graph_pattern_detector.cc 40.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <array>
17 18 19
#include <string>
#include <vector>

20
#include "graph_pattern_detector.h"
21
#include "paddle/fluid/framework/ir/graph_helper.h"
22
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
23
#include "paddle/fluid/framework/ir/graph_traits.h"
24
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
25
#include "paddle/fluid/framework/operator.h"
26
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/string/pretty_log.h"
Y
Yan Chunwei 已提交
28
#include "paddle/fluid/string/printf.h"
29

30 31 32 33
namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
34 35 36 37
using string::PrettyLogEndl;
using string::PrettyLog;
using string::Style;

38 39
size_t PDPattern::id_ = 0UL;

C
chengduo 已提交
40
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
41 42 43 44 45 46 47
  if (!name.empty()) {
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0,
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
48
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
49 50 51 52
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
53
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
54 55 56 57 58 59
  if (!name.empty()) {
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0,
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

60
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
61
  auto *cur = nodes_.back().get();
62
  node_map_[name] = cur;
63 64 65
  return cur;
}

C
chengduo 已提交
66
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
67 68 69 70 71 72 73 74
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
75
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
76 77 78 79 80 81
  PADDLE_ENFORCE(a);
  PADDLE_ENFORCE(b);
  PADDLE_ENFORCE(a != b, "can't connect to the same nodes.");
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
82
void GraphPatternDetector::operator()(Graph *graph,
83
                                      GraphPatternDetector::handle_t handler) {
84 85 86 87
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }

88 89 90
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
91
  ValidateByNodeRole(&subgraphs);
92

Y
Yan Chunwei 已提交
93
  if (subgraphs.empty()) return;
Y
Yan Chunwei 已提交
94
  PrettyLogEndl(Style::detail(), "---  detect %d subgraphs", subgraphs.size());
95
  int id = 0;
C
chengduo 已提交
96
  for (auto &g : subgraphs) {
M
minqiyang 已提交
97
    VLOG(3) << "optimizing #" << id++ << " subgraph";
98 99 100 101
    handler(g, graph);
  }
}

C
chengduo 已提交
102
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
M
minqiyang 已提交
103
  VLOG(3) << "mark pdnodes in graph";
104 105
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
106 107
  for (auto &node : GraphTraits::DFS(graph)) {
    for (const auto &pdnode : pattern_.nodes()) {
108
      if (pdnode->Tell(&node)) {
109
        VLOG(4) << "Node " << node.Name() << " marked as " << pdnode->name();
110 111 112 113
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
114
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
115
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
116
    if (!pdnodes2nodes_.count(pdnode.get())) {
M
minqiyang 已提交
117
      VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
118
      // return false;
Y
Yan Chunwei 已提交
119 120
    }
  }
C
chengduo 已提交
121 122 123
  for (auto &item : pdnodes2nodes_) {
    for (auto &n : item.second) {
      GetMarkedNodes(const_cast<Graph *>(&graph)).insert(n);
Y
Yan Chunwei 已提交
124 125
    }
  }
M
minqiyang 已提交
126
  VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
127

128 129 130
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
131 132 133
// The intermediate Nodes can only link to the nodes inside the pattern, or this
// subgraph will be droped.
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
134
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
135 136 137 138 139
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
          subgraphs->begin(), subgraphs->end(),
C
chengduo 已提交
140
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
141
            // Collect the inputs and outputs.
C
chengduo 已提交
142 143
            std::unordered_set<Node *> ios;
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
144 145 146 147
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
148
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
149
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
150
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
151 152 153 154
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
155
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
156 157 158 159 160 161 162 163 164 165 166
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

167
struct HitGroup {
C
chengduo 已提交
168
  std::unordered_map<PDNode *, Node *> roles;
169

C
chengduo 已提交
170
  bool Match(Node *node, PDNode *pat) {
171
    if (nodes_.count(node)) {
T
Tao Luo 已提交
172 173 174 175 176
      if (roles.count(pat) && roles[pat] == node) return true;
      return false;
    } else {
      if (roles.count(pat) && roles[pat] != node) return false;
      return true;
177
    }
178 179
  }

C
chengduo 已提交
180
  void Register(Node *node, PDNode *pat) {
181 182 183 184 185
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
C
chengduo 已提交
186
  std::unordered_set<Node *> nodes_;
187 188 189
};

// Tell whether Node a links to b.
C
chengduo 已提交
190 191
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
192 193 194 195 196 197 198
    if (b == node) {
      return true;
    }
  }
  return false;
}

