test_pyramid_hash_op.py 2.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle.fluid as fluid


class TestPyramidHashOpApi(unittest.TestCase):
    def test_api(self):
        num_voc = 128
        embed_dim = 64
        x_shape, x_lod = [16, 10], [[3, 5, 2, 6]]
        x = fluid.data(name='x', shape=x_shape, dtype='int32', lod_level=1)
        hash_embd = fluid.contrib.search_pyramid_hash(
            input=x,
            num_emb=embed_dim,
            space_len=num_voc * embed_dim,
            pyramid_layer=4,
            rand_len=16,
            drop_out_percent=0.5,
            is_training=True,
            use_filter=False,
            white_list_len=6400,
            black_list_len=2800,
            seed=3,
            lr=0.002,
            param_attr=fluid.ParamAttr(
                name="PyramidHash_emb_0",
                learning_rate=0, ),
            param_attr_wl=fluid.ParamAttr(
                name="Filter",
                learning_rate=0, ),
            param_attr_bl=None,
            name=None, )

        place = fluid.CPUPlace()
        x_tensor = fluid.create_lod_tensor(
            np.random.randint(0, num_voc, x_shape).astype('int32'), x_lod,
            place)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        ret = exe.run(feed={'x': x_tensor},
                      fetch_list=[hash_embd],
                      return_numpy=False)


if __name__ == "__main__":
    unittest.main()