BatchNormBaseLayer.cpp 2.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Stat.h"
#include "Layer.h"
#include "BatchNormBaseLayer.h"
#include "BatchNormalizationLayer.h"
#ifndef PADDLE_ONLY_CPU
#include "CudnnBatchNormLayer.h"
#endif

namespace paddle {

bool BatchNormBaseLayer::init(const LayerMap& layerMap,
                              const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  if (!Layer::init(layerMap, parameterMap)) return false;

  /* initialize the weightList */
  // first is Input in configure
  // other two is created in config_parser.py
  CHECK_EQ(inputLayers_.size(), 3U);
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK_EQ(inputLayers_.size(), size_t(config_.inputs_size()));
  const ImageConfig& conf = config_.inputs(0).image_conf();
  channels_ = conf.channels();
  calFeatureMapSize();

  if (config_.has_use_global_stats()) {
    useGlobalStats_ = config_.use_global_stats();
  }
  movingAvgFraction_ = config_.moving_average_fraction();

  weight_.reset(new Weight(1, channels_, parameters_[0]));
  movingMean_.reset(new Weight(1, channels_, parameters_[1]));
  movingVar_.reset(new Weight(1, channels_, parameters_[2]));

  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, channels_, biasParameter_));
  }

  savedMean_ = Matrix::create(1, channels_, false, useGpu_);
  savedInvVar_ = Matrix::create(1, channels_, false, useGpu_);
  savedMean_->zeroMem();
  savedInvVar_->zeroMem();

  return true;
}

void BatchNormBaseLayer::calFeatureMapSize() {
  const ImageConfig& conf = config_.inputs(0).image_conf();
L
Luo Tao 已提交
63 64
  imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
  imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
L
Luo Tao 已提交
65 66 67
  if (imageH_ == 0 && imageW_ == 0) {
    imageH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
    imageW_ = conf.img_size();
Z
zhangjinchao01 已提交
68
  } else {
69 70
    getOutput().setFrameHeight(imageH_);
    getOutput().setFrameWidth(imageW_);
Z
zhangjinchao01 已提交
71 72 73 74 75
  }
  imgPixels_ = imageH_ * imageW_;
}

}  // namespace paddle