未验证 提交 f40a50d1 编写于 作者: L lilong12 提交者: GitHub

add pipeline optimizer for fleet (#25768)

* add pipeline optimizer
上级 f6ac5990
......@@ -15,6 +15,7 @@
from ..meta_optimizers import RecomputeOptimizer
from ..meta_optimizers import GradientMergeOptimizer
from ..meta_optimizers import GraphExecutionOptimizer
from ..meta_optimizers import PipelineOptimizer
__all__ = ["MetaOptimizerFactory"]
......@@ -22,6 +23,7 @@ meta_optimizer_names = [
"RecomputeOptimizer",
"GradientMergeOptimizer",
"GraphExecutionOptimizer",
"PipelineOptimizer",
]
......
......@@ -14,8 +14,10 @@
from .recompute_optimizer import RecomputeOptimizer
from .gradient_merge_optimizer import GradientMergeOptimizer
from .graph_execution_optimizer import GraphExecutionOptimizer
from .pipeline_optimizer import PipelineOptimizer
__all__ = [
'RecomputeOptimizer',
'GradientMergeOptimizer',
'PipelineOptimizer',
]
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
__all__ = ["PipelineOptimizer"]
class PipelineOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(PipelineOptimizer, self).__init__(optimizer)
self.inner_opt = optimizer
# we do not allow meta optimizer to be inner optimizer currently
self.meta_optimizers_white_list = []
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
user_defined_strategy):
super(PipelineOptimizer, self)._set_basic_info(
loss, role_maker, user_defined_optimizer, user_defined_strategy)
num_microbatches = user_defined_strategy.pipeline_configs['micro_batch']
self.wrapped_opt = PO(self.inner_opt, num_microbatches=num_microbatches)
def _can_apply(self):
if self.user_defined_strategy.pipeline == True:
return True
return False
def _disable_strategy(self, dist_strategy):
dist_strategy.pipeline = False
dist_strategy.pipeline_configs = {"micro_batch": 1}
def backward(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None):
return self.wrapped_opt.backward(loss, startup_program, parameter_list,
no_grad_set, callbacks)
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
optimize_ops, params_grads, prog_list = \
self.wrapped_opt.minimize(loss, startup_program,
parameter_list, no_grad_set)
return optimize_ops, params_grads
......@@ -32,6 +32,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_checkpoint)
list(APPEND MIXED_DIST_TEST_OPS test_collective_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_base)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_pipeline_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_gradient_merge_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_private_function)
foreach(TEST_OP ${MIXED_DIST_TEST_OPS})
......@@ -364,6 +365,7 @@ if(WITH_DISTRIBUTE)
if(NOT APPLE)
py_test_modules(test_fleet_base MODULES test_fleet_base ENVS ${dist_ENVS})
py_test_modules(test_fleet_meta_optimizer MODULES test_fleet_meta_optimizer ENVS ${dist_ENVS})
py_test_modules(test_fleet_pipeline_meta_optimizer MODULES test_fleet_pipeline_meta_optimizer ENVS ${dist_ENVS})
py_test_modules(test_fleet_gradient_merge_meta_optimizer MODULES test_fleet_gradient_merge_meta_optimizer ENVS ${dist_ENVS})
py_test_modules(test_fleet_private_function MODULES test_fleet_private_function ENVS ${dist_ENVS})
endif(NOT APPLE)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import os
class TestFleetMetaOptimizer(unittest.TestCase):
def setUp(self):
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
def test_pipeline_optimizer(self):
import paddle.fleet as fleet
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
with paddle.fluid.device_guard("cpu"):
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(
name="y", shape=[1], dtype='int64')
data_loader = paddle.fluid.io.DataLoader.from_generator(
feed_list=[input_x, input_y],
capacity=64,
use_double_buffer=True,
iterable=False)
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
with paddle.fluid.device_guard("gpu:0"):
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2],
size=2,
act='softmax')
cost = paddle.fluid.layers.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
strategy = paddle.fleet.DistributedStrategy()
strategy.pipeline = True
strategy.pipeline_configs = {'micro_batch': 2}
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册