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
183 184
}

185
template <>
Z
zhangjinchao01 已提交
186 187 188 189
void axpy<float>(const int n, const float alpha, const float* x, float* y) {
  cblas_saxpy(n, alpha, x, 1, y, 1);
}

190
template <>
Z
zhangjinchao01 已提交
191 192 193 194
void axpy<double>(const int n, const double alpha, const double* x, double* y) {
  cblas_daxpy(n, alpha, x, 1, y, 1);
}

195
template <>
Z
zhangjinchao01 已提交
196 197 198 199
float dotProduct<float>(const int n, const float* x, const float* y) {
  return cblas_sdot(n, x, 1, y, 1);
}

200
template <>
Z
zhangjinchao01 已提交
201 202 203 204
double dotProduct<double>(const int n, const double* x, const double* y) {
  return cblas_ddot(n, x, 1, y, 1);
}

T
tensor-tang 已提交
205
#if defined(PADDLE_USE_MKL) || defined(PADDLE_USE_MKLML)
Z
zhangjinchao01 已提交
206

207
template <>
Z
zhangjinchao01 已提交
208 209 210 211
void vExp<float>(const int n, const float* a, float* r) {
  vsExp(n, a, r);
}

212
template <>
Z
zhangjinchao01 已提交
213 214 215 216
void vExp<double>(const int n, const double* a, double* r) {
  vdExp(n, a, r);
}

217
template <>
Z
zhangjinchao01 已提交
218 219 220 221
void vPow<float>(const int n, const float* a, const float b, float* r) {
  vsPowx(n, a, b, r);
}

222
template <>
Z
zhangjinchao01 已提交
223 224 225 226
void vPow<double>(const int n, const double* a, const double b, double* r) {
  vdPowx(n, a, b, r);
}

227
template <>
Z
zhangjinchao01 已提交
228 229 230 231
void vLog<float>(const int n, const float* a, float* r) {
  vsLn(n, a, r);
}

232
template <>
Z
zhangjinchao01 已提交
233 234 235 236
void vLog<double>(const int n, const double* a, double* r) {
  vdLn(n, a, r);
}

237
template <>
Z
zhangjinchao01 已提交
238 239 240 241
void vAdd<float>(const int n, const float* a, const float* b, float* r) {
  vsAdd(n, a, b, r);
}

242
template <>
Z
zhangjinchao01 已提交
243 244 245
void vAdd<double>(const int n, const double* a, const double* b, double* r) {
  vdAdd(n, a, b, r);
}
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
#else

DEFINE_MATRIX_BINARY_OP(vExp, b = std::exp(a));
template <class T>
void vExp(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vExp<T>, 0, 0>(
      binary::vExp<T>(), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_BINARY_OP(vLog, b = std::log(a));
template <class T>
void vLog(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog<T>, 0, 0>(
      binary::vLog<T>(), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(vPow, ONE_PARAMETER, b = std::pow(a, p));
template <class T>
void vPow(const int n, const T* a, const T b, T* r) {
  hl_cpu_apply_binary_op<T, binary::vPow<T>, 0, 0>(
      binary::vPow<T>(b), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_TERNARY_OP(vAdd, c = a + b);
template <class T>
void vAdd(const int n, const T* a, const T* b, T* r) {
  hl_cpu_apply_ternary_op<T, ternary::vAdd<T>, 0, 0>(ternary::vAdd<T>(),
                                                     const_cast<T*>(a),
                                                     const_cast<T*>(b),
                                                     r,
                                                     1,
                                                     n,
                                                     n,
                                                     n,
                                                     n);
}

template void vExp(const int n, const float* a, float* r);
template void vExp(const int n, const double* a, double* r);
template void vLog(const int n, const float* a, float* r);
template void vLog(const int n, const double* a, double* r);
template void vPow(const int n, const float* a, const float b, float* r);
template void vPow(const int n, const double* a, const double b, double* r);
template void vAdd(const int n, const float* a, const float* b, float* r);
template void vAdd(const int n, const double* a, const double* b, double* r);
Z
zhangjinchao01 已提交
291

292 293 294
#endif

#ifdef PADDLE_USE_MKL
295
template <>
Z
zhangjinchao01 已提交
296 297 298 299
void vInvSqrt<float>(const int n, const float* a, float* r) {
  vsInvSqrt(n, a, r);
}

300
template <>
Z
zhangjinchao01 已提交
301 302 303 304
void vInvSqrt<double>(const int n, const double* a, double* r) {
  vdInvSqrt(n, a, r);
}

305
template <>
Z
zhangjinchao01 已提交
306 307 308 309
void vLog1p<float>(const int n, const float* a, float* r) {
  vsLog1p(n, a, r);
}

310
template <>
Z
zhangjinchao01 已提交
311 312 313 314
void vLog1p<double>(const int n, const double* a, double* r) {
  vdLog1p(n, a, r);
}

315
template <>
Z
zhangjinchao01 已提交
316 317 318 319
void vTanh<float>(const int n, const float* a, float* r) {
  vsTanh(n, a, r);
}

320
template <>
Z
zhangjinchao01 已提交
321 322 323 324 325 326
void vTanh<double>(const int n, const double* a, double* r) {
  vdTanh(n, a, r);
}
#else

DEFINE_MATRIX_BINARY_OP(vInvSqrt, b = 1.0f / std::sqrt(a));
327
template <class T>
Z
zhangjinchao01 已提交
328 329
void vInvSqrt(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vInvSqrt<T>, 0, 0>(
330
      binary::vInvSqrt<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
331 332 333
}

DEFINE_MATRIX_BINARY_OP(vLog1p, b = std::log(1.0f + a));
334
template <class T>
Z
zhangjinchao01 已提交
335 336
void vLog1p(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog1p<T>, 0, 0>(
337
      binary::vLog1p<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
338 339
}

340 341 342 343
DEFINE_MATRIX_BINARY_OP(vTanh, T tmp = -2.0 * a;
                        tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp;
                        b = 2.0 / (1.0 + std::exp(tmp)) - 1.0);
template <class T>
Z
zhangjinchao01 已提交
344 345
void vTanh(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vTanh<T>, 0, 0>(
346
      binary::vTanh<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
347 348 349 350 351 352 353 354 355 356 357 358
}

template void vInvSqrt(const int n, const double* a, double* r);
template void vInvSqrt(const int n, const float* a, float* r);
template void vLog1p(const int n, const float* a, float* r);
template void vLog1p(const int n, const double* a, double* r);
template void vTanh(const int n, const float* a, float* r);
template void vTanh(const int n, const double* a, double* r);

#endif

}  // namespace paddle