graph_pattern_detector.cc 129.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
16
#include "paddle/fluid/framework/ir/graph_traits.h"
17
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
18
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
20
#include "paddle/fluid/string/pretty_log.h"
21

22 23 24 25
namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
26 27 28
using string::PrettyLog;
using string::Style;

29 30
size_t PDPattern::id_ = 0UL;

C
chengduo 已提交
31
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
32
  if (!name.empty()) {
33 34 35 36
    PADDLE_ENFORCE_EQ(
        node_map_.count(name), 0UL,
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
Y
Yan Chunwei 已提交
37 38 39
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
40
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
41 42 43 44
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
45
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
46
  if (!name.empty()) {
47 48 49 50
    PADDLE_ENFORCE_EQ(
        node_map_.count(name), 0UL,
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
51 52
  }

53
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
54
  auto *cur = nodes_.back().get();
55
  node_map_[name] = cur;
56 57 58
  return cur;
}

C
chengduo 已提交
59
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
60 61 62 63 64 65 66 67
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
68
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
69 70 71 72
  PADDLE_ENFORCE_NOT_NULL(
      a, platform::errors::NotFound("PDNode %s is not found.", a->name()));
  PADDLE_ENFORCE_NOT_NULL(
      b, platform::errors::NotFound("PDNode %s is not found.", b->name()));
73 74
  PADDLE_ENFORCE_NE(a, b, platform::errors::PermissionDenied(
                              "Cannot connect the same node in the graph."));
75 76 77
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
78
void GraphPatternDetector::operator()(Graph *graph,
79
                                      GraphPatternDetector::handle_t handler) {
80 81 82 83
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }

84 85
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
Z
Zhang Ting 已提交
86
  SortSubgraphs(&subgraphs);
87
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
88
  ValidateByNodeRole(&subgraphs);
89

Y
Yan Chunwei 已提交
90
  if (subgraphs.empty()) return;
91

92
  int id = 0;
C
chengduo 已提交
93
  for (auto &g : subgraphs) {
M
minqiyang 已提交
94
    VLOG(3) << "optimizing #" << id++ << " subgraph";
95 96 97 98
    handler(g, graph);
  }
}

C
chengduo 已提交
99
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
M
minqiyang 已提交
100
  VLOG(3) << "mark pdnodes in graph";
101 102
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
103 104
  for (auto &node : GraphTraits::DFS(graph)) {
    for (const auto &pdnode : pattern_.nodes()) {
105
      if (pdnode->Tell(&node)) {
106
        VLOG(4) << "Node " << node.Name() << " marked as " << pdnode->name();
107 108 109 110
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
111
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
112
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
113
    if (!pdnodes2nodes_.count(pdnode.get())) {
M
minqiyang 已提交
114
      VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
115
      // return false;
Y
Yan Chunwei 已提交
116 117
    }
  }
M
minqiyang 已提交
118
  VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
119

120 121 122
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
123
// The intermediate Nodes can only link to the nodes inside the pattern, or this
T
tianshuo78520a 已提交
124
// subgraph will be dropped.
Y
Yan Chunwei 已提交
125
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
126
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
127 128 129 130 131
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
          subgraphs->begin(), subgraphs->end(),
C
chengduo 已提交
132
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
133
            // Collect the inputs and outputs.
134
            std::set<Node *> ios;
C
chengduo 已提交
135
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
136 137 138 139
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
140
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
141
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
142
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
143 144 145 146
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
147
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
148 149 150 151 152 153 154 155 156 157 158
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

159
struct HitGroup {
160
  std::map<PDNode *, Node *> roles;
161

C
chengduo 已提交
162
  bool Match(Node *node, PDNode *pat) {
163
    if (nodes_.count(node)) {
T
Tao Luo 已提交
164 165 166 167 168
      if (roles.count(pat) && roles[pat] == node) return true;
      return false;
    } else {
      if (roles.count(pat) && roles[pat] != node) return false;
      return true;
169
    }
170 171
  }

C
chengduo 已提交
172
  void Register(Node *node, PDNode *pat) {
173 174 175 176 177
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
178
  std::set<Node *> nodes_;
179 180 181
};

// Tell whether Node a links to b.
C
chengduo 已提交
182 183
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
184 185 186 187 188 189 190
    if (b == node) {
      return true;
    }
  }
  return false;
}

191 192
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
193
  // Init empty subgraphs.
194
  std::vector<GraphPatternDetector::subgraph_t> result;
195
  std::vector<HitGroup> init_groups;
196
  std::array<std::vector<HitGroup>, 2> bi_records;
C
chengduo 已提交
197
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
198
                                               : pattern_.edges().front().first;
199
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
200
  for (auto *node : pdnodes2nodes_[first_pnode]) {
201 202 203 204 205 206 207 208 209 210
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
211
  for (const auto &edge : pattern_.edges()) {
M
minqiyang 已提交
212
    VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
213
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
214 215
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
216 217
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
218
    cur_groups.clear();
219
    if (pre_groups.empty()) break;
220
    // source -> target
C
chengduo 已提交
221 222
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
M
minqiyang 已提交
223
        VLOG(8) << "check " << source->id() << " -- " << target->id();
224
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
225
        for (const auto &group : pre_groups) {
T
Tao Luo 已提交
226 227 228 229 230 231
          if (IsNodesLink(source, target)) {
            HitGroup new_group = group;
            bool flag = new_group.Match(source, edge.first) &&
                        new_group.Match(target, edge.second);
            if (flag) {
              new_group.Register(source, edge.first);
232 233 234 235 236 237 238 239
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
M
minqiyang 已提交
240
    VLOG(3) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
241 242
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
M
minqiyang 已提交
243
        VLOG(4) << "node " << item.second->id() << " as " << item.first->name();
Y
Yan Chunwei 已提交
244
      }
M
minqiyang 已提交
245
      VLOG(4) << "=========================================================";
Y
Yan Chunwei 已提交
246
    }
247 248
  }

C
chengduo 已提交
249
  for (auto &group : bi_records[step % 2]) {
250
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
251
    for (auto &role : group.roles) {
252 253 254 255 256 257 258
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

Y
Yan Chunwei 已提交
259 260
struct GraphItemLessThan {
  bool operator()(const std::pair<PDNode *, Node *> &a,
Y
Yan Chunwei 已提交
261
                  const std::pair<PDNode *, Node *> &b) {
Y
Yan Chunwei 已提交
262 263 264 265 266
    if (a.first != b.first) {
      return a.first < b.first;
    } else {
      return a.second < b.second;
    }
Y
Yan Chunwei 已提交
267
  }
Y
Yan Chunwei 已提交
268
};
Y
Yan Chunwei 已提交
269

270 271
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
272
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
273
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
274
  if (subgraphs->empty()) return;
275
  std::vector<GraphPatternDetector::subgraph_t> result;
276

277
  std::set<size_t> set;
Y
Yan Chunwei 已提交
278
  std::hash<std::string> hasher;
C
chengduo 已提交
279
  for (auto &g : *subgraphs) {
Y
Yan Chunwei 已提交
280 281
    // Sort the items in the sub-graph, and transform to a string key.
    std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
Y
Yan Chunwei 已提交
282
    std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
Y
Yan Chunwei 已提交
283 284 285
    std::stringstream ss;
    for (auto &item : sorted_keys) {
      ss << item.first << ":" << item.second;
286
    }
Y
Yan Chunwei 已提交
287
    auto key = hasher(ss.str());
288 289 290 291 292 293 294 295
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

Z
Zhang Ting 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
void GraphPatternDetector::SortSubgraphs(
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
  if (subgraphs->empty()) return;
  bool has_bn_add_act = false;
  for (auto &subgraph : *subgraphs) {
    for (auto &item : subgraph) {
      if (item.first->name().find("bn_add_act") != std::string::npos) {
        has_bn_add_act = true;
        break;
      }
    }
  }
  if (!has_bn_add_act) {
    return;
  }

  std::sort(
      subgraphs->begin(), subgraphs->end(),
      [](const GraphPatternDetector::subgraph_t &a,
         const GraphPatternDetector::subgraph_t &b) {
        for (auto &item : a) {
          if (item.first->name().find("bn_add_act") != std::string::npos &&
              item.first->name().find("bn_reserve_space") !=
                  std::string::npos) {
            auto it_b = b.find(item.first);
            if (it_b != b.end()) {
              if (item.second->Name() != it_b->second->Name()) {
                return item.second->Name() < it_b->second->Name();
              } else {
                return false;
              }
            } else {
              return false;
            }
          }
        }
        return false;
      });
}

336
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
337
    std::vector<subgraph_t> *subgraphs) {
338
  std::vector<subgraph_t> result;
339
  std::set<Node *> node_set;
340

C
chengduo 已提交
341
  for (const auto &subgraph : *subgraphs) {
342
    bool valid = true;
C
chengduo 已提交
343
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
344
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
345 346 347 348 349
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
350
      for (auto &item : subgraph) {
351 352 353 354 355 356 357 358
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

359 360 361 362 363
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
364 365
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
366 367 368 369 370
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
371
  for (const auto &edge : edges()) {
372 373 374 375
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      LOG(ERROR) << "no node " << edge.first << " " << edge.second;
      continue;
    }
C
chengduo 已提交
376 377
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
378 379 380 381 382
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
383
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
384
  // extend outlinks.
C
chengduo 已提交
385
  for (PDNode *x : others) {
386 387 388 389 390
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
391
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
392
  // extend outlinks.
C
chengduo 已提交
393
  for (PDNode *x : others) {
394 395 396 397 398
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
399 400
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
401 402
  return this;
}
C
chengduo 已提交
403 404 405

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
406 407 408 409
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
410 411 412 413 414 415

PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

Z
Zhen Wang 已提交
416 417 418 419 420 421 422
PDNode *PDNode::assert_var_dtype(proto::VarType::Type dtype) {
  assert_is_var();
  asserts_.emplace_back(
      [dtype](Node *x) { return x->Var()->GetDataType() == dtype; });
  return this;
}

