MathFunctions.cpp 10.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MathFunctions.h"
#include "hl_matrix_apply.cuh"
Y
Yu Yang 已提交
17
#include "hl_matrix_ops.cuh"
L
liaogang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include "paddle/utils/DynamicLoad.h"

namespace dynload {

std::once_flag lapack_dso_flag;
void* lapack_dso_handle = nullptr;

/**
 * The following macro definition can generate structs
 * (for each function) to dynamic load lapack routine
 * via operator overloading.
 *
 * note: default dynamic linked libs
 */
#define DYNAMIC_LOAD_LAPACK_WRAP(__name)                                       \
  struct DynLoad__##__name {                                                   \
    template <typename... Args>                                                \
    int operator()(Args... args)->decltype(__name(args...)) {                  \
      using lapack_func = decltype(__name(args...)) (*)(Args...);              \
      std::call_once(lapack_dso_flag, GetLapackDsoHandle, &lapack_dso_handle); \
      void* p_##__name = dlsym(lapack_dso_handle, #__name);                    \
      return reinterpret_cast<lapack_func>(p_##__name)(args...);               \
    }                                                                          \
  } __name;  // struct DynLoad__##__name

// clang-format off
#ifdef PADDLE_USE_LAPACK
#ifdef PADDLE_USE_ATLAS
  #define LAPACK_ROUTINE_EACH(__macro)        \
    __macro(clapack_sgetrf)                   \
    __macro(clapack_dgetrf)                   \
    __macro(clapack_sgetri)                   \
    __macro(clapack_dgetri)          
#else
  #define LAPACK_ROUTINE_EACH(__macro)        \
    __macro(LAPACKE_sgetrf)                   \
    __macro(LAPACKE_dgetrf)                   \
    __macro(LAPACKE_sgetri)                   \
    __macro(LAPACKE_dgetri)          
#endif
#endif
// clang-format on
}  // namespace dynload
Z
zhangjinchao01 已提交
61 62 63

namespace paddle {

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
template <>
void gemm<float>(const CBLAS_TRANSPOSE transA,
                 const CBLAS_TRANSPOSE transB,
                 const int M,
                 const int N,
                 const int K,
                 const float alpha,
                 const float* A,
                 const int lda,
                 const float* B,
                 const int ldb,
                 const float beta,
                 float* C,
                 const int ldc) {
  cblas_sgemm(CblasRowMajor,
              transA,
              transB,
              M,
              N,
              K,
              alpha,
              A,
              lda,
              B,
              ldb,
              beta,
              C,
              ldc);
}

template <>
void gemm<double>(const CBLAS_TRANSPOSE transA,
                  const CBLAS_TRANSPOSE transB,
                  const int M,
                  const int N,
                  const int K,
                  const double alpha,
                  const double* A,
                  const int lda,
                  const double* B,
                  const int ldb,
                  const double beta,
                  double* C,
                  const int ldc) {
  cblas_dgemm(CblasRowMajor,
              transA,
              transB,
              M,
              N,
              K,
              alpha,
              A,
              lda,
              B,
              ldb,
              beta,
              C,
              ldc);
}

template <>
int getrf<float>(const CBLAS_ORDER order,
                 const int M,
                 const int N,
                 float* A,
                 const int lda,
                 int* ipiv) {
131
#ifdef PADDLE_USE_LAPACK
L
lzhao4ever 已提交
132
#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
133
  return dynload::clapack_sgetrf(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
134
#else
L
liaogang 已提交
135
  return dynload::LAPACKE_sgetrf(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
136
#endif
137 138 139 140
#else
  LOG(FATAL) << "Not implemented";
#endif
  return 0;
L
lzhao4ever 已提交
141 142
}

143 144 145 146 147 148 149
template <>
int getrf<double>(const CBLAS_ORDER order,
                  const int M,
                  const int N,
                  double* A,
                  const int lda,
                  int* ipiv) {
150
#ifdef PADDLE_USE_LAPACK
L
lzhao4ever 已提交
151
#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
152
  return dynload::clapack_dgetrf(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
153
#else
L
liaogang 已提交
154
  return dynload::LAPACKE_dgetrf(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
155
#endif
156
#else
L
Liu Yiqun 已提交
157
  LOG(FATAL) << "Not implemented";
158 159
#endif
  return 0;
L
lzhao4ever 已提交
160 161
}

