BatchNormBaseLayer.cpp 2.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "BatchNormBaseLayer.h"
#include "BatchNormalizationLayer.h"
Y
Yu Yang 已提交
17 18
#include "Layer.h"
#include "paddle/utils/Stat.h"
19
#ifdef PADDLE_WITH_GPU
Z
zhangjinchao01 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include "CudnnBatchNormLayer.h"
#endif

namespace paddle {

bool BatchNormBaseLayer::init(const LayerMap& layerMap,
                              const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  if (!Layer::init(layerMap, parameterMap)) return false;

  /* initialize the weightList */
  // first is Input in configure
  // other two is created in config_parser.py
  CHECK_EQ(inputLayers_.size(), 3U);
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK_EQ(inputLayers_.size(), size_t(config_.inputs_size()));
  const ImageConfig& conf = config_.inputs(0).image_conf();
  channels_ = conf.channels();
  calFeatureMapSize();

  if (config_.has_use_global_stats()) {
    useGlobalStats_ = config_.use_global_stats();
  }
  movingAvgFraction_ = config_.moving_average_fraction();

  weight_.reset(new Weight(1, channels_, parameters_[0]));
  movingMean_.reset(new Weight(1, channels_, parameters_[1]));
  movingVar_.reset(new Weight(1, channels_, parameters_[2]));

  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, channels_, biasParameter_));
  }

  savedMean_ = Matrix::create(1, channels_, false, useGpu_);
  savedInvVar_ = Matrix::create(1, channels_, false, useGpu_);
  savedMean_->zeroMem();
  savedInvVar_->zeroMem();

  return true;
}

void BatchNormBaseLayer::calFeatureMapSize() {
  const ImageConfig& conf = config_.inputs(0).image_conf();
L
Luo Tao 已提交
63 64
  imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
  imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
65 66 67
  imageD_ = inputLayers_[0]->getOutput().getFrameDepth();

  if (0 == imageD_) imageD_ = conf.img_size_z();
L
Luo Tao 已提交
68 69 70
  if (imageH_ == 0 && imageW_ == 0) {
    imageH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
    imageW_ = conf.img_size();
Z
zhangjinchao01 已提交
71
  } else {
72 73
    getOutput().setFrameHeight(imageH_);
    getOutput().setFrameWidth(imageW_);
74
    getOutput().setFrameDepth(imageD_);
Z
zhangjinchao01 已提交
75
  }
76
  imgPixels_ = imageH_ * imageW_ * imageD_;
Z
zhangjinchao01 已提交
77 78 79
}

}  // namespace paddle