C
chengduo 已提交
423 424
PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
425 426
  return this;
}
C
chengduo 已提交
427 428

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
429
  assert_is_var();
C
chengduo 已提交
430
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
431 432
  return this;
}
C
chengduo 已提交
433 434

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
435
  assert_is_var();
C
chengduo 已提交
436
  asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
437 438
  return this;
}
C
chengduo 已提交
439 440 441

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
                                       const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
442 443
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
444 445
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
446 447 448
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
449 450 451 452 453
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
454 455 456

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
                                        const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
457
  assert_is_var();
C
chengduo 已提交
458 459
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
460 461 462
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
463 464 465 466 467
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
468 469

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
470
  assert_is_var();
C
chengduo 已提交
471 472
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
473 474 475 476 477 478 479 480 481
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
482 483

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
484
  assert_is_var();
C
chengduo 已提交
485 486
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
487 488 489 490 491 492 493 494 495
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
496 497

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
498
  assert_is_var();
C
chengduo 已提交
499 500
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
501 502 503 504 505 506 507 508
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
509 510 511

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
512 513 514 515
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
Z
Zhen Wang 已提交
516

C
chengduo 已提交
517
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
518
  assert_is_var();
C
chengduo 已提交
519 520
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
521 522 523 524 525 526 527 528
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
529

Z
Zhen Wang 已提交
530 531 532 533 534 535 536 537 538 539
PDNode *PDNode::assert_is_not_op_input(const std::string &argument) {
  assert_is_op();
  asserts_.emplace_back([=](Node *x) {
    auto &ins = x->Op()->Inputs();
    auto iter = ins.find(argument);
    return iter == ins.end() || iter->second.empty();
  });
  return this;
}

C
chengduo 已提交
540 541
PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
542 543 544 545
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
546 547

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
548
  assert_is_op(op_type);
C
chengduo 已提交
549
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
550 551
  return this;
}
C
chengduo 已提交
552 553

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
554
  assert_is_op(op_type);
C
chengduo 已提交
555
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
556 557
  return this;
}
C
chengduo 已提交
558

559 560 561 562 563 564 565 566 567 568
PDNode *PDNode::assert_has_n_inputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
  return this;
}

PDNode *PDNode::assert_has_n_outputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
  return this;
}

C
chengduo 已提交
569
PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
570 571 572 573
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
PDNode *PDNode::assert_is_only_input_of_ops(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type()) &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_only_output_of_ops(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type()) &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}

C
chengduo 已提交
685 686
bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
687 688 689 690 691 692
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
693 694

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
695 696 697 698 699 700 701 702
  PADDLE_ENFORCE_EQ(
      var->IsVar(), true,
      platform::errors::InvalidArgument(
          "First parameter of function IsNthInput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthInput must be Node::Op"));
703 704
  if (!HasInput(op, argument) || op->Op()->Input(argument).size() <= nth)
    return false;
705 706
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
707

708
bool HasInput(Node *op, const std::string &argument) {
709 710 711 712
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "First parameter of function HasInput must be Node::Op"));
713 714 715 716 717 718
  auto const &names = op->Op()->InputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

719 720 721 722 723 724 725 726 727 728 729
bool HasOutput(Node *op, const std::string &argument) {
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "First parameter of function HasOuput must be Node::Op"));
  auto const &names = op->Op()->OutputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

C
chengduo 已提交
730
bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
731 732 733 734 735 736 737 738
  PADDLE_ENFORCE_EQ(
      var->IsVar(), true,
      platform::errors::InvalidArgument(
          "First parameter of function IsNthOutput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthOutput must be Node::Op"));
739 740
  if (!HasOutput(op, argument) || op->Op()->Output(argument).size() <= nth)
    return false;
741 742
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
743 744 745 746 747

void GraphSafeRemoveNodes(Graph *graph,
                          const std::unordered_set<const Node *> &nodes) {
  for (auto *node : nodes) {
    graph->RemoveNode(const_cast<Node *>(node));
748 749
  }

C
chengduo 已提交
750
  for (auto *node : graph->Nodes()) {
751 752
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
753
        it = const_cast<Node *>(node)->inputs.erase(it);
754
      } else {
755
        it++;
756
      }
757 758 759
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
760
        it = const_cast<Node *>(node)->outputs.erase(it);
761
      } else {
762
        it++;
763
      }
764 765 766
    }
  }
}
C
chengduo 已提交
767 768 769

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
770 771 772 773 774 775 776
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
777
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
778
                                     const std::string &conv_type,
S
Sylwester Fraczek 已提交
779 780
                                     bool with_eltwise_add) {
  // Create Operators
781 782
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
S
Sylwester Fraczek 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
796
                              ->assert_is_op_input(conv_type, "Filter");
S
Sylwester Fraczek 已提交
797 798 799

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
800
                           ->assert_is_only_output_of_op(conv_type);
S
Sylwester Fraczek 已提交
801 802 803 804 805 806 807 808 809

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
810
                           ->assert_is_persistable_var()
S
Sylwester Fraczek 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
824 825
                           ->assert_is_op_input("batch_norm", "Scale")
                           ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
826 827 828 829
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
830 831
                          ->assert_is_op_input("batch_norm", "Bias")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
832 833 834 835
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
836 837
                          ->assert_is_op_input("batch_norm", "Mean")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
838 839 840 841
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
842 843
                              ->assert_is_op_input("batch_norm", "Variance")
                              ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
844 845 846 847

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
848
                         ->assert_is_op_output("batch_norm", "Y");
S
Sylwester Fraczek 已提交
849 850 851

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
852 853
                              ->assert_is_op_output("batch_norm", "MeanOut")
                              ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
854 855 856 857

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
858 859
          ->assert_is_op_output("batch_norm", "VarianceOut")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
860

861 862 863 864
  auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr())
                                ->AsOutput()
                                ->assert_is_op_output("batch_norm", "SavedMean")
                                ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
865 866 867 868

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
869 870
          ->assert_is_op_output("batch_norm", "SavedVariance")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
        ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  } else {
    batch_norm_op
        ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  }
  return bn_out_var;
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
PDNode *patterns::ConvActivation::operator()(
    paddle::framework::ir::PDNode *conv_input, std::string conv_type,
    std::string activation_type) {
  // Create Operators
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
  // Create variables
  // Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input(conv_type, "Filter");
  // intermediate variable, will be removed in the IR after fuse.
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op(conv_type)
                           ->assert_is_op_input(activation_type);
  // output
  auto *activation_out_var = pattern->NewNode(activation_out_repr())
                                 ->AsOutput()
                                 ->assert_is_op_output(activation_type);

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  activation_op->LinksFrom({conv_out_var}).LinksTo({activation_out_var});
  return activation_out_var;
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
PDNode *patterns::ElementwiseActivation::operator()(
    paddle::framework::ir::PDNode *elementwise_a,
    const std::string &elementwise_type, const std::string &activation_type) {
  // Create Operators
  elementwise_a->assert_is_op_input(elementwise_type, "X");
  auto *elementwise_op =
      pattern->NewNode(elementwise_repr())->assert_is_op(elementwise_type);
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
  // Create variables
  auto *elementwise_b = pattern->NewNode(elementwise_b_repr())
                            ->AsInput()
                            ->assert_is_op_input(elementwise_type, "Y");
  // intermediate variable, will be removed in the IR after fuse.
  auto *elementwise_out_var =
      pattern->NewNode(elementwise_out_repr())
          ->AsIntermediate()
          ->assert_is_only_output_of_op(elementwise_type)
          ->assert_is_op_input(activation_type);
  // output
  auto *activation_out_var = pattern->NewNode(activation_out_repr())
                                 ->AsOutput()
                                 ->assert_is_op_output(activation_type);

  elementwise_op->LinksFrom({elementwise_a, elementwise_b})
      .LinksTo({elementwise_out_var});
  activation_op->LinksFrom({elementwise_out_var}).LinksTo({activation_out_var});
  return activation_out_var;
}

T
tensor-tang 已提交
951 952 953 954
PDNode *patterns::SeqConvEltAddRelu::operator()(
    paddle::framework::ir::PDNode *seqconv_input) {
  // Create Operators
  seqconv_input->assert_is_op_input("sequence_conv", "X");
T
tensor-tang 已提交
955 956
  auto *seqconv_op = pattern->NewNode(seqconv_repr())
                         ->assert_is_op("sequence_conv")
957
                         ->assert_has_n_inputs(2)
T
tensor-tang 已提交
958 959
                         ->assert_op_attr<bool>("paddingTrainable", false)
                         ->assert_op_attr<int>("contextStride", 1);
T
tensor-tang 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

  auto *eltadd_op =
      pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
  // Create variables
  // Filter
  auto *seqconv_weight_var =
      pattern->NewNode(seqconv_weight_repr())
          ->AsInput()
          ->assert_is_persistable_var()
          ->assert_is_op_input("sequence_conv", "Filter");
  // Bias
  auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add");
  // intermediate variable, will be removed in the IR after fuse.
  auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
                              ->AsIntermediate()
                              ->assert_is_only_output_of_op("sequence_conv")
                              ->assert_is_op_input("elementwise_add");
  auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
                             ->AsIntermediate()
                             ->assert_is_only_output_of_op("elementwise_add")
                             ->assert_is_only_input_of_op("relu");
  // output
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("relu");

  seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
      .LinksTo({seqconv_out_var});
  eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
      .LinksTo({eltadd_out_var});
  relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
997
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
998
                                 bool with_bias, bool with_relu) {
Y
Yan Chunwei 已提交
999 1000
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
1001
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
1002

C
chengduo 已提交
1003
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
1004 1005 1006 1007
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
1008
  auto *mul_out_var =
Y
Yan Chunwei 已提交
1009 1010
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