162 163 164 165 166 167
template <>
int getri<float>(const CBLAS_ORDER order,
                 const int N,
                 float* A,
                 const int lda,
                 const int* ipiv) {
168
#ifdef PADDLE_USE_LAPACK
L
lzhao4ever 已提交
169
#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
170
  return dynload::clapack_sgetri(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
171
#else
L
liaogang 已提交
172
  return dynload::LAPACKE_sgetri(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
173
#endif
174
#else
L
Liu Yiqun 已提交
175
  LOG(FATAL) << "Not implemented";
176 177
#endif
  return 0;
L
lzhao4ever 已提交
178 179
}

180 181 182 183 184 185
template <>
int getri<double>(const CBLAS_ORDER order,
                  const int N,
                  double* A,
                  const int lda,
                  const int* ipiv) {
186
#ifdef PADDLE_USE_LAPACK
L
lzhao4ever 已提交
187
#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
188
  return dynload::clapack_dgetri(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
189
#else
L
liaogang 已提交
190
  return dynload::LAPACKE_dgetri(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
191
#endif
192
#else
L
Liu Yiqun 已提交
193
  LOG(FATAL) << "Not implemented";
194 195
#endif
  return 0;
L
lzhao4ever 已提交
196 197
}

198
template <>
Z
zhangjinchao01 已提交
199 200 201 202
void axpy<float>(const int n, const float alpha, const float* x, float* y) {
  cblas_saxpy(n, alpha, x, 1, y, 1);
}

203
template <>
Z
zhangjinchao01 已提交
204 205 206 207
void axpy<double>(const int n, const double alpha, const double* x, double* y) {
  cblas_daxpy(n, alpha, x, 1, y, 1);
}

208
template <>
Z
zhangjinchao01 已提交
209 210 211 212
float dotProduct<float>(const int n, const float* x, const float* y) {
  return cblas_sdot(n, x, 1, y, 1);
}

213
template <>
Z
zhangjinchao01 已提交
214 215 216 217 218 219
double dotProduct<double>(const int n, const double* x, const double* y) {
  return cblas_ddot(n, x, 1, y, 1);
}

#ifdef PADDLE_USE_MKL

220
template <>
Z
zhangjinchao01 已提交
221 222 223 224
void vExp<float>(const int n, const float* a, float* r) {
  vsExp(n, a, r);
}

225
template <>
Z
zhangjinchao01 已提交
226 227 228 229
void vExp<double>(const int n, const double* a, double* r) {
  vdExp(n, a, r);
}

230
template <>
Z
zhangjinchao01 已提交
231 232 233 234
void vPow<float>(const int n, const float* a, const float b, float* r) {
  vsPowx(n, a, b, r);
}

235
template <>
Z
zhangjinchao01 已提交
236 237 238 239
void vPow<double>(const int n, const double* a, const double b, double* r) {
  vdPowx(n, a, b, r);
}

240
template <>
Z
zhangjinchao01 已提交
241 242 243 244
void vLog<float>(const int n, const float* a, float* r) {
  vsLn(n, a, r);
}

245
template <>
Z
zhangjinchao01 已提交
246 247 248 249
void vLog<double>(const int n, const double* a, double* r) {
  vdLn(n, a, r);
}

250
template <>
Z
zhangjinchao01 已提交
251 252 253 254
void vAdd<float>(const int n, const float* a, const float* b, float* r) {
  vsAdd(n, a, b, r);
}

255
template <>
Z
zhangjinchao01 已提交
256 257 258 259
void vAdd<double>(const int n, const double* a, const double* b, double* r) {
  vdAdd(n, a, b, r);
}

260
template <>
Z
zhangjinchao01 已提交
261 262 263 264
void vInvSqrt<float>(const int n, const float* a, float* r) {
  vsInvSqrt(n, a, r);
}