199 200
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
201
  // Init empty subgraphs.
202
  std::vector<GraphPatternDetector::subgraph_t> result;
203
  std::vector<HitGroup> init_groups;
204
  std::array<std::vector<HitGroup>, 2> bi_records;
C
chengduo 已提交
205
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
206
                                               : pattern_.edges().front().first;
207
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
208
  for (auto *node : pdnodes2nodes_[first_pnode]) {
209 210 211 212 213 214 215 216 217 218
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
219
  for (const auto &edge : pattern_.edges()) {
M
minqiyang 已提交
220
    VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
221
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
222 223
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
224 225
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
226
    cur_groups.clear();
227
    if (pre_groups.empty()) break;
228
    // source -> target
C
chengduo 已提交
229 230
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
M
minqiyang 已提交
231
        VLOG(8) << "check " << source->id() << " -- " << target->id();
232
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
233
        for (const auto &group : pre_groups) {
T
Tao Luo 已提交
234 235 236 237 238 239
          if (IsNodesLink(source, target)) {
            HitGroup new_group = group;
            bool flag = new_group.Match(source, edge.first) &&
                        new_group.Match(target, edge.second);
            if (flag) {
              new_group.Register(source, edge.first);
240 241 242 243 244 245 246 247
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
M
minqiyang 已提交
248
    VLOG(3) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
249 250
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
M
minqiyang 已提交
251
        VLOG(4) << "node " << item.second->id() << " as " << item.first->name();
Y
Yan Chunwei 已提交
252
      }
M
minqiyang 已提交
253
      VLOG(4) << "=========================================================";
Y
Yan Chunwei 已提交
254
    }
255 256
  }

C
chengduo 已提交
257
  for (auto &group : bi_records[step % 2]) {
258
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
259
    for (auto &role : group.roles) {
260 261 262 263 264 265 266
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

Y
Yan Chunwei 已提交
267 268
struct GraphItemLessThan {
  bool operator()(const std::pair<PDNode *, Node *> &a,
Y
Yan Chunwei 已提交
269
                  const std::pair<PDNode *, Node *> &b) {
Y
Yan Chunwei 已提交
270 271 272 273 274
    if (a.first != b.first) {
      return a.first < b.first;
    } else {
      return a.second < b.second;
    }
Y
Yan Chunwei 已提交
275
  }
Y
Yan Chunwei 已提交
276
};
Y
Yan Chunwei 已提交
277

278 279
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
280
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
281
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
282
  if (subgraphs->empty()) return;
283
  std::vector<GraphPatternDetector::subgraph_t> result;
284 285

  std::unordered_set<size_t> set;
Y
Yan Chunwei 已提交
286
  std::hash<std::string> hasher;
C
chengduo 已提交
287
  for (auto &g : *subgraphs) {
Y
Yan Chunwei 已提交
288 289
    // Sort the items in the sub-graph, and transform to a string key.
    std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
Y
Yan Chunwei 已提交
290
    std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
Y
Yan Chunwei 已提交
291 292 293
    std::stringstream ss;
    for (auto &item : sorted_keys) {
      ss << item.first << ":" << item.second;
294
    }
Y
Yan Chunwei 已提交
295
    auto key = hasher(ss.str());
296 297 298 299 300 301 302 303
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

304
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
305
    std::vector<subgraph_t> *subgraphs) {
306
  std::vector<subgraph_t> result;
C
chengduo 已提交
307
  std::unordered_set<Node *> node_set;
308

C
chengduo 已提交
309
  for (const auto &subgraph : *subgraphs) {
310
    bool valid = true;
C
chengduo 已提交
311
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
312
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
313 314 315 316 317
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
318
      for (auto &item : subgraph) {
319 320 321 322 323 324 325 326
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

327 328 329 330 331
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
332 333
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
334 335 336 337 338
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
339
  for (const auto &edge : edges()) {
340 341 342 343
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      LOG(ERROR) << "no node " << edge.first << " " << edge.second;
      continue;
    }
C
chengduo 已提交
344 345
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
346 347 348 349 350
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
351
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
352
  // extend outlinks.
C
chengduo 已提交
353
  for (PDNode *x : others) {
354 355 356 357 358
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
359
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
360
  // extend outlinks.
C
chengduo 已提交
361
  for (PDNode *x : others) {
362 363 364 365 366
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
367 368
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
369 370
  return this;
}
C
chengduo 已提交
371 372 373

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
374 375 376 377
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
378 379 380 381 382 383 384 385

PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
386 387
  return this;
}
C
chengduo 已提交
388 389

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
390
  assert_is_var();
C
chengduo 已提交
391
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
392 393
  return this;
}
C
chengduo 已提交
394 395

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
396
  assert_is_var();
C
chengduo 已提交
397
  asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
398 399
  return this;
}
C
chengduo 已提交
400 401 402