1011 1012
  // Add links.
  mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
Y
Yan Chunwei 已提交
1013 1014 1015 1016 1017
  if (!with_bias) {  // not with bias
    return mul_out_var;
  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
1018
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
1019 1020
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
1021
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
1022
                     ->assert_is_op_input("elementwise_add")
1023
                     ->assert_is_persistable_var()
Y
Yan Chunwei 已提交
1024 1025
                     ->AsInput();

1026 1027 1028 1029
    auto *elementwise_add_out_var =
        pattern->NewNode(elementwise_add_out_repr())
            ->AsOutput()
            ->assert_is_op_output("elementwise_add");
Y
Yan Chunwei 已提交
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    elementwise_add->LinksFrom({mul_out_var, bias})
        .LinksTo({elementwise_add_out_var});
    if (!with_relu) {
      return elementwise_add_out_var;
    } else {
      elementwise_add_out_var->AsIntermediate()->assert_is_op_input("relu");
      // Create operators.
      auto *relu = pattern->NewNode(relu_repr())->assert_is_op("relu");
      auto *relu_out_var = pattern->NewNode(relu_out_repr())
                               ->AsOutput()
                               ->assert_is_op_output("relu");

      relu->LinksFrom({elementwise_add_out_var}).LinksTo({relu_out_var});
      return relu_out_var;
    }
1046 1047
  }
}
T
tensor-tang 已提交
1048

1049 1050 1051 1052 1053 1054 1055
PDNode *patterns::FCMKLDNN::operator()(paddle::framework::ir::PDNode *x,
                                       bool with_bias) {
  // Create shared nodes.
  x->assert_is_op_input("fc", "Input");

  auto *fc_op = pattern->NewNode(fc_repr())->assert_is_op("fc");
  // Create variables
M
Michał Gallus 已提交
1056 1057 1058 1059
  // Input
  auto *input_var = pattern->NewNode(input_repr())
                        ->AsInput()
                        ->assert_is_op_input("fc", "Input");
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
  // Filter
  auto *fc_weight_var = pattern->NewNode(weights_repr())
                            ->AsInput()
                            ->assert_is_op_input("fc", "W");
  // Bias
  auto *fc_bias_var = pattern->NewNode(bias_repr())
                          ->AsInput()
                          ->assert_is_op_input("fc", "Bias");
  // Output
  auto *fc_out_var = pattern->NewNode(output_repr())
                         ->AsOutput()
                         ->assert_is_op_output("fc", "Out")
                         ->assert_is_only_output_of_op("fc");

M
Michał Gallus 已提交
1074 1075
  fc_op->LinksFrom({input_var, fc_weight_var, fc_bias_var})
      .LinksTo({fc_out_var});
1076 1077 1078
  return fc_out_var;
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
PDNode *patterns::FCActOneDNN::operator()(const std::string &act_type) {
  auto *fc = pattern->NewNode(fc_repr())->assert_is_op("fc");
  auto *fc_out = pattern->NewNode(fc_out_repr())
                     ->assert_is_op_output("fc", "Out")
                     ->assert_is_op_input(act_type);
  auto *act =
      pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
  auto *act_out = pattern->NewNode(act_out_repr())
                      ->assert_is_op_output(act_type, "Out")
                      ->AsOutput();

  fc->LinksTo({fc_out});
  act->LinksFrom({fc_out}).LinksTo({act_out});

  return act_out;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
PDNode *patterns::SoftplusActivation::operator()(std::string activation_type) {
  // Create Operators
  auto *softplus_op =
      pattern->NewNode(softplus_repr())->assert_is_op("softplus");
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
  // intermediate variable, will be removed in the IR after fuse.
  auto *softplus_out = pattern->NewNode(softplus_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("softplus")
                           ->assert_is_op_input(activation_type);
  // output
  auto *activation_out = pattern->NewNode(activation_out_repr())
                             ->AsOutput()
                             ->assert_is_op_output(activation_type);

  softplus_op->LinksTo({softplus_out});
  activation_op->LinksFrom({softplus_out}).LinksTo({activation_out});
  return activation_out;
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
1135
PDNode *patterns::LSTM::operator()(PDNode *x) {
1136
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
1137
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
1138
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1139
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1140
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
1141 1142 1143 1144 1145

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
1146 1147
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
1148

Y
Yan Chunwei 已提交
1149 1150 1151 1152 1153
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
1154 1155 1156 1157 1158

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
1159

C
chengduo 已提交
1160
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
1161
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
1162
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
1163
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1164
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1165
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
1166

Y
Yan Chunwei 已提交
1167
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
1168 1169
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
1170
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
1171 1172
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
1173
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
1174
  // below are intermediate
Y
Yan Chunwei 已提交
1175 1176 1177 1178
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
1179

T
tensor-tang 已提交
1180 1181 1182 1183
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
1184 1185 1186 1187 1188
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

Z
Zhen Wang 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
PDNode *patterns::BatchNormAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->assert_is_op_input("batch_norm", "Variance");
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->assert_is_op_input("batch_norm", "Mean");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_has_n_outputs(1);

  bn_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom(
        {bn_x_var, bn_scale_var, bn_bias_var, bn_variance_var, bn_mean_var})
      .LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var,
                bn_saved_mean_var, bn_reserve_space, bn_out_var});
  act->LinksFrom({bn_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);
  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");
  // ReserveSpace as the output is equal to:
  // data_layout == 'NHWC' && FLAGS_cudnn_batchnorm_spatial_persistent == true
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"));
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  bn_grad
      ->LinksFrom({bn_x_var, d_intermediate_var, bn_scale_var, bn_bias_var,
                   bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space})
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
PDNode *patterns::BatchNormActOneDNN::operator()(const std::string &act_type) {
  auto *bn_x = pattern->NewNode(bn_in_repr())
                   ->AsInput()
                   ->assert_is_op_input("batch_norm", "X");
  auto *bn = pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  auto *bn_out = pattern->NewNode(bn_out_repr())
                     ->assert_is_op_output("batch_norm", "Y")
                     ->assert_is_op_input(act_type);
  auto *act =
      pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
  auto *act_out = pattern->NewNode(act_out_repr())
                      ->assert_is_op_output(act_type, "Out")
                      ->AsOutput();

  bn->LinksFrom({bn_x}).LinksTo({bn_out});
  act->LinksFrom({bn_out}).LinksTo({act_out});

  return act_out;
}

Z
Zhang Ting 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
PDNode *patterns::BatchNormAddAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  bn_x_var->assert_is_op_input("batch_norm", "X")
      ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_var_dtype(proto::VarType::FP16);

  bn_out_var->assert_is_op_input("elementwise_add");

  auto *elewise_add =
      pattern->NewNode(elewise_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_in_var = pattern->NewNode(elewise_add_in_repr())
                                 ->assert_is_not_ctrl_var()
                                 ->assert_is_op_input("elementwise_add")
                                 ->assert_var_dtype(proto::VarType::FP16);

  auto *elewise_add_out_var =
      pattern->NewNode(elewise_add_out_repr())
          ->assert_is_op_output("elementwise_add", "Out")
          ->assert_has_n_outputs(1);

  elewise_add_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom({bn_x_var, bn_scale_var, bn_bias_var})
      .LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var,
                bn_saved_mean_var, bn_reserve_space, bn_out_var});
  elewise_add->LinksFrom({elewise_add_in_var, bn_out_var})
      .LinksTo({elewise_add_out_var});
  act->LinksFrom({elewise_add_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormAddActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *elewise_add_grad = pattern->NewNode(elewise_add_grad_repr())
                               ->assert_is_op("elementwise_add_grad");
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_act_x_var =
      pattern->NewNode(d_act_x_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);  // d_act_x

  d_act_x_var->AsIntermediate()->assert_is_op_input("elementwise_add_grad");

  auto *d_elewise_add_in_var =
      pattern->NewNode(d_elewise_add_in_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_1
  auto *d_bn_out_var =
      pattern->NewNode(d_bn_out_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_2

  d_bn_out_var->assert_is_op_input("batch_norm_grad", GradVarName("Y"));

  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");

  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"))
          ->assert_var_dtype(proto::VarType::FP16);
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var}).LinksTo({d_act_x_var});

  elewise_add_grad->LinksFrom({d_act_x_var})
      .LinksTo({d_elewise_add_in_var, d_bn_out_var});

  bn_grad
      ->LinksFrom({bn_x_var, d_bn_out_var, bn_scale_var, bn_bias_var,
                   bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space})
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

C
chengduo 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::LinearAct::operator()(
    paddle::framework::ir::PDNode *linear_x_var,
    const std::unordered_set<std::string> &act_types, bool with_grad_link,
    bool is_act_grad_x_from_act) {
  auto *matmul_w_var =
      pattern->NewNode(matmul_w_repr())->assert_is_op_input("matmul_v2", "Y");

  auto *matmul = pattern->NewNode(matmul_repr())->assert_is_op("matmul_v2");

  auto *matmul_out_var = pattern->NewNode(matmul_out_repr())
                             ->assert_is_op_output("matmul_v2", "Out");

  matmul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add", "X");

  auto *ele_bias_var = pattern->NewNode(ele_bias_repr())
                           ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  matmul->LinksFrom({linear_x_var, matmul_w_var}).LinksTo({matmul_out_var});
  ele_add->LinksFrom({matmul_out_var, ele_bias_var}).LinksTo({ele_out_var});

  if (with_grad_link) {
    matmul_out_var->assert_is_op_input("elementwise_add_grad", "X");
    auto *elementwise_add_grad_op = pattern->NewNode("elementwise_add_grad")
                                        ->assert_is_op("elementwise_add_grad");
    elementwise_add_grad_op->LinksFrom({matmul_out_var});
  }

  if (act_types.size() > 0) {
    ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

    auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
    auto *act_out_var = pattern->NewNode(act_out_repr())
                            ->assert_is_ops_output(act_types, "Out");

