pool_mkldnn_op.cc 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
xiaoli.liu@intel.com 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24
using framework::DataLayout;
using mkldnn::memory;
25
using mkldnn::pooling_backward;
26 27 28 29 30
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
31

32 33 34 35 36 37 38 39 40 41 42 43
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

44 45 46 47
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
48 49 50 51 52

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

68 69
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    auto is_test = ctx.Attr<bool>("is_test");

    platform::PoolingMKLDNNHandler<T> handler(
        src_tz, dst_tz, ksize, strides, paddings, pooling_type,
        ctx.Attr<bool>("ceil_mode"), input->format(),
        paddle::framework::ToMKLDNNDataType(input->type()), is_test, dev_ctx,
        ctx.GetPlace(), ctx.op().Output("Out"));

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

    std::shared_ptr<mkldnn::pooling_forward> pool_p;
    std::shared_ptr<mkldnn::memory> workspace_memory;
    if ((is_test == false) && (pooling_type == "max")) {
      // Training
      workspace_memory = handler.AcquireWorkspaceMemory();
      pool_p = handler.AcquireForwardPrimitive(*src_memory, *dst_memory,
                                               *workspace_memory);
    } else {
      // Inference
      pool_p = handler.AcquireForwardPrimitive(*src_memory, *dst_memory);
    }
93 94

    // push primitive to stream and wait until it's executed
95
    std::vector<mkldnn::primitive> pipeline{*pool_p};
96 97
    stream(stream::kind::eager).submit(pipeline).wait();

98
    auto output_format =
99
        (MKLDNNMemoryFormat)dst_memory->get_primitive_desc().desc().data.format;
100

101 102
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
103 104 105 106 107 108 109 110 111 112 113 114 115 116
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

117 118 119 120
    PADDLE_ENFORCE_EQ(in_x->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(in_x->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
121

122 123 124 125 126 127 128
    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input output_grad tensor");
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
129 130
        "is_test attribute should be set to False in training phase.");

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

146 147
    std::vector<mkldnn::primitive> pipeline;

148 149
    auto diff_src_tz = paddle::framework::vectorize<int>(in_x_grad->dims());
    auto diff_dst_tz = paddle::framework::vectorize<int>(out_grad->dims());
150

151 152
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
153
    const std::string key = platform::CreateKey(
154 155
        diff_src_tz, pooling_type, ksize, strides, paddings,
        memory::data_type::f32, in_x->format(), ctx.op().Input("Out"));
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    platform::PoolingMKLDNNHandler<T> handler(
        diff_dst_tz, diff_src_tz, ksize, strides, paddings, pooling_type,
        ctx.Attr<bool>("ceil_mode"), in_x->format(), out_grad->format(),
        paddle::framework::ToMKLDNNDataType(out_grad->type()), dev_ctx,
        ctx.GetPlace(), ctx.op().Input("Out"));

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

    std::shared_ptr<mkldnn::pooling_backward> pool_bwd_p;
    std::shared_ptr<mkldnn::memory> workspace_memory;
    if (pooling_type == "max") {
      // Max - pooling needs Workspace
      workspace_memory = handler.AcquireWorkspaceMemory();
      pool_bwd_p = handler.AcquireBackwardPrimitive(
          *diff_dst_memory, *workspace_memory, *diff_src_memory);
    } else {
      // Average Pooling
      pool_bwd_p =
          handler.AcquireBackwardPrimitive(*diff_dst_memory, *diff_src_memory);
    }
178

179
    pipeline.push_back(*pool_bwd_p);
180
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
181

182 183 184 185
    auto in_x_grad_format =
        (MKLDNNMemoryFormat)diff_src_memory->get_primitive_desc()
            .desc()
            .data.format;
186 187
    in_x_grad->set_layout(DataLayout::kMKLDNN);
    in_x_grad->set_format(in_x_grad_format);
188 189 190 191 192 193
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

194 195
namespace ops = paddle::operators;

196
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
197 198 199 200
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

201
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
202
                   ops::PoolMKLDNNGradOpKernel<float>);