lrn_mkldnn_op.cc 8.3 KB
Newer Older
T
Tomasz Patejko 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/platform/mkldnn_reuse.h"
T
Tomasz Patejko 已提交
16 17 18 19 20 21 22

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

23
template <typename T>
24
class LRNMKLDNNHandler
25 26
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::lrn_forward,
                                               dnnl::lrn_backward> {
27 28
 public:
  LRNMKLDNNHandler(const framework::ExecutionContext& ctx,
29 30
                   const dnnl::engine mkldnn_engine, platform::Place cpu_place,
                   const Tensor* input)
31

32 33 34
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::lrn_forward,
                                          dnnl::lrn_backward>(mkldnn_engine,
                                                              cpu_place) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48
    const int n = ctx.Attr<int>("n");
    // MKL-DNN implements LRN in a caffe way:
    // http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
    // Where sum of squares is divided by size of normalization window
    // this is not the case for PaddlePaddle LRN.
    // Hence we need to compensate for this diffrence by
    // multipliing alpha by size of window(n)
    const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");
    bool is_test = ctx.Attr<bool>("is_test");

    auto dims = framework::vectorize(input->dims());

49 50
    auto src_md = dnnl::memory::desc(dims, platform::MKLDNNGetDataType<T>(),
                                     input->format());
51 52

    this->AcquireForwardPrimitiveDescriptor(
53 54 55
        is_test ? dnnl::prop_kind::forward_inference
                : dnnl::prop_kind::forward_training,
        dnnl::algorithm::lrn_across_channels, src_md, n, alpha, beta, k);
56 57 58
  }

  LRNMKLDNNHandler(const framework::ExecutionContext& ctx,
59 60 61 62 63 64
                   const dnnl::engine mkldnn_engine, platform::Place cpu_place,
                   const Tensor* in_x, const Tensor* out_grad,
                   Tensor* in_x_grad)
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::lrn_forward,
                                          dnnl::lrn_backward>(mkldnn_engine,
                                                              cpu_place) {
65 66 67 68 69 70 71 72 73 74 75 76
    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
        platform::errors::PreconditionNotMet(
            "is_test attribute should be set to False in training phase."));

    const int n = ctx.Attr<int>("n");
    const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");

    auto dims = framework::vectorize<int64_t>(in_x->dims());

77 78 79 80
    auto src_md = dnnl::memory::desc(dims, platform::MKLDNNGetDataType<T>(),
                                     in_x->format());
    auto diff_md = dnnl::memory::desc(dims, platform::MKLDNNGetDataType<T>(),
                                      out_grad->format());
81 82

    this->AcquireForwardPrimitiveDescriptor(
83 84
        dnnl::prop_kind::forward_training, dnnl::algorithm::lrn_across_channels,
        src_md, n, alpha, beta, k);
85 86

    this->AcquireBackwardPrimitiveDescriptor(
87
        dnnl::algorithm::lrn_across_channels, src_md, diff_md, n, alpha, beta,
88
        k);
89 90
  }

91
  std::shared_ptr<dnnl::memory> AcquireWorkspaceMemory(Tensor* workspace) {
92 93 94
    T* ptr = workspace->mutable_data<T>(
        this->place_, this->fwd_pd_->workspace_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
95
                                            ptr);
96 97
  }

98
  std::shared_ptr<dnnl::memory> AcquireBackwardWorkspaceMemory(
99 100 101 102
      const Tensor* workspace) {
    const T* workspace_data = workspace->data<T>();
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->workspace_desc(),
103
        platform::to_void_cast<T>(workspace_data));
104 105 106
  }
};