    act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

    if (with_grad_link && !is_act_grad_x_from_act) {
      std::unordered_set<std::string> act_grad_types;
      for (const auto &act : act_types) {
        std::string act_grad(act);
        act_grad.append("_grad");
        act_grad_types.insert(act_grad);
      }

      ele_out_var->assert_is_ops_input(act_grad_types, "X");
      auto *act_grad_op =
          pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
      act_grad_op->LinksFrom({ele_out_var});
    }

    return act_out_var;
  }

  return ele_out_var;
}

PDNode *patterns::ElewiseAddMatmulAct::operator()(
    paddle::framework::ir::PDNode *dout_var,
    const std::unordered_set<std::string> &act_grad_types,
    bool without_x_gradient, bool is_act_grad_x_from_act) {
  auto *ele_grad_bias_var =
      pattern->NewNode(ele_grad_bias_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y");
  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");
  auto *ele_grad_dx_var =
      pattern->NewNode(ele_grad_dx_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
  auto *ele_grad_dbias_var =
      pattern->NewNode(ele_grad_dbias_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
  ele_add_grad->LinksFrom({dout_var, ele_grad_bias_var})
      .LinksTo({ele_grad_dx_var, ele_grad_dbias_var});

  ele_grad_dx_var->AsIntermediate()->assert_is_op_input("matmul_v2_grad",
                                                        GradVarName("Out"));

  auto *matmul_grad_x_var = pattern->NewNode(matmul_grad_x_repr())
                                ->assert_is_op_input("matmul_v2_grad", "X");
  auto *matmul_grad_w_var = pattern->NewNode(matmul_grad_w_repr())
                                ->assert_is_op_input("matmul_v2_grad", "Y");
  auto *matmul_grad =
      pattern->NewNode(matmul_grad_repr())->assert_is_op("matmul_v2_grad");
  auto *matmul_grad_dx_var =
      pattern->NewNode(matmul_grad_dx_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("X"));
  auto *matmul_grad_dw_var =
      pattern->NewNode(matmul_grad_dw_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("Y"));
  matmul_grad->LinksFrom(
      {ele_grad_dx_var, matmul_grad_x_var, matmul_grad_w_var});
  if (without_x_gradient) {
    matmul_grad->LinksTo({matmul_grad_dw_var});
  } else {
    matmul_grad->LinksTo({matmul_grad_dx_var, matmul_grad_dw_var});
  }

  if (!without_x_gradient && act_grad_types.size() > 0) {
    matmul_grad_dx_var->AsIntermediate()->assert_is_ops_input(
        act_grad_types, GradVarName("Out"));

    auto *act_grad =
        pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
    auto *act_grad_dx_var =
        pattern->NewNode(act_grad_dx_repr())
            ->assert_is_ops_output(act_grad_types, GradVarName("X"));

    auto *act_grad_x_var = matmul_grad_x_var;
    if (!is_act_grad_x_from_act) {
      auto *ele_out_var = pattern->NewNode(ele_out_repr())
                              ->assert_is_ops_input(act_grad_types, "X");
      act_grad_x_var = ele_out_var;
    }

    act_grad->LinksFrom({matmul_grad_dx_var, act_grad_x_var})
        .LinksTo({act_grad_dx_var});
    return act_grad;
  }

  return matmul_grad;
}

1687
// conv_type: conv2d, conv3d, conv2d_transpose
M
Michal Gallus 已提交
1688
PDNode *patterns::ConvBias::operator()(
1689
    paddle::framework::ir::PDNode *conv_input, std::string conv_type) {
M
Michal Gallus 已提交
1690
  // Create Operators
1691 1692
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
M
Michal Gallus 已提交
1693 1694 1695 1696
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
Y
Yihua Xu 已提交
1697 1698 1699
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
1700
                              ->assert_is_op_input(conv_type, "Filter");
M
Michal Gallus 已提交
1701
  // intermediate variable, will be removed in the IR after fuse.
Y
Yihua Xu 已提交
1702 1703
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
1704
                           ->assert_is_only_output_of_op(conv_type)
Y
Yihua Xu 已提交
1705
                           ->assert_is_op_input("elementwise_add");
M
Michal Gallus 已提交
1706 1707 1708
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
1709
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

1721 1722 1723 1724
PDNode *patterns::Conv::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

  auto input_var = pattern->NewNode(conv_input_repr())
1725
                       ->AsInput()
1726 1727 1728
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
1729
                        ->AsInput()
1730 1731 1732
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
1733
                        ->AsOutput()
1734 1735
                        ->assert_is_op_output("conv2d", "Output");

1736 1737 1738 1739
  conv_op->LinksFrom({input_var, filter_var}).LinksTo({output_var});
  return output_var;
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
PDNode *patterns::Transpose::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_in = pattern->NewNode(transpose_in_repr())
                          ->AsInput()
                          ->assert_is_op_input("transpose2");
  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("transpose2", "Out");

  prev_op->LinksTo({transpose_in});
  transpose_op->LinksFrom({transpose_in}).LinksTo({transpose_out});
  return transpose_out;
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
PDNode *patterns::Reshape::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");

  auto reshape_in = pattern->NewNode(reshape_in_repr())
                        ->AsInput()
                        ->assert_is_op_input("reshape2", "X");
  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("reshape2", "Out");

  prev_op->LinksTo({reshape_in});
  reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
  return reshape_out;
}

Z
Zuza 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
PDNode *patterns::Slice::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto slice_op = pattern->NewNode(slice_op_repr())->assert_is_op("slice");

  auto slice_in = pattern->NewNode(slice_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("slice", "Input");
  auto slice_out = pattern->NewNode(slice_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("slice", "Out");

  prev_op->LinksTo({slice_in});
  slice_op->LinksFrom({slice_in}).LinksTo({slice_out});
  return slice_out;
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
PDNode *patterns::NearestInterp::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto nearest_interp_op =
      pattern->NewNode(nearest_interp_op_repr())
          ->assert_is_ops({"nearest_interp", "nearest_interp_v2"});

  auto nearest_interp_in =
      pattern->NewNode(nearest_interp_in_repr())
          ->AsInput()
          ->assert_is_ops_input({"nearest_interp", "nearest_interp_v2"}, "X");
  auto nearest_interp_out =
      pattern->NewNode(nearest_interp_out_repr())
          ->AsOutput()
          ->assert_is_ops_output({"nearest_interp", "nearest_interp_v2"},
                                 "Out");

  prev_op->LinksTo({nearest_interp_in});
  nearest_interp_op->LinksFrom({nearest_interp_in})
      .LinksTo({nearest_interp_out});
  return nearest_interp_out;
}

1816
PDNode *patterns::Matmul::operator()() {
1817 1818 1819 1820 1821 1822 1823
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
1824
                         ->assert_is_persistable_var()
1825 1826 1827 1828 1829 1830 1831 1832 1833
                         ->assert_is_op_input("matmul", "Y");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
// MatmulV2: tensor * weight
PDNode *patterns::MatmulV2Weight::operator()() {
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");

  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_persistable_var()  // Y is weight
                            ->assert_is_op_input("matmul_v2", "Y");
  auto matmul_v2_out = pattern->NewNode(matmul_v2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("matmul_v2", "Out");

  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({matmul_v2_out});
  return matmul_v2_out;
}

// MatmulV2: tensor * tensor or tensor * weight
1856
PDNode *patterns::MatmulV2::operator()() {
1857 1858
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868
  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "Y");
  auto matmul_v2_out = pattern->NewNode(matmul_v2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("matmul_v2", "Out");
1869

1870 1871 1872
  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({matmul_v2_out});
  return matmul_v2_out;
1873 1874
}

H
heliqi 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
PDNode *patterns::MatmulScale::operator()() {
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "Y");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_in_x = pattern->NewNode(scale_in_x_repr())
                        ->assert_is_op_output("matmul", "Out")
                        ->assert_is_op_input("scale", "X");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({scale_in_x});
  scale_op->LinksFrom({scale_in_x}).LinksTo({scale_out});
  return scale_out;
}

PDNode *patterns::MatmulV2Scale::operator()() {
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");
  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_persistable_var()  // Y is weight
                            ->assert_is_op_input("matmul_v2", "Y");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_in_x = pattern->NewNode(scale_in_x_repr())
                        ->assert_is_op_output("matmul_v2", "Out")
                        ->assert_is_op_input("scale", "X");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({scale_in_x});
  scale_op->LinksFrom({scale_in_x}).LinksTo({scale_out});
  return scale_out;
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
PDNode *patterns::Squeeze2Matmul::operator()() {
  auto squeeze2_in_x = pattern->NewNode(squeeze2_in_x_repr())
                           ->assert_is_op_input("squeeze2", "X")
                           ->AsInput();
  auto squeeze2_op =
      pattern->NewNode(squeeze2_op_repr())->assert_is_op("squeeze2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("squeeze2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  squeeze2_op->LinksFrom({squeeze2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

PDNode *patterns::Reshape2Matmul::operator()() {
  auto reshape2_in_x = pattern->NewNode(reshape2_in_x_repr())
                           ->assert_is_op_input("reshape2", "X")
                           ->AsInput();
  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("reshape2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  reshape2_op->LinksFrom({reshape2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

PDNode *patterns::MatmulWithInputOps::operator()() {
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
  auto prev_op_x = pattern->NewNode(prev_op_x_repr())->assert_is_op();
  auto prev_op_y = pattern->NewNode(prev_op_y_repr())->assert_is_op();

  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "Y");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  prev_op_x->LinksTo({matmul_in_x});
  prev_op_y->LinksTo({matmul_in_y});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PDNode *patterns::Flatten2Matmul::operator()() {
  auto flatten2_in_x = pattern->NewNode(flatten2_in_x_repr())
                           ->assert_is_op_input("flatten2", "X")
                           ->AsInput();
  auto flatten2_op =
      pattern->NewNode(flatten2_op_repr())->assert_is_op("flatten2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("flatten2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  flatten2_op->LinksFrom({flatten2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

