pool_mkldnn_op.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
xiaoli.liu@intel.com 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24
using framework::DataLayout;
using mkldnn::memory;
25
using mkldnn::pooling_backward;
26 27 28 29 30
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
31

32 33 34 35 36 37 38 39 40 41 42 43
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

44 45 46 47
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
48 49 50 51 52

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

68 69
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
70

71 72 73 74 75 76
    auto is_test = ctx.Attr<bool>("is_test");

    platform::PoolingMKLDNNHandler<T> handler(
        src_tz, dst_tz, ksize, strides, paddings, pooling_type,
        ctx.Attr<bool>("ceil_mode"), input->format(),
        paddle::framework::ToMKLDNNDataType(input->type()), is_test, dev_ctx,
77
        ctx.GetPlace(), ctx.op().Output("Out"), ctx.Attr<bool>("exclusive"));
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

    std::shared_ptr<mkldnn::pooling_forward> pool_p;
    std::shared_ptr<mkldnn::memory> workspace_memory;
    if ((is_test == false) && (pooling_type == "max")) {
      // Training
      workspace_memory = handler.AcquireWorkspaceMemory();
      pool_p = handler.AcquireForwardPrimitive(*src_memory, *dst_memory,
                                               *workspace_memory);
    } else {
      // Inference
      pool_p = handler.AcquireForwardPrimitive(*src_memory, *dst_memory);
    }
93 94

    // push primitive to stream and wait until it's executed
95
    std::vector<mkldnn::primitive> pipeline{*pool_p};
96 97 98
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
99
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
100 101 102 103 104 105 106 107 108 109 110 111 112 113
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

114 115 116 117
    PADDLE_ENFORCE_EQ(in_x->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(in_x->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
118

119 120 121 122 123 124 125
    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input output_grad tensor");
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
126 127
        "is_test attribute should be set to False in training phase.");

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

143 144
    std::vector<mkldnn::primitive> pipeline;

145 146
    auto diff_src_tz = paddle::framework::vectorize<int>(in_x_grad->dims());
    auto diff_dst_tz = paddle::framework::vectorize<int>(out_grad->dims());
147

148 149
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
150
    const std::string key = platform::CreateKey(
151 152
        diff_src_tz, pooling_type, ksize, strides, paddings,
        memory::data_type::f32, in_x->format(), ctx.op().Input("Out"));
153

154 155 156 157
    platform::PoolingMKLDNNHandler<T> handler(
        diff_dst_tz, diff_src_tz, ksize, strides, paddings, pooling_type,
        ctx.Attr<bool>("ceil_mode"), in_x->format(), out_grad->format(),
        paddle::framework::ToMKLDNNDataType(out_grad->type()), dev_ctx,
158
        ctx.GetPlace(), ctx.op().Input("Out"), ctx.Attr<bool>("exclusive"));
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

    std::shared_ptr<mkldnn::pooling_backward> pool_bwd_p;
    std::shared_ptr<mkldnn::memory> workspace_memory;
    if (pooling_type == "max") {
      // Max - pooling needs Workspace
      workspace_memory = handler.AcquireWorkspaceMemory();
      pool_bwd_p = handler.AcquireBackwardPrimitive(
          *diff_dst_memory, *workspace_memory, *diff_src_memory);
    } else {
      // Average Pooling
      pool_bwd_p =
          handler.AcquireBackwardPrimitive(*diff_dst_memory, *diff_src_memory);
    }
175

176
    pipeline.push_back(*pool_bwd_p);
177
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
178 179

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
180
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
181 182 183 184 185 186
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

187 188
namespace ops = paddle::operators;

189
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
190 191 192 193
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

194
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
195
                   ops::PoolMKLDNNGradOpKernel<float>);