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
                                       const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
403 404
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
405 406
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
407 408 409
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
410 411 412 413 414
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
415 416 417

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
                                        const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
418
  assert_is_var();
C
chengduo 已提交
419 420
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
421 422 423
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
424 425 426 427 428
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
429 430

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
431
  assert_is_var();
C
chengduo 已提交
432 433
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
434 435 436 437 438 439 440 441 442
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
443 444

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
445
  assert_is_var();
C
chengduo 已提交
446 447
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
448 449 450 451 452 453 454 455 456
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
457 458

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
459
  assert_is_var();
C
chengduo 已提交
460 461
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
462 463 464 465 466 467 468 469
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
470 471 472

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
473 474 475 476
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
477
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
478
  assert_is_var();
C
chengduo 已提交
479 480
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
481 482 483 484 485 486 487 488
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
489 490 491

PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
492 493 494 495
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
496 497

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
498
  assert_is_op(op_type);
C
chengduo 已提交
499
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
500 501
  return this;
}
C
chengduo 已提交
502 503

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
504
  assert_is_op(op_type);
C
chengduo 已提交
505
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
506 507
  return this;
}
C
chengduo 已提交
508 509

PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
510 511 512 513
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
597 598 599 600 601 602
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
603 604

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
605 606 607 608 609
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->Op()->Input(argument).size() <= nth) return false;
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
610 611

bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
612 613 614 615 616
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->Op()->Output(argument).size() <= nth) return false;
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
617 618 619 620 621

void GraphSafeRemoveNodes(Graph *graph,
                          const std::unordered_set<const Node *> &nodes) {
  for (auto *node : nodes) {
    graph->RemoveNode(const_cast<Node *>(node));
622 623
  }

C
chengduo 已提交
624
  for (auto *node : graph->Nodes()) {
625 626
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
627
        it = const_cast<Node *>(node)->inputs.erase(it);
628
      } else {
629
        it++;
630
      }
631 632 633
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
634
        it = const_cast<Node *>(node)->outputs.erase(it);
635
      } else {
636
        it++;
637
      }
638 639 640
    }
  }
}
C
chengduo 已提交
641 642 643

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
644 645 646 647 648 649 650
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
                                     bool with_eltwise_add) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d");

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
                           ->assert_is_op_input("batch_norm", "Scale");
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Bias");
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Mean");
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("batch_norm", "Variance");

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("batch_norm");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("batch_norm", "MeanOut");

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "VarianceOut");

  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedMean");

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedVariance");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
        ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  } else {
    batch_norm_op
        ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  }
  return bn_out_var;
}

C
chengduo 已提交
757 758
PDNode *patterns::ConvReLU::operator()(
    paddle::framework::ir::PDNode *conv_input) {
759 760
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
C
chengduo 已提交
761 762
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
763 764
  // Create variables
  // Filter
C
chengduo 已提交
765
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
766 767 768 769
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");
  // intermediate variable, will be removed in the IR after fuse.
C
chengduo 已提交
770
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
771 772 773 774
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d")
                           ->assert_is_op_input("relu");
  // output
C
chengduo 已提交
775
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
776 777 778
                           ->AsOutput()
                           ->assert_is_op_output("relu");

779
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
780 781 782 783
  relu_op->LinksFrom({conv_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

T
tensor-tang 已提交
784 785 786 787
PDNode *patterns::SeqConvEltAddRelu::operator()(
    paddle::framework::ir::PDNode *seqconv_input) {
  // Create Operators
  seqconv_input->assert_is_op_input("sequence_conv", "X");
T
tensor-tang 已提交
788 789 790 791
  auto *seqconv_op = pattern->NewNode(seqconv_repr())
                         ->assert_is_op("sequence_conv")
                         ->assert_op_attr<bool>("paddingTrainable", false)
                         ->assert_op_attr<int>("contextStride", 1);
T
tensor-tang 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

  auto *eltadd_op =
      pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
  // Create variables
  // Filter
  auto *seqconv_weight_var =
      pattern->NewNode(seqconv_weight_repr())
          ->AsInput()
          ->assert_is_persistable_var()
          ->assert_is_op_input("sequence_conv", "Filter");
  // Bias
  auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add");
  // intermediate variable, will be removed in the IR after fuse.
  auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
                              ->AsIntermediate()
                              ->assert_is_only_output_of_op("sequence_conv")
                              ->assert_is_op_input("elementwise_add");
  auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
                             ->AsIntermediate()
                             ->assert_is_only_output_of_op("elementwise_add")
                             ->assert_is_only_input_of_op("relu");
  // output
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("relu");

  seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
      .LinksTo({seqconv_out_var});
  eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
      .LinksTo({eltadd_out_var});
  relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
829
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
Y
Yan Chunwei 已提交
830 831 832
                                 bool with_bias) {
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
833
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
834