2002 2003 2004
PDNode *patterns::ConvResidual::operator()(bool with_residual_data) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

2005 2006 2007 2008 2009 2010 2011 2012 2013
  if (!with_residual_data) {
    conv_op->assert_more([&](Node *x) {
      auto node_names = x->Op()->InputNames();
      if (!HasInput(x, "ResidualData") ||
          x->Op()->Input("ResidualData").size() == 0)
        return true;
      return false;
    });
  }
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

  auto input_var = pattern->NewNode(conv_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
                        ->AsInput()
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("conv2d", "Output");

  std::vector<PDNode *> links_from{input_var, filter_var};

  if (with_residual_data) {
    auto res_conn_var = pattern->NewNode(conv_residual_data_repr())
                            ->AsInput()
                            ->assert_is_op_input("conv2d", "ResidualData");
    links_from.push_back(res_conn_var);
  }

  conv_op->LinksFrom(links_from).LinksTo({output_var});
  return output_var;
}

PDNode *patterns::Pool::operator()() {
  auto pool_op = pattern->NewNode(pool_op_repr())->assert_is_op("pool2d");

  auto input_var = pattern->NewNode(pool_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("pool2d", "X");

  auto output_var = pattern->NewNode(pool_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("pool2d", "Out");
2050

2051
  pool_op->LinksFrom({input_var}).LinksTo({output_var});
2052 2053 2054
  return output_var;
}

Z
Zuza 已提交
2055 2056 2057 2058 2059 2060 2061 2062
PDNode *patterns::Elementwise::operator()(PDNode *x_var, PDNode *y_var,
                                          const std::string elementwise_type) {
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  x_var->AsInput()->assert_is_op_input(elementwise_type, "X");
  y_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
  auto out_var = pattern->NewNode(elementwise_out_repr())
2063
                     ->AsOutput()
Z
Zuza 已提交
2064
                     ->assert_is_op_output(elementwise_type, "Out");
2065

Z
Zuza 已提交
2066 2067
  elementwise_op->LinksFrom({x_var, y_var});
  elementwise_op->LinksTo({out_var});
2068 2069 2070

  return out_var;
}
2071

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
PDNode *patterns::ElementwiseOp::operator()(
    const std::string elementwise_type) {
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  auto out_var = pattern->NewNode(elementwise_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output(elementwise_type, "Out");

  elementwise_op->LinksTo({out_var});

  return out_var;
}

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
PDNode *patterns::ResidualElementwise::operator()(
    PDNode *op_var, PDNode *residual_var, const std::string elementwise_type,
    bool as_x) {
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  if (as_x) {
    op_var->AsInput()->assert_is_op_input(elementwise_type, "X");
    residual_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
  } else {
    op_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
    residual_var->AsInput()->assert_is_op_input(elementwise_type, "X");
  }
  auto out_var = pattern->NewNode(elementwise_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output(elementwise_type, "Out");

  elementwise_op->LinksFrom({op_var, residual_var});
  elementwise_op->LinksTo({out_var});

  return out_var;
}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
PDNode *patterns::Concat::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");

  auto output_var = pattern->NewNode(concat_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("concat", "Out");

  concat_op->LinksTo({output_var});
  return output_var;
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
PDNode *patterns::ConcatReLU::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
  auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");

  auto concat_out =
      pattern->NewNode(concat_out_repr())->assert_is_op_output("concat", "Out");

  auto relu_out = pattern->NewNode(relu_out_repr())
                      ->AsOutput()
                      ->assert_is_op_output("relu", "Out");

  concat_op->LinksTo({concat_out});
  relu_op->LinksFrom({concat_out}).LinksTo({relu_out});

  return relu_out;
}

PDNode *patterns::ConvConcatReLU::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
  auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");

  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d", "Output");

  auto concat_out = pattern->NewNode(concat_out_repr())
                        ->assert_is_op_output("concat", "Out")
                        ->assert_is_op_input("relu", "X");

  auto relu_out = pattern->NewNode(relu_out_repr())
                      ->AsOutput()
                      ->assert_is_op_output("relu", "Out");

  conv_op->LinksTo({conv_out});
  concat_op->LinksFrom({conv_out}).LinksTo({concat_out});
  relu_op->LinksFrom({concat_out}).LinksTo({relu_out});

  return relu_out;
}

J
joanna.wozna.intel 已提交
2160 2161 2162 2163 2164 2165 2166 2167
PDNode *patterns::OpRequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      return node->Op()->HasAttr("Scale_out") ? true : false;
                    });
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
2168 2169 2170 2171 2172 2173
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");

J
joanna.wozna.intel 已提交
2174 2175
  any_op->LinksTo({requant_in});
  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
2176 2177 2178
  return requant_out;
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
PDNode *patterns::RequantOp::operator()() {
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      return (node->Op()->HasAttr("Scale_in") ||
                              node->Op()->HasAttr("Scale_x") ||
                              node->Op()->HasAttr("Scale_y"));
                    });

  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
  any_op->LinksFrom({requant_out});
  return any_op;
}

2200 2201 2202 2203
PDNode *patterns::OpDequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
2204 2205
                      return (node->Op()->HasAttr("force_fp32_output") ||
                              node->Op()->HasProtoAttr("force_fp32_output"));
2206 2207 2208
                    });
  auto dequant_in = pattern->NewNode(dequant_in_repr())
                        ->assert_is_op_input("dequantize", "Input");
2209 2210 2211 2212 2213 2214
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");

2215 2216
  any_op->LinksTo({dequant_in});
  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
2217 2218 2219
  return dequant_out;
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
PDNode *patterns::DequantScale::operator()() {
  // Create Operators
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");

  dequant_op->LinksTo({dequant_out});
  scale_op->LinksFrom({dequant_out}).LinksTo({scale_out});

  return scale_out;
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
PDNode *patterns::ScaleQuant::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  scale_op->LinksFrom({scale_in}).LinksTo({quant_in});
  quant_op->LinksFrom({quant_in});

  return quant_op;
}

PDNode *patterns::QuantConv::operator()() {
  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  auto conv_in = pattern->NewNode(conv_in_repr())
                     ->AsInput()
                     ->assert_is_op_input("conv2d", "Input");
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  conv_op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });

  quant_op->LinksFrom({quant_in}).LinksTo({conv_in});
  conv_op->LinksFrom({conv_in});

  return quant_op;
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
PDNode *patterns::ScaleMatmul::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  scale_op->LinksFrom({scale_in}).LinksTo({scale_out});
  matmul_op->LinksFrom({scale_out});
  return matmul_op;
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
PDNode *patterns::PriorBox::operator()() {
  auto prior_box_op =
      pattern->NewNode(prior_box_op_repr())->assert_is_op("prior_box");

  auto input_var = pattern->NewNode(prior_box_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Input");

  auto image_var = pattern->NewNode(prior_box_image_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Image");

  auto boxes_var = pattern->NewNode(prior_box_boxes_repr())
                       ->AsOutput()
                       ->assert_is_op_output("prior_box", "Boxes");

  auto variances_var = pattern->NewNode(prior_box_variances_repr())
                           ->AsOutput()
                           ->assert_is_op_output("prior_box", "Variances");

  prior_box_op->LinksFrom({input_var, image_var})
      .LinksTo({boxes_var, variances_var});
  return boxes_var;
}

H
hjchen2 已提交
2317
std::unordered_set<std::string> conv_act_set({"identity", "relu"});
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2332
                                  ->assert_is_persistable_var()
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });

  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
  act_op->LinksFrom({elementwise_add_out}).LinksTo({act_out});

  return act_out;
}

PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2380
                                  ->assert_is_persistable_var()
2381 2382 2383 2384
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
H
hjchen2 已提交
2385
                                 ->assert_is_op_input("elementwise_add", "Y")
2386 2387 2388 2389 2390
                                 ->AsIntermediate();

  auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
                                  ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
H
hjchen2 已提交
2391
                                    ->assert_is_op_input("elementwise_add", "X")
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
                                    ->AsInput();
  auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
                                   ->assert_is_op_output("elementwise_add")
                                   ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });
  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
H
hjchen2 已提交
2419 2420
  elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1})
      .LinksTo({elementwise_add_out_1});
2421 2422 2423 2424
  act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
  return act_out;
}

N
nhzlx 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
PDNode *patterns::ConvElementwiseadd::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2438
                                  ->assert_is_persistable_var()
N
nhzlx 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});

  return elementwise_add_out;
}

N
nhzlx 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
PDNode *patterns::ConvAffineChannel::operator()(
    paddle::framework::ir::PDNode *conv_input, bool with_eltwise_add) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }

  auto *affine_channel_op =
      pattern->NewNode(affine_channel_repr())->assert_is_op("affine_channel");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d");

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as AffineChannel input
    conv_out_var->assert_is_op_input("affine_channel", "X");
  }

  // AC Scale
  auto *ac_scale_var = pattern->NewNode(ac_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
2499
                           ->assert_has_n_outputs(1)
N
nhzlx 已提交
2500 2501 2502 2503 2504
                           ->assert_is_op_input("affine_channel", "Scale");
  // AC Bias
  auto *ac_bias_var = pattern->NewNode(ac_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
2505
                          ->assert_has_n_outputs(1)
N
nhzlx 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
                          ->assert_is_op_input("affine_channel", "Bias");

  // AC output
  auto *ac_out_var = pattern->NewNode(ac_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("affine_channel");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    affine_channel_op->LinksFrom({eltwise_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  } else {
    affine_channel_op->LinksFrom({conv_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  }
  return ac_out_var;
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
PDNode *patterns::DequantQuantAny::operator()() {
  auto *dequant_in = pattern->NewNode(dequant_in_repr())
                         ->AsInput()
                         ->assert_is_op_input("dequantize", "Input");

