pipeline_optimizer.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
from __future__ import print_function
15
from __future__ import division
16
import os
17 18 19 20

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
21 22
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
23
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_update_op, is_loss_grad_op, is_backward_op, is_optimizer_op
24 25


26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
def _get_node_num(endpoints):
    ss = set()
    for ep in endpoints:
        ip = ep.split(":")[0].strip()
        if ip not in ss:
            ss.add(ip)
    return len(ss)


class PipelineHelper(object):
    def __init__(self, role_maker, wait_port='6174'):
        self.wait_port = wait_port
        self.role_maker = role_maker

    def update_startup_program(self,
                               startup_program=None,
                               inner_parallelism=None):
        self.startup_program = startup_program

        nranks = self.role_maker._worker_num()
        rank = self.role_maker._worker_index()
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[rank]
        node_num = _get_node_num(endpoints)
        assert nranks % node_num == 0

        # Create ring 0 for all gpus in the same pipeline
        if inner_parallelism > 1:
            pipeline_rank = rank % inner_parallelism
            pipeline_id = rank // inner_parallelism
            start_index = pipeline_id * inner_parallelism
            pipeline_endpoints = endpoints[start_index:start_index +
                                           inner_parallelism]
            self._init_communicator(self.startup_program, current_endpoint,
                                    pipeline_endpoints, pipeline_rank, 0,
                                    self.wait_port)
62 63 64

        pipeline_num = len(endpoints) // inner_parallelism
        if pipeline_num == 1: return
65
        # Create rings for gpus with the same pipeline id for data parallel
66
        eps = []
67 68
        pipeline_rank = rank % inner_parallelism
        ring_id = pipeline_rank + 1
69
        for i in range(pipeline_num):
70 71 72
            eps.append(endpoints[i * inner_parallelism + pipeline_rank])
        # rank in a ring of gpus with the same pipeline id for data parallel
        dp_rank = rank // inner_parallelism
73
        self._init_communicator(self.startup_program, current_endpoint, eps,
74
                                dp_rank, ring_id, self.wait_port)
75
        self._broadcast_params(ring_id)
76 77 78 79 80 81 82

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        block = program.global_block()
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        if core.is_compiled_with_cuda():
            if rank == 0 and wait_port:
                wait_server_ready(other_endpoints)
            nccl_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': nccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    OP_ROLE_KEY: OpRole.Forward,
                })
            block.append_op(
                type='c_comm_init',
                inputs={'X': nccl_id_var},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    OP_ROLE_KEY: OpRole.Forward,
                })
        elif core.is_compiled_with_npu():
            endpoint_to_index_map = {
                e: idx for idx, e in enumerate(endpoints)
            }
            block.append_op(
                type='c_comm_init_hcom',
                inputs={},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    'device_id': int(os.getenv("FLAGS_selected_npus")),
                    'rank_ids': [endpoint_to_index_map[e] for e in endpoints],
                    OP_ROLE_KEY: OpRole.Forward
                })
126

127
    def _broadcast_params(self, ring_id):
128
        block = self.startup_program.global_block()
129 130 131 132
        for var_name in block.vars:
            if "nccl_id" in var_name: continue
            param = block.var(var_name)
            if not param.persistable:
133 134 135 136 137 138 139 140 141 142 143 144
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

145 146 147 148 149 150
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})
151 152


153 154 155 156 157 158
class PipelineOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(PipelineOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []
159
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
160 161 162 163 164

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(PipelineOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
165 166
        self.num_microbatches = user_defined_strategy.pipeline_configs[
            'micro_batch']
167 168

    def _can_apply(self):
169 170 171
        if not self.role_maker._is_collective:
            return False

172 173 174 175 176 177
        if self.user_defined_strategy.pipeline == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.pipeline = False
178
        dist_strategy.pipeline_configs = {}
179

180
    def _enable_strategy(self, dist_strategy, context):
181 182 183
        dist_strategy.pipeline = True
        dist_strategy.pipeline_configs = {"micro_batch": 1, }

184 185 186 187 188
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
189 190
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
191
        self.wrapped_opt = PO(self.inner_opt,
192
                              num_microbatches=self.num_microbatches)
193 194
        node_num = _get_node_num(endpoints)
        gpus_per_node = len(endpoints) // node_num
195 196 197 198
        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

199 200 201
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
        assert self.nranks % node_num == 0
202

203 204 205 206
        loss.block.program._pipeline_opt = dict()
        loss.block.program._pipeline_opt['local_rank'] = self.rank
        optimize_ops, params_grads, prog_list = self.wrapped_opt.minimize(
            loss, startup_program, parameter_list, no_grad_set)
207
        assert prog_list
208

209 210
        self.main_program_list = prog_list
        self.main_program = loss.block.program
211 212
        self.inner_parallelism = loss.block.program._pipeline_opt[
            'inner_parallelism']
213
        assert self.nranks % self.inner_parallelism == 0
214

215 216 217 218
        pipeline_helper = PipelineHelper(self.role_maker)
        pipeline_helper.update_startup_program(
            self.startup_program._pipeline_opt["startup_program"],
            self.inner_parallelism)
219

220 221
        pipeline_num = self.nranks // self.inner_parallelism
        self._transpile_main_program(loss, pipeline_num, self.inner_parallelism)
222
        return optimize_ops, params_grads
223

224 225 226 227
    def _transpile_main_program(self, loss, pipeline_num, inner_parallelism):
        if pipeline_num <= 1: return
        self._insert_loss_grad_ops(loss, pipeline_num)
        for ring_id in range(1, inner_parallelism + 1):
228 229
            self._insert_allreduce_ops(ring_id)

230
    def _insert_loss_grad_ops(self, loss, pipeline_num):
231 232 233 234
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
235
        block = self.main_program_list[-1]['program'].global_block()
236 237 238 239 240 241 242 243 244
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
245
                        'scale': 1.0 / pipeline_num,
246 247 248 249
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, ring_id):
250
        block = self.main_program_list[ring_id - 1]['program'].global_block()
251 252 253 254
        origin_block = self.main_program.global_block()
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
255
                    OP_ROLE_VAR_KEY in op.attr_names:
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
                    origin_param = origin_block.vars[op_role_var[i]]
                    if origin_param.is_distributed:
                        continue
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={OP_ROLE_KEY: OpRole.Backward})
                        offset += 1

                    block._insert_op(
                        offset,
279
                        type='c_allreduce_sum',
280 281 282 283 284 285 286 287 288 289 290 291 292
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if is_optimizer_op(op):
                block._insert_op(
293
                    idx,
294 295 296 297 298 299
                    type='c_sync_comm_stream',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
            break