C
chengduo 已提交
835
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
836 837 838 839
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
840
  auto *mul_out_var =
Y
Yan Chunwei 已提交
841 842 843 844 845 846 847 848 849 850
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

  if (!with_bias) {  // not with bias
    // Add links.
    mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
    return mul_out_var;

  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
851
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
852 853
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
854
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
855 856 857
                     ->assert_is_op_input("elementwise_add")
                     ->AsInput();

C
chengduo 已提交
858
    auto *fc_out = pattern->NewNode(Out_repr())
Y
Yan Chunwei 已提交
859 860 861 862 863 864
                       ->AsOutput()
                       ->assert_is_op_output("elementwise_add");

    mul->LinksFrom({mul_w_var, x}).LinksTo({mul_out_var});
    elementwise_add->LinksFrom({mul_out_var, bias}).LinksTo({fc_out});
    return fc_out;
865 866
  }
}
T
tensor-tang 已提交
867

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
886
PDNode *patterns::LSTM::operator()(PDNode *x) {
887
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
888
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
889
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
890
  auto *arg__ =               \
Y
Yan Chunwei 已提交
891
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
892 893 894 895 896

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
897 898
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
899

Y
Yan Chunwei 已提交
900 901 902 903 904
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
905 906 907 908 909

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
910

C
chengduo 已提交
911
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
912
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
913
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
914
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
915
  auto *arg__ =               \
Y
Yan Chunwei 已提交
916
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
917

Y
Yan Chunwei 已提交
918
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
919 920
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
921
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
922 923
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
924
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
925
  // below are intermediate
Y
Yan Chunwei 已提交
926 927 928 929
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
930

T
tensor-tang 已提交
931 932 933 934
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
935 936 937 938 939
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

M
Michal Gallus 已提交
1034
PDNode *patterns::ConvBias::operator()(
1035
    paddle::framework::ir::PDNode *conv_input, bool is_conv3d) {
Y
Yihua Xu 已提交
1036
  std::string type = is_conv3d ? "conv3d" : "conv2d";
M
Michal Gallus 已提交
1037
  // Create Operators
Y
Yihua Xu 已提交
1038 1039
  conv_input->assert_is_op_input(type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(type);
M
Michal Gallus 已提交
1040 1041 1042 1043
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
Y
Yihua Xu 已提交
1044 1045 1046 1047
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input(type, "Filter");
M
Michal Gallus 已提交
1048
  // intermediate variable, will be removed in the IR after fuse.
Y
Yihua Xu 已提交
1049 1050 1051 1052
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op(type)
                           ->assert_is_op_input("elementwise_add");
M
Michal Gallus 已提交
1053 1054 1055
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
1056
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

1068 1069 1070 1071
PDNode *patterns::Conv::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

  auto input_var = pattern->NewNode(conv_input_repr())
1072
                       ->AsInput()
1073 1074 1075
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
1076
                        ->AsInput()
1077 1078 1079
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
1080
                        ->AsOutput()
1081 1082
                        ->assert_is_op_output("conv2d", "Output");

1083
  conv_op->LinksFrom({input_var, filter_var});
1084 1085 1086 1087 1088
  conv_op->LinksTo({output_var});

  return output_var;
}

1089
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) {
1090 1091 1092
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");

1093 1094
  x_var->AsInput()->assert_is_op_input("elementwise_add", "X");
  y_var->AsInput()->assert_is_op_input("elementwise_add", "Y");
1095 1096 1097 1098
  auto out_var = pattern->NewNode(elementwise_add_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output("elementwise_add", "Out");

1099
  elementwise_add_op->LinksFrom({x_var, y_var});
1100 1101 1102 1103
  elementwise_add_op->LinksTo({out_var});

  return out_var;
}
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

std::unordered_set<std::string> conv_act_set({"identity", "sigmoid", "relu",
                                              "relu6", "relux", "tanh",
                                              "band_pass"});

PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });

  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
  act_op->LinksFrom({elementwise_add_out}).LinksTo({act_out});

  return act_out;
}

PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->assert_is_op_input("elementwise_add", "X")
                                 ->AsIntermediate();

  auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
                                  ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
                                    ->assert_is_op_input("elementwise_add", "Y")
                                    ->AsInput();
  auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
                                   ->assert_is_op_output("elementwise_add")
                                   ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });
  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
  elementwise_add_op_1->LinksFrom(
      {elementwise_add_out, elementwise_add_in_y_1});
  act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
  return act_out;
}

1213 1214 1215
}  // namespace ir
}  // namespace framework
}  // namespace paddle