  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *quant_op = pattern->NewNode(quant_op_repr())
                       ->assert_is_op("quantize")
                       ->AsIntermediate();

  auto *quant_out = pattern->NewNode(quant_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("quantize");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
  quant_op->LinksFrom({dequant_out}).LinksTo({quant_out});
  next_op->LinksFrom({quant_out});

  return quant_out;
}

PDNode *patterns::DequantAny::operator()() {
  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksTo({dequant_out});
  next_op->LinksFrom({dequant_out});

  return dequant_out;
}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
PDNode *patterns::MultipleQuantize::operator()() {
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  // find nodes that are inputs to quantize operators
  prev_out->assert_more([&](Node *node) {
    int counter = std::count_if(
        node->outputs.begin(), node->outputs.end(), [&](Node const *iter) {
          return iter && iter->IsOp() && iter->Op()->Type() == "quantize";
        });
    return (counter > 1);
  });

  return prev_out;
}

2587 2588
PDNode *patterns::QuantizePlacement::operator()(
    const std::unordered_set<std::string> &quantize_enabled_op_types) {
2589 2590
  auto *op =
      pattern->NewNode(op_repr())->assert_is_ops(quantize_enabled_op_types);
2591 2592 2593
  return op;
}

2594 2595
PDNode *patterns::Bfloat16Placement::operator()(
    const std::unordered_set<std::string> &bfloat16_enabled_op_types) {
J
Jacek Czaja 已提交
2596
  std::unordered_set<std::string> supported_op_types =
J
jakpiase 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
      std::unordered_set<std::string>({"cast",
                                       "clip",
                                       "concat",
                                       "conv2d",
                                       "conv2d_transpose",
                                       "elementwise_add",
                                       "elementwise_mul",
                                       "expand_v2",
                                       "fc",
                                       "fusion_gru",
                                       "fusion_lstm",
                                       "gelu",
                                       "layer_norm",
                                       "matmul",
                                       "matmul_v2",
                                       "pool2d",
                                       "prelu",
                                       "relu",
                                       "reshape2",
                                       "scale",
                                       "sigmoid",
                                       "slice",
                                       "softmax",
                                       "split",
                                       "squeeze",
                                       "squeeze2",
                                       "sum",
                                       "transpose2"});
2625 2626 2627
  if (!bfloat16_enabled_op_types.empty()) {
    supported_op_types = bfloat16_enabled_op_types;
  }
2628
  auto *op_in = pattern->NewNode(op_in_repr())->AsInput();
2629
  auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types);
2630 2631 2632 2633
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<bool>("use_mkldnn") ||
           node->Op()->Type() == "reshape2";
  });
2634
  op->LinksFrom({op_in});
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
  return op;
}

PDNode *patterns::OrphanedBfloat16::operator()() {
  auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
  prev_op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "float32";
  });
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  auto *op_out = pattern->NewNode(op_out_repr())->AsOutput();

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();
  next_op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "float32";
  });

  prev_op->LinksTo({prev_out});
  op->LinksFrom({prev_out}).LinksTo({op_out});
  next_op->LinksFrom({op_out});
  return next_op;
}

W
wenbin 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
PDNode *patterns::UnsupportedBfloat16::operator()() {
  auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
  prev_op->assert_more([&](Node *node) {
    return node->Op()->HasAttr("mkldnn_data_type") == false;
  });
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  prev_op->LinksTo({prev_out});
  op->LinksFrom({prev_out});
  return op;
}

2682 2683 2684 2685 2686 2687 2688 2689
PDNode *patterns::LastBfloat16Ops::operator()() {
  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  auto *op_out = pattern->NewNode(op_out_repr())->AsOutput();
  op->LinksTo({op_out});
2690
  return op_out;
2691 2692 2693
}

PDNode *patterns::FirstBfloat16Ops::operator()() {
2694
  auto *op_in = pattern->NewNode(op_in_repr())->AsInput();
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });

  op->LinksFrom({op_in});
  return op;
}

2706 2707 2708 2709 2710 2711 2712 2713 2714
PDNode *patterns::DuplicatedInputs::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_ops({"concat", "sum"});
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  return op;
}

2715 2716 2717 2718 2719 2720 2721 2722 2723
PDNode *patterns::DuplicatedOutputs::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_ops({"split"});
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  return op;
}

2724
PDNode *patterns::MKLDNNInPlace::operator()() {
2725
  const std::unordered_set<std::string> &supported_op_types = {
2726
      "abs", "gelu", "leaky_relu", "relu", "softmax", "sqrt", "swish", "tanh"};
2727 2728 2729

  auto possible_inplace_op = pattern->NewNode(inplace_to_be_op_repr())
                                 ->assert_is_ops(supported_op_types);
2730 2731

  auto input = pattern->NewNode(inplace_to_be_op_in_repr())
2732
                   ->assert_is_ops_input(supported_op_types)
2733 2734
                   ->AsInput();
  auto output = pattern->NewNode(inplace_to_be_op_out_repr())
2735
                    ->assert_is_ops_output(supported_op_types)
2736
                    ->AsOutput();
2737 2738

  auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();
2739
  auto next_output = pattern->NewNode(next_op_out_repr())->AsOutput();
2740 2741 2742 2743

  // Check if op is MKL-DNN enabled
  possible_inplace_op->assert_op_attr("use_mkldnn", true);

2744
  // linked structure
2745 2746 2747
  possible_inplace_op->LinksTo({output});
  possible_inplace_op->LinksFrom({input});
  next_op->LinksFrom({output});
2748
  next_op->LinksTo({next_output});
2749 2750 2751 2752

  return possible_inplace_op;
}

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
// a -> transpose_op(1) -> transpose_out_a -> flatten_op(1) -> flatten_out_a
// b -> transpose_op(2) -> transpose_out_b -> flatten_op(2) -> flatten_out_b
// ...
// z -> transpose_op(n) -> transpose_out_z -> flatten_op(n) -> flatten_out_z
// flatten_out_a -> concat_op  flatten_out_b -> concat_op ... flatten_out_z ->
// concat_op
PDNode *patterns::TransposeFlattenConcat::operator()(
    std::vector<PDNode *> conv_in, int times) {
  // The times represents the repeat times of the
  // {trans, trans_out, flatten, flatten_out}
  const int kNumFields = 4;
  const int kTransOutOffset = 1;
  const int kFlattenOffset = 2;
  const int kFlattenOutOffset = 3;

  std::vector<PDNode *> nodes;

  for (int i = 0; i < times; i++) {
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose" + std::to_string(i)))
            ->assert_is_op("transpose2"));
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose_out" + std::to_string(i)))
            ->assert_is_op_output("transpose2")
            ->assert_is_op_input("flatten2", "X")
            ->AsIntermediate());
    nodes.push_back(pattern->NewNode(GetNodeName("flatten" + std::to_string(i)))
                        ->assert_is_op("flatten2"));

    nodes.push_back(
        pattern->NewNode(GetNodeName("flatten_out" + std::to_string(i)))
            ->assert_is_op_output("flatten2")
            ->assert_is_op_nth_input("concat", "X", i)
            ->AsIntermediate());
  }

  auto concat_op = pattern->NewNode(GetNodeName("concat"))
                       ->assert_is_op("concat")
                       ->assert_op_has_n_inputs("concat", times);
  auto concat_out = pattern->NewNode(GetNodeName("concat_out"))
                        ->assert_is_op_output("concat")
                        ->AsOutput();

  std::vector<PDNode *> flatten_outs;
  for (int i = 0; i < times; i++) {
    conv_in[i]->AsInput();
    // trans
    nodes[i * kNumFields]->LinksFrom({conv_in[i]});
    // trans_out
    nodes[i * kNumFields + kTransOutOffset]->LinksFrom({nodes[i * kNumFields]});
    // flatten
    nodes[i * kNumFields + kFlattenOffset]->LinksFrom(
        {nodes[i * kNumFields + kTransOutOffset]});
    // flatten_out
    nodes[i * kNumFields + kFlattenOutOffset]->LinksFrom(
        {nodes[i * kNumFields + kFlattenOffset]});
    flatten_outs.push_back(nodes[i * kNumFields + kFlattenOutOffset]);
  }

  concat_op->LinksFrom(flatten_outs).LinksTo({concat_out});
  return concat_out;
}

D
denglin-github 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
void patterns::DeleteDropoutOpPattern::operator()() {
  auto any_op_out = pattern->NewNode(any_op_out_repr())
                        ->assert_is_op_input("dropout", "X")
                        ->AsInput();

  auto dropout_op =
      pattern->NewNode(dropout_op_repr())->assert_is_op("dropout");

  auto dropout_op_out = pattern->NewNode(dropout_op_out_repr())
                            ->assert_is_op_output("dropout", "Out")
                            ->AsIntermediate();

  auto dropout_op_outmask = pattern->NewNode(dropout_op_outmask_repr())
                                ->assert_is_op_output("dropout", "Mask")
                                ->AsOutput();
  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  dropout_op->LinksFrom({any_op_out});
  dropout_op_out->LinksFrom({dropout_op});
  dropout_op_outmask->LinksFrom({dropout_op});
  any_op2->LinksFrom({dropout_op_out});
}