265
template <>
Z
zhangjinchao01 已提交
266 267 268 269
void vInvSqrt<double>(const int n, const double* a, double* r) {
  vdInvSqrt(n, a, r);
}

270
template <>
Z
zhangjinchao01 已提交
271 272 273 274
void vLog1p<float>(const int n, const float* a, float* r) {
  vsLog1p(n, a, r);
}

275
template <>
Z
zhangjinchao01 已提交
276 277 278 279
void vLog1p<double>(const int n, const double* a, double* r) {
  vdLog1p(n, a, r);
}

280
template <>
Z
zhangjinchao01 已提交
281 282 283 284
void vTanh<float>(const int n, const float* a, float* r) {
  vsTanh(n, a, r);
}

285
template <>
Z
zhangjinchao01 已提交
286 287 288 289 290 291
void vTanh<double>(const int n, const double* a, double* r) {
  vdTanh(n, a, r);
}
#else

DEFINE_MATRIX_BINARY_OP(vExp, b = std::exp(a));
292
template <class T>
Z
zhangjinchao01 已提交
293 294
void vExp(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vExp<T>, 0, 0>(
295
      binary::vExp<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
296 297 298
}

DEFINE_MATRIX_BINARY_OP(vLog, b = std::log(a));
299
template <class T>
Z
zhangjinchao01 已提交
300 301
void vLog(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog<T>, 0, 0>(
302
      binary::vLog<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
303 304 305
}

DEFINE_MATRIX_BINARY_OP(vInvSqrt, b = 1.0f / std::sqrt(a));
306
template <class T>
Z
zhangjinchao01 已提交
307 308
void vInvSqrt(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vInvSqrt<T>, 0, 0>(
309
      binary::vInvSqrt<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
310 311 312
}

DEFINE_MATRIX_BINARY_OP(vLog1p, b = std::log(1.0f + a));
313
template <class T>
Z
zhangjinchao01 已提交
314 315
void vLog1p(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog1p<T>, 0, 0>(
316
      binary::vLog1p<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
317 318
}

319 320 321 322
DEFINE_MATRIX_BINARY_OP(vTanh, T tmp = -2.0 * a;
                        tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp;
                        b = 2.0 / (1.0 + std::exp(tmp)) - 1.0);
template <class T>
Z
zhangjinchao01 已提交
323 324
void vTanh(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vTanh<T>, 0, 0>(
325
      binary::vTanh<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
326 327 328
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(vPow, ONE_PARAMETER, b = std::pow(a, p));
329
template <class T>
Z
zhangjinchao01 已提交
330 331
void vPow(const int n, const T* a, const T b, T* r) {
  hl_cpu_apply_binary_op<T, binary::vPow<T>, 0, 0>(
332
      binary::vPow<T>(b), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
333 334 335
}

DEFINE_MATRIX_TERNARY_OP(vAdd, c = a + b);
336
template <class T>
Z
zhangjinchao01 已提交
337 338
void vAdd(const int n, const T* a, const T* b, T* r) {
  hl_cpu_apply_ternary_op<T, ternary::vAdd<T>, 0, 0>(ternary::vAdd<T>(),
339 340 341 342 343 344 345 346
                                                     const_cast<T*>(a),
                                                     const_cast<T*>(b),
                                                     r,
                                                     1,
                                                     n,
                                                     n,
                                                     n,
                                                     n);
Z
zhangjinchao01 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

template void vExp(const int n, const float* a, float* r);
template void vExp(const int n, const double* a, double* r);
template void vLog(const int n, const float* a, float* r);
template void vLog(const int n, const double* a, double* r);
template void vInvSqrt(const int n, const double* a, double* r);
template void vInvSqrt(const int n, const float* a, float* r);
template void vLog1p(const int n, const float* a, float* r);
template void vLog1p(const int n, const double* a, double* r);
template void vTanh(const int n, const float* a, float* r);
template void vTanh(const int n, const double* a, double* r);
template void vPow(const int n, const float* a, const float b, float* r);
template void vPow(const int n, const double* a, const double b, double* r);
template void vAdd(const int n, const float* a, const float* b, float* r);
template void vAdd(const int n, const double* a, const double* b, double* r);

#endif

}  // namespace paddle