parallel_executor.cc 15.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

P
peizhilin 已提交
24
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
25
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
26
#endif
Y
Yang Yang 已提交
27

Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
29
#include "paddle/fluid/framework/details/multi_devices_helper.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
31
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40 41
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

D
dzhwinter 已提交
97
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
98 99
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
100
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
101
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
102

P
peizhilin 已提交
103
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
104
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
105
#endif
C
chengduoZH 已提交
106 107
  bool own_local_scope_;
  bool use_cuda_;
108
  bool use_all_reduce_;
S
sneaxiy 已提交
109

S
sneaxiy 已提交
110 111 112 113 114 115
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
116 117
};

S
sneaxiy 已提交
118 119 120 121 122 123 124
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
125
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
126
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
127 128
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
129 130
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
131
      } else {
S
sneaxiy 已提交
132 133
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
134 135
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
136
    } else {
S
sneaxiy 已提交
137
#endif
S
sneaxiy 已提交
138 139 140 141 142 143 144
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
145 146 147 148
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
149
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
150 151
  }

S
sneaxiy 已提交
152
  if (!gcs_.empty()) {
S
sneaxiy 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
D
dzhwinter 已提交
174 175 176 177 178 179 180 181

    if (build_strategy_.memory_early_delete_) {
      auto early_delete_pass =
          ir::PassRegistry::Instance().Get("memory_early_delete_pass");
      early_delete_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = early_delete_pass->Apply(std::move(graph));
    }
    VLOG(10) << "MemoryEarlyDeletePass Applied.";
S
sneaxiy 已提交
182 183 184 185 186
  }

  return graph;
}

187 188 189 190
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
191
ParallelExecutor::ParallelExecutor(
192
    const std::vector<platform::Place> &places,
193 194
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
195
    Scope *scope, const std::vector<Scope *> &local_scopes,
196
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
197
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
198
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
199
  member_->global_scope_ = scope;
200
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
201
  member_->build_strategy_ = build_strategy;
202 203 204 205 206 207 208 209
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
210

211
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
212
  // Create local scopes
213
  if (local_scopes.empty()) {
C
chengduoZH 已提交
214
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
215 216
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
217
      member_->local_scopes_.emplace_back(&scope->NewScope());
218 219
    }
  } else {
C
chengduoZH 已提交
220
    member_->own_local_scope_ = false;
221 222
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
223
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
224
    }
Y
Yu Yang 已提交
225 226
  }

C
chengduoZH 已提交
227
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
228
// Bcast Parameters to all GPUs
P
peizhilin 已提交
229
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduoZH 已提交
230 231 232 233 234 235 236 237 238
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
239
#endif
C
chengduoZH 已提交
240 241 242
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
243
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
244
  }
245
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
246

247
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
X
Xin Pan 已提交
248
// ncclOp
P
peizhilin 已提交
249
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
250
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
251 252
      main_program, member_->places_, loss_var_name, member_->local_scopes_,
      member_->use_cuda_, member_->nccl_ctxs_.get());
S
sneaxiy 已提交
253 254 255
#else
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
256
                           member_->local_scopes_, member_->use_cuda_);
S
sneaxiy 已提交
257
#endif
S
sneaxiy 已提交
258 259
  auto max_memory_size = GetEagerDeletionThreshold();
  if (max_memory_size >= 0) {
S
sneaxiy 已提交
260 261
    graph = member_->PrepareGCAndRefCnts(std::move(graph),
                                         static_cast<size_t>(max_memory_size));
S
sneaxiy 已提交
262
  }
X
Xin Pan 已提交
263

264 265 266 267 268 269 270 271 272 273 274
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  std::vector<details::VariableInfo> var_infos;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
    }
  }
W
Wu Yi 已提交
275 276
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
C
chengduo 已提交
277 278 279 280 281 282 283 284 285 286 287
    size_t graph_num = ir::GraphNum(*graph);
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
          << ir::GraphNum(*graph)
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
288 289
  }

Y
yuyang18 已提交
290 291
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
D
dzhwinter 已提交
292 293
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graph)));
Y
yuyang18 已提交
294 295
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
D
dzhwinter 已提交
296 297
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graph)));
C
chengduoZH 已提交
298
  }
Y
yuyang18 已提交
299 300 301 302

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
303 304
}

Y
Yancey1989 已提交
305
void ParallelExecutor::BCastParamsToDevices(
306
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
307
  // the initializing bcast, all vars would be bcast from device(0).
308
  for (auto &var : vars) {
X
Xin Pan 已提交
309
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
310
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
311 312 313 314
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
315
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
316
      VLOG(3) << "one in var not inited, return!";
317 318
      continue;
    }
319 320
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
321
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
322
      std::vector<void *> buffers;
C
chengduo 已提交
323
      buffers.reserve(member_->places_.size());
324 325 326 327 328
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
329

X
Xin Pan 已提交
330
        if (i == 0) {
331 332
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
333
          auto local_scope = member_->local_scopes_[i];
334
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
335
          t->Resize(dims);
336
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
337
        }
338
        buffers.push_back(buffer);
339
      }
340

341 342 343 344 345 346
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
347 348
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
349
        }
350
        member_->nccl_ctxs_->WaitAll();
351
      }
C
chengduoZH 已提交
352 353 354
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
355 356
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
357
      for (size_t i = 1; i < member_->places_.size(); ++i) {
358 359
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
360 361 362 363

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
364 365 366 367 368 369
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
370
      }
Y
Stash  
Yu Yang 已提交
371 372
    }
  }
Y
Yu Yang 已提交
373
}
Y
Yu Yang 已提交
374

Y
Yu Yang 已提交
375 376
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
377 378 379 380 381 382
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif

X
Xin Pan 已提交
383
  platform::RecordBlock b(0);
S
sneaxiy 已提交
384 385
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
386
  }
S
sneaxiy 已提交
387 388 389
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
390
}
Y
Yu Yang 已提交
391

Y
Yu Yang 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
411 412 413 414 415
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
416 417
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
418
      auto t =
Y
Yu Yang 已提交
419
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
420 421
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
422 423 424 425
    }
  }
}

426
ParallelExecutor::~ParallelExecutor() {
427 428
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
429
  }
S
sneaxiy 已提交
430
  delete member_;
431 432
}

Y
Yu Yang 已提交
433
}  // namespace framework
Y
Yang Yang 已提交
434
}  // namespace paddle
S
sneaxiy 已提交
435

D
dzhwinter 已提交
436
USE_PASS(memory_early_delete_pass);
S
sneaxiy 已提交
437
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
438
USE_PASS(eager_deletion_pass);