2839 2840 2841
void patterns::DeleteQuantOpFuse::operator()(PDNode *input_act_node,
                                             const std::string &quant_type) {
  auto *input_scale_node = pattern->NewNode(GetNodeName("input_scale_node"))
2842 2843
                               ->assert_is_op_input(quant_type, "InScale")
                               ->AsInput();
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
  auto *quant_node =
      pattern->NewNode(GetNodeName("quant_node"))->assert_is_op(quant_type);
  auto *output_scale_node = pattern->NewNode(GetNodeName("output_scale_node"))
                                ->assert_is_op_output(quant_type, "OutScale")
                                ->AsOutput();
  auto *output_act_node = pattern->NewNode(GetNodeName("output_act_node"))
                              ->assert_is_op_output(quant_type, "Out")
                              ->AsOutput();
  quant_node->LinksFrom({input_scale_node, input_act_node});
  output_scale_node->LinksFrom({quant_node});
  output_act_node->LinksFrom({quant_node});
}

void patterns::DequantOpFuse::operator()(PDNode *quantized_op_input,
                                         const std::string &quantized_op_type,
                                         const std::string &dequant_type,
                                         const std::string &weight_name) {
  auto *quantized_op_weight =
      pattern->NewNode(GetNodeName("quantized_op_weight"))
          ->assert_is_op_input(quantized_op_type, weight_name)
          ->AsInput();
  auto *quantized_op = pattern->NewNode(GetNodeName("quantized_op"))
                           ->assert_is_op(quantized_op_type);
  auto *quantized_op_out = pattern->NewNode(GetNodeName("quantized_op_out"))
                               ->assert_is_op_output(quantized_op_type)
                               ->assert_is_op_input(dequant_type, "X");
  auto *dequant_op =
      pattern->NewNode(GetNodeName("dequant_op"))->assert_is_op(dequant_type);
  auto *dequant_op_out = pattern->NewNode(GetNodeName("dequant_op_out"))
                             ->assert_is_op_output(dequant_type, "Out")
                             ->AsOutput();
  PDNode *dequant_channel_scale = nullptr;
2876
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
2877 2878 2879 2880
    dequant_channel_scale =
        pattern->NewNode(GetNodeName("dequant_channel_scale"))
            ->assert_is_op_nth_input(dequant_type, "Scales", 0)
            ->AsInput();
N
nhzlx 已提交
2881
  }
2882 2883
  quantized_op->LinksFrom({quantized_op_input, quantized_op_weight});
  quantized_op_out->LinksFrom({quantized_op});
N
nhzlx 已提交
2884

2885 2886 2887 2888
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
    dequant_op->LinksFrom({quantized_op_out, dequant_channel_scale});
  } else {
    dequant_op->LinksFrom({quantized_op_out});
N
nhzlx 已提交
2889
  }
2890
  dequant_op_out->LinksFrom({dequant_op});
N
nhzlx 已提交
2891 2892
}

2893 2894 2895
void patterns::ShuffleChannelPattern::operator()(PDNode *reshape1_in) {
  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2");
2896
  reshape1_op->assert_more([&](Node *x) {
2897 2898
    return BOOST_GET_CONST(std::vector<int>, x->Op()->GetAttr("shape"))
               .size() == 5;
2899
  });
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->assert_is_op_input("transpose2")
                          ->AsIntermediate();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2")
                           ->AsIntermediate();

  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  reshape1_op->LinksFrom({reshape1_in});
  reshape1_out->LinksFrom({reshape1_op});
  transpose_op->LinksFrom({reshape1_out});
  transpose_out->LinksFrom({transpose_op});
  reshape2_op->LinksFrom({transpose_out});
  reshape2_out->LinksFrom({reshape2_op});
}

2928 2929
void patterns::DeleteQuantDequantOpPattern::operator()(
    PDNode *input_node, const std::string &quantdequant_types) {
2930 2931
  auto quant_dequant_op_inscale =
      pattern->NewNode(quant_dequant_op_inscale_repr())
2932
          ->assert_is_op_input(quantdequant_types, "InScale")
2933
          ->AsInput();
2934 2935
  auto quant_dequant_op = pattern->NewNode(quant_dequant_op_repr())
                              ->assert_is_op(quantdequant_types);
2936

2937
  auto quant_dequant_op_out =
2938
      pattern->NewNode(quant_dequant_op_out_repr())
2939 2940
          ->assert_is_op_output(quantdequant_types, "Out")
          ->AsOutput();
2941 2942 2943

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
2944
          ->assert_is_op_output(quantdequant_types, "OutScale")
2945 2946
          ->AsOutput();

2947
  quant_dequant_op->LinksFrom({quant_dequant_op_inscale, input_node});
2948
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
2949
  quant_dequant_op_out->LinksFrom({quant_dequant_op});
2950 2951
}

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
void patterns::DeleteQuantDequantFilterOpPattern::operator()() {
  auto quant_dequant_op_x =
      pattern->NewNode(quant_dequant_op_x_repr())
          ->assert_is_ops_input(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "X")
          ->AsInput();

  auto quant_dequant_op =
      pattern->NewNode(quant_dequant_op_repr())
          ->assert_is_ops({"fake_channel_wise_quantize_dequantize_abs_max",
                           "fake_quantize_dequantize_abs_max"});

  auto quant_dequant_out =
      pattern->NewNode(quant_dequant_op_out_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "Out")
          ->AsIntermediate();

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "OutScale")
          ->AsOutput();
  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  quant_dequant_op->LinksFrom({quant_dequant_op_x});
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
  quant_dequant_out->LinksFrom({quant_dequant_op});
  any_op2->LinksFrom({quant_dequant_out});
}

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
void patterns::DeleteWeightQuantDequantLinearOpPattern::operator()() {
  auto weight_dequantize_linear_op_x =
      pattern->NewNode(weight_dequantize_linear_op_x_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op_scale =
      pattern->NewNode(weight_dequantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op =
      pattern->NewNode(weight_dequantize_linear_op_repr())
          ->assert_is_op("dequantize_linear");

  auto weight_dequantize_linear_op_out =
      pattern->NewNode(weight_dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  weight_dequantize_linear_op
      ->LinksFrom(
          {weight_dequantize_linear_op_x, weight_dequantize_linear_op_scale})
      .LinksTo({weight_dequantize_linear_op_out});
  any_op2->LinksFrom({weight_dequantize_linear_op_out});
}

void patterns::DeleteQuantDequantLinearOpPattern::operator()() {
  auto quantize_linear_op_x = pattern->NewNode(quantize_linear_op_x_repr())
                                  ->AsInput()
                                  ->assert_is_op_input("quantize_linear", "X");

  auto quantize_linear_op_scale =
      pattern->NewNode(quantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("quantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto quantize_linear_op = pattern->NewNode(quantize_linear_op_repr())
                                ->assert_is_op("quantize_linear");

  auto quantize_linear_op_out =
      pattern->NewNode(quantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("quantize_linear", "Y")
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_var_not_persistable();

  // Can not add this node. Todo: Wangzheee
  /*
    auto dequantize_linear_op_scale =
        pattern->NewNode(dequantize_linear_op_scale_repr())
            ->assert_is_op_input("dequantize_linear", "Scale")
            ->AsIntermediate();
  */

  auto dequantize_linear_op = pattern->NewNode(dequantize_linear_op_repr())
                                  ->assert_is_op("dequantize_linear");

  auto dequantize_linear_op_out =
      pattern->NewNode(dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  quantize_linear_op
      ->LinksFrom({quantize_linear_op_x, quantize_linear_op_scale})
      .LinksTo({quantize_linear_op_out});
  dequantize_linear_op->LinksFrom({quantize_linear_op_out})
      .LinksTo({dequantize_linear_op_out});
  any_op2->LinksFrom({dequantize_linear_op_out});
}

3067
PDNode *patterns::ReshapeTransposeMatmulPattern::operator()(
3068 3069
    const std::string &op_name, bool with_reshape_xshape,
    bool with_transpose_xshape) {
3070 3071 3072 3073
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
3074
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op(op_name);
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094

  auto reshape_in = pattern->NewNode(reshape_in_repr())
                        ->AsInput()
                        ->assert_is_op_input("reshape2", "X");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsIntermediate()
                         ->assert_is_op_input("transpose2", "X")
                         ->assert_is_op_output("reshape2", "Out");
  if (!with_reshape_xshape)
    reshape_out->assert_is_only_output_of_op("reshape2");

  auto reshape_xshape = with_reshape_xshape
                            ? pattern->NewNode(reshape_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("reshape2", "XShape")
                            : nullptr;

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
3095
                           ->assert_is_op_input(op_name)
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
                           ->assert_is_op_output("transpose2", "Out");
  if (!with_transpose_xshape)
    transpose_out->assert_is_only_output_of_op("transpose2");

  auto transpose_xshape =
      with_transpose_xshape
          ? pattern->NewNode(transpose_xshape_repr())
                ->AsIntermediate()
                ->assert_is_op_output("transpose2", "XShape")
          : nullptr;

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
3109
                        ->assert_is_op_output(op_name, "Out");
3110 3111 3112 3113 3114 3115 3116 3117 3118

  reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
  if (with_reshape_xshape) reshape_op->LinksTo({reshape_xshape});
  transpose_op->LinksFrom({reshape_out}).LinksTo({transpose_out});
  if (with_transpose_xshape) transpose_op->LinksTo({transpose_xshape});
  matmul_op->LinksFrom({transpose_out}).LinksTo({matmul_out});
  return matmul_out;
}

3119 3120 3121
// shared function for matmul and matmul_v2
PDNode *patterns::MatmulTransposeReshapePattern::operator()(
    const std::string &op_name) {
3122 3123 3124 3125
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
3126
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op(op_name);
3127 3128 3129

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsInput()
3130
                        ->assert_is_op_output(op_name, "Out")
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
                        ->assert_is_op_input("transpose2", "X");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2", "X");

  auto transpose_out_xshape = pattern->NewNode(transpose_out_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("transpose2", "XShape");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("reshape2");

  auto reshape_out_xshape = pattern->NewNode(reshape_out_xshape_repr())
                                ->AsIntermediate()
                                ->assert_is_op_output("reshape2", "XShape");

  matmul_op->LinksTo({matmul_out});
  transpose_op->LinksTo({transpose_out_xshape});
  reshape_op->LinksTo({reshape_out_xshape});
  transpose_op->LinksFrom({matmul_out}).LinksTo({transpose_out});
  reshape_op->LinksFrom({transpose_out}).LinksTo({reshape_out});
  return reshape_out;
}

