lrn_mkldnn_op.cc 6.0 KB
Newer Older
T
Tomasz Patejko 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/lrn_op.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
T
Tomasz Patejko 已提交
18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

template <typename T>
class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
minqiyang 已提交
29
    const bool is_float_type = std::is_same<T, float>::value;
M
minqiyang 已提交
30
    PADDLE_ENFORCE(is_float_type, "MKLDNN LRN must use float data.");
T
Tomasz Patejko 已提交
31 32 33 34 35 36 37 38 39 40
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "MKLDNN LRN must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

    auto x = ctx.Input<Tensor>("X");
    auto out = ctx.Output<Tensor>("Out");
    auto mid = ctx.Output<Tensor>("MidOut");

    const int n = ctx.Attr<int>("n");
41 42 43 44 45 46
    // MKL-DNN implements LRN in a caffe way:
    // http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
    // Where sum of squares is divided by size of normalization window
    // this is not the case for PaddlePaddle LRN.
    // Hence we need to compensate for this diffrence by
    // multipliing alpha by size of window(n)
47
    const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
T
Tomasz Patejko 已提交
48 49
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");
J
Jacek Czaja 已提交
50
    bool is_test = ctx.Attr<bool>("is_test");
T
Tomasz Patejko 已提交
51

A
Adam 已提交
52
    auto dims = paddle::framework::vectorize<int64_t>(x->dims());
53

J
Jacek Czaja 已提交
54 55
    platform::LRNMKLDNNHandler<T> handler(dims, n, alpha, beta, k, x->format(),
                                          is_test, dev_ctx, ctx.GetPlace(),
H
hong 已提交
56
                                          ctx.OutputName("Out"));
J
Jacek Czaja 已提交
57 58 59 60

    auto src_memory = handler.AcquireSrcMemory(x);
    auto dst_memory = handler.AcquireDstMemory(out);

A
Adam 已提交
61 62 63 64 65 66 67
    auto lrn_p = handler.AcquireForwardPrimitive();

    auto workspace_memory = handler.AcquireWorkspaceMemory(mid);
    mid->set_layout(framework::DataLayout::kMKLDNN);

    mkldnn::stream astream(dev_ctx.GetEngine());
    if (!workspace_memory->get_desc().is_zero()) {
68
      mid->set_format(platform::GetMKLDNNFormat(*workspace_memory));
A
Adam 已提交
69 70 71
      lrn_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                               {MKLDNN_ARG_DST, *dst_memory},
                               {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
J
Jacek Czaja 已提交
72 73 74 75 76 77 78
    } else {
      // mid has to be allocated and filled
      // k to pass LRN unit tests
      // TODO(jczaja): Disable checking mid in unit tests (Require API change)
      mid->mutable_data<T>(ctx.GetPlace());
      auto e_mid = framework::EigenTensor<T, 4>::From(*mid);
      e_mid = e_mid.constant(k);
A
Adam 已提交
79
      mid->set_format(platform::GetMKLDNNFormat(*dst_memory));
80

A
Adam 已提交
81 82 83 84
      lrn_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                               {MKLDNN_ARG_DST, *dst_memory}});
    }
    astream.wait();
85 86

    out->set_layout(framework::DataLayout::kMKLDNN);
A
Adam 已提交
87
    out->set_format(platform::GetMKLDNNFormat(*dst_memory));
T
Tomasz Patejko 已提交
88 89 90 91 92 93 94
  }
};

template <typename T>
class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
minqiyang 已提交
95 96
    const bool is_float_type = std::is_same<T, float>::value;
    PADDLE_ENFORCE(is_float_type, "MKLDNN LRN must use float data.");
T
Tomasz Patejko 已提交
97 98
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "MKLDNN LRN must use CPUPlace.");
99 100 101
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");
T
Tomasz Patejko 已提交
102 103

    auto x = ctx.Input<Tensor>("X");
J
Jacek Czaja 已提交
104
    auto mid = ctx.Input<Tensor>("MidOut");
T
Tomasz Patejko 已提交
105 106 107 108 109

    auto out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    const int n = ctx.Attr<int>("n");
110
    const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
T
Tomasz Patejko 已提交
111 112 113 114 115
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

A
Adam 已提交
116
    auto dims = paddle::framework::vectorize<int64_t>(x->dims());
T
Tomasz Patejko 已提交
117

H
hong 已提交
118 119 120
    platform::LRNMKLDNNHandler<T> handler(dims, n, alpha, beta, k, x->format(),
                                          out_grad->format(), dev_ctx,
                                          ctx.GetPlace(), ctx.InputName("Out"));
T
Tomasz Patejko 已提交
121

J
Jacek Czaja 已提交
122 123 124 125
    auto src_memory = handler.AcquireSrcMemory(x);
    auto workspace = handler.AcquireBackwardWorkspaceMemory(mid);
    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(x_grad);
T
Tomasz Patejko 已提交
126

A
Adam 已提交
127
    auto lrn_bwd = handler.AcquireBackwardPrimitive();
T
Tomasz Patejko 已提交
128

A
Adam 已提交
129 130 131 132 133 134
    mkldnn::stream astream(dev_ctx.GetEngine());
    lrn_bwd->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                               {MKLDNN_ARG_DIFF_DST, *diff_dst_memory},
                               {MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                               {MKLDNN_ARG_WORKSPACE, *workspace}});
    astream.wait();
135 136

    x_grad->set_layout(framework::DataLayout::kMKLDNN);
A
Adam 已提交
137
    x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
T
Tomasz Patejko 已提交
138 139 140 141 142 143 144 145 146 147 148
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(lrn, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(lrn_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNGradOpKernel<float>);