T
Tomasz Patejko 已提交
107 108 109 110
template <typename T>
class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
minqiyang 已提交
111
    const bool is_float_type = std::is_same<T, float>::value;
112 113 114 115 116 117
    PADDLE_ENFORCE_EQ(
        is_float_type, true,
        platform::errors::PreconditionNotMet("DNNL LRN must use float data."));
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL LRN must use CPUPlace"));
118 119 120
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
T
Tomasz Patejko 已提交
121 122 123 124 125

    auto x = ctx.Input<Tensor>("X");
    auto out = ctx.Output<Tensor>("Out");
    auto mid = ctx.Output<Tensor>("MidOut");

126
    LRNMKLDNNHandler<T> handler(ctx, mkldnn_engine, ctx.GetPlace(), x);
J
Jacek Czaja 已提交
127 128 129 130

    auto src_memory = handler.AcquireSrcMemory(x);
    auto dst_memory = handler.AcquireDstMemory(out);

A
Adam 已提交
131 132 133 134 135
    auto lrn_p = handler.AcquireForwardPrimitive();

    auto workspace_memory = handler.AcquireWorkspaceMemory(mid);
    mid->set_layout(framework::DataLayout::kMKLDNN);

136
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
137
    if (!workspace_memory->get_desc().is_zero()) {
138
      mid->set_format(platform::GetMKLDNNFormat(*workspace_memory));
139 140 141
      lrn_p->execute(astream, {{DNNL_ARG_SRC, *src_memory},
                               {DNNL_ARG_DST, *dst_memory},
                               {DNNL_ARG_WORKSPACE, *workspace_memory}});
J
Jacek Czaja 已提交
142
    } else {
143 144
      lrn_p->execute(
          astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}});
A
Adam 已提交
145 146
    }
    astream.wait();
147 148

    out->set_layout(framework::DataLayout::kMKLDNN);
A
Adam 已提交
149
    out->set_format(platform::GetMKLDNNFormat(*dst_memory));
T
Tomasz Patejko 已提交
150 151 152 153 154 155 156
  }
};

template <typename T>
class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
minqiyang 已提交
157
    const bool is_float_type = std::is_same<T, float>::value;
158 159
    PADDLE_ENFORCE_EQ(is_float_type, true,
                      platform::errors::PreconditionNotMet(
J
Jacek Czaja 已提交
160
                          "DNNL LRN GradOpKernel must use float data."));
161 162 163
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL LRNGrad must use CPUPlace"));
T
Tomasz Patejko 已提交
164

165
    auto in_x = ctx.Input<Tensor>("X");
J
Jacek Czaja 已提交
166
    auto mid = ctx.Input<Tensor>("MidOut");
T
Tomasz Patejko 已提交
167 168

    auto out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
169
    auto in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
T
Tomasz Patejko 已提交
170 171

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
172
    const auto& mkldnn_engine = dev_ctx.GetEngine();
T
Tomasz Patejko 已提交
173

174 175
    LRNMKLDNNHandler<T> handler(ctx, mkldnn_engine, ctx.GetPlace(), in_x,
                                out_grad, in_x_grad);
T
Tomasz Patejko 已提交
176

177
    auto src_memory = handler.AcquireSrcMemory(in_x);
J
Jacek Czaja 已提交
178 179
    auto workspace = handler.AcquireBackwardWorkspaceMemory(mid);
    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
180
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);
T
Tomasz Patejko 已提交
181

A
Adam 已提交
182
    auto lrn_bwd = handler.AcquireBackwardPrimitive();
T
Tomasz Patejko 已提交
183

184
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
185 186 187 188
    lrn_bwd->execute(astream, {{DNNL_ARG_SRC, *src_memory},
                               {DNNL_ARG_DIFF_DST, *diff_dst_memory},
                               {DNNL_ARG_DIFF_SRC, *diff_src_memory},
                               {DNNL_ARG_WORKSPACE, *workspace}});
A
Adam 已提交
189
    astream.wait();
190

191 192
    in_x_grad->set_layout(framework::DataLayout::kMKLDNN);
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
T
Tomasz Patejko 已提交
193 194 195 196 197 198 199 200 201 202 203
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(lrn, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(lrn_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNGradOpKernel<float>);