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
PDNode *patterns::FusionGru::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_gru");
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto weight_h = pattern->NewNode(weight_h_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightH");
  auto weight_x = pattern->NewNode(weight_x_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightX");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("fusion_gru", "Hidden");
  op->LinksFrom({x, weight_h, weight_x}).LinksTo({out});
  return out;
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
PDNode *patterns::FusionLSTM::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_lstm");
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_lstm", "X");
  auto weight_h = pattern->NewNode(weight_h_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_lstm", "WeightH");
  auto weight_x = pattern->NewNode(weight_x_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_lstm", "WeightX");
  auto hidden = pattern->NewNode(hidden_repr())
                    ->AsOutput()
                    ->assert_is_op_output("fusion_lstm", "Hidden");
  auto cell = pattern->NewNode(cell_repr())
                  ->AsOutput()
                  ->assert_is_op_output("fusion_lstm", "Cell");
  op->LinksFrom({x, weight_h, weight_x}).LinksTo({hidden, cell});
  return hidden;
}

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
PDNode *patterns::TwoFusionGruConcat::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto gru1 =
      pattern->NewNode(gru1_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == false;
          });
  auto gru2 =
      pattern->NewNode(gru2_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == true;
          });
  auto wh1 = pattern->NewNode(wh1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wh2 = pattern->NewNode(wh2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wx1 = pattern->NewNode(wx1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto wx2 = pattern->NewNode(wx2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto b1 = pattern->NewNode(b1_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto b2 = pattern->NewNode(b2_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto h2 = pattern->NewNode(h2_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto concat = pattern->NewNode(concat_repr())->assert_is_op("concat");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("concat", "Out");
  gru1->LinksFrom({x, wh1, wx1, b1}).LinksTo({h1});
  gru2->LinksFrom({x, wh2, wx2, b2}).LinksTo({h2});
  concat->LinksFrom({h1, h2}).LinksTo({out});
  return out;
}

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
PDNode *patterns::MultiGruSeq::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru1 = pattern->NewNode(gru1_repr())->assert_is_op("multi_gru");
  auto wx11 = pattern->NewNode(wx11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx12 = pattern->NewNode(wx12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh11 = pattern->NewNode(wh11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh12 = pattern->NewNode(wh12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b11 = pattern->NewNode(b11_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b12 = pattern->NewNode(b12_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("multi_gru", "Hidden")
                ->assert_is_op_input("multi_gru", "X")
                ->AsIntermediate();
  auto gru2 = pattern->NewNode(gru2_repr())->assert_is_op("multi_gru");
  auto wx21 = pattern->NewNode(wx21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx22 = pattern->NewNode(wx22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh21 = pattern->NewNode(wh21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh22 = pattern->NewNode(wh22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b21 = pattern->NewNode(b21_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b22 = pattern->NewNode(b22_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h2 = pattern->NewNode(h2_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru1->LinksFrom({x, wx11, wx12, wh11, wh12, b11, b12}).LinksTo({h1});
  gru2->LinksFrom({h1, wx21, wx22, wh21, wh22, b21, b22}).LinksTo({h2});
  return h2;
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
PDNode *patterns::MultiGru::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru = pattern->NewNode(gru_repr())->assert_is_op("multi_gru");
  auto wx = pattern->NewNode(wx_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightX", 0);
  auto wh = pattern->NewNode(wh_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightH", 0);
  auto h = pattern->NewNode(h_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru->LinksFrom({x, wx, wh}).LinksTo({h});
  return h;
}

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
PDNode *patterns::LayerNorm::operator()() {
  auto *x = pattern->NewNode(x_repr())->AsInput()->assert_is_ops_input(
      {"reduce_mean", "elementwise_sub"});
  auto *x_mean = pattern->NewNode(x_mean_repr())->assert_is_op("reduce_mean");
  auto *x_mean_out = pattern->NewNode(x_mean_out_repr())
                         ->assert_is_op_output("reduce_mean", "Out")
                         ->assert_is_op_input("elementwise_sub", "Y")
                         ->AsIntermediate();
  auto *x_sub_mean =
      pattern->NewNode(x_sub_mean_repr())->assert_is_op("elementwise_sub");
  auto *x_sub_mean_out =
      pattern->NewNode(x_sub_mean_out_repr())
          ->assert_is_op_output("elementwise_sub")
          ->assert_is_ops_input({"elementwise_pow", "elementwise_div"}, "X")
          ->AsIntermediate();
  auto *sqr_pow = pattern->NewNode(sqr_pow_repr())
                      ->assert_is_op_input("elementwise_pow", "Y")
                      ->assert_is_persistable_var()
                      ->AsInput();
  auto *x_sub_mean_sqr =
      pattern->NewNode(x_sub_mean_sqr_repr())->assert_is_op("elementwise_pow");
  auto *x_sub_mean_sqr_out = pattern->NewNode(x_sub_mean_sqr_out_repr())
                                 ->assert_is_op_output("elementwise_pow")
                                 ->assert_is_op_input("reduce_mean")
                                 ->AsIntermediate();
  auto *std_dev = pattern->NewNode(std_dev_repr())->assert_is_op("reduce_mean");
  auto *std_dev_out = pattern->NewNode(std_dev_out_repr())
                          ->assert_is_op_output("reduce_mean")
                          ->assert_is_op_input("elementwise_add")
                          ->AsIntermediate();
  auto *eps = pattern->NewNode(eps_repr())
                  ->assert_is_op_input("elementwise_add", "Y")
                  ->assert_is_persistable_var()
                  ->AsInput();
  auto *std_dev_eps =
      pattern->NewNode(std_dev_eps_repr())->assert_is_op("elementwise_add");
  auto *std_dev_eps_out = pattern->NewNode(std_dev_eps_out_repr())
                              ->assert_is_op_output("elementwise_add")
                              ->assert_is_op_input("sqrt")
                              ->AsIntermediate();
  auto *std_dev_eps_sqrt =
      pattern->NewNode(std_dev_eps_sqrt_repr())->assert_is_op("sqrt");
  auto *std_dev_eps_sqrt_out = pattern->NewNode(std_dev_eps_sqrt_out_repr())
                                   ->assert_is_op_output("sqrt")
                                   ->assert_is_op_input("elementwise_div", "Y")
                                   ->AsIntermediate();
  auto *division =
      pattern->NewNode(division_repr())->assert_is_op("elementwise_div");
  auto *division_out = pattern->NewNode(division_out_repr())
                           ->assert_is_op_output("elementwise_div")
                           ->assert_is_op_input("elementwise_mul")
                           ->AsIntermediate();
  auto *gamma = pattern->NewNode(gamma_repr())
                    ->assert_is_op_input("elementwise_mul", "Y")
                    ->assert_is_persistable_var()
                    ->AsInput();
  auto *scale = pattern->NewNode(scale_repr())->assert_is_op("elementwise_mul");
  auto *scale_out = pattern->NewNode(scale_out_repr())
                        ->assert_is_op_output("elementwise_mul")
                        ->assert_is_op_input("elementwise_add")
                        ->AsIntermediate();
  auto *beta = pattern->NewNode(beta_repr())
                   ->assert_is_op_input("elementwise_add", "Y")
                   ->assert_is_persistable_var()
                   ->AsInput();
  auto *shift = pattern->NewNode(shift_repr())->assert_is_op("elementwise_add");
  auto *shift_out = pattern->NewNode(shift_out_repr())
                        ->assert_is_op_output("elementwise_add")
                        ->AsOutput();

  /*
   *            X
   *           / \
   *          /   reduce_mean "u(x)"
   *          \   /
   *      elementwise_sub     "x - u(x)"
   *      /           \    2
   *      |            \  /
   *      |      elementwise_pow  "(x - u(x))^2"
   *      |             |
   *      |       reduce_mean     "sigma^2 = 1/C*Sum{(x - u(x))^2}"
   *      |             |     eps
   *      |             |     /
   *      |       elementwise_add "sigma^2 + epsilon"
   *      \             |
   *       \           sqrt       "sqrt(sigma^2 + epsilon)"
   *        \          /
   *         \        /
   *       elementwise_div        "lnorm = {x-u(x)}/{sqrt(sigma^2 + epsilon)}"
   *              |
   *       gamma  |
   *          \   |
   *       elementwise_mul        "scale: gamma(C) * lnorm"
   *              |
   *        beta  |
   *          \   |
   *       elementwise_add        "shift: gamma(C) * lnorm + beta(C)"
   */

  x_mean->LinksFrom({x}).LinksTo({x_mean_out});
  x_sub_mean->LinksFrom({x, x_mean_out}).LinksTo({x_sub_mean_out});
  x_sub_mean_sqr->LinksFrom({x_sub_mean_out, sqr_pow})
      .LinksTo({x_sub_mean_sqr_out});
  std_dev->LinksFrom({x_sub_mean_sqr_out}).LinksTo({std_dev_out});
  std_dev_eps->LinksFrom({std_dev_out, eps}).LinksTo({std_dev_eps_out});

  std_dev_eps_sqrt->LinksFrom({std_dev_eps_out})
      .LinksTo({std_dev_eps_sqrt_out});
  division->LinksFrom({x_sub_mean_out, std_dev_eps_sqrt_out})
      .LinksTo({division_out});
  scale->LinksFrom({division_out, gamma}).LinksTo({scale_out});
  shift->LinksFrom({scale_out, beta}).LinksTo({shift_out});

  return shift_out;
}

3429
// Add support int8 flag and out_threshold
3430
PDNode *patterns::AddSupportInt8::operator()() {
3431
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op();
3432
  auto quant_out =
3433 3434 3435 3436
      pattern->NewNode(quant_out_repr())
          ->assert_is_var()
          ->assert_more([&](Node *node) { return node->outputs.size() > 0; })
          ->AsOutput();
3437 3438 3439 3440
  quant_op->LinksTo({quant_out});
  return quant_out;
}

3441 3442 3443
}  // namespace ir
}  // namespace framework
}  